Сверхрегенератор на полевом транзисторе – Сверхрегенеративный приемник с предварительным увч для импульсных сигналов Ю. Ю. Супрун, г. Харьков «Радiоаматор»

Содержание

Приемник-сверхрегенератор на полевом транзисторе | Техника и Программы

   Чувствительность сверхрегенеративных приемников в значительной степени определяется собственными шумами используемого транзистора. В этом смысле целесообразно применение полевых транзисторов, как менее шумящих.

   

   Наиболее интересные параметры схемы сведены в таблицу.

   

   Результаты получены при напряжении питания 5 В, глубине модуляции испытательного сигнала т — 0,9 и частоте модуляции 1 кГц. Приемник предназначен для работы с импульсными сигналами, поэтому выбран нелинейный режим, обеспечивающий эффективную АРУ. При увеличении амплитуды входного сигнала с 3,5 мкВ до 4,5 мВ (в 1300 раз), уровень сигнала в контрольной точке Кт2 меняется всего в пределах 160—350 мВ. Приемник предназначен для работы с амплитудно-манипулированными сигналами.

   Сверхрегенеративный каскад собран на транзисторе VT1. Колебательный контур включен в затворную цепь. Это, во-первых, практически исключило шунтирующее действие транзистора на контур, что существенно повысило его нагруженную добротность. Во-вторых, снизило мощность колебаний в контуре и, как следствие, паразитное излучение через антенну. Емкость контура образована двумя конденсаторами С2 и СЗ, точка соединения которых подключена к истоку транзистора, что и обеспечивает положительную обратную связь, необходимую для самовозбуждения каскада.

    

   

   Величина резистора R1, постоянное падение напряжения на котором определяет исходное положение рабочей точки, выбрано такой, чтобы крутизна в этой точке превышала критическое значение. Совместно с конденсатором С5 этот резистор образует цепь формирования вспомогательных колебаний супе-ризации.

   Форму и параметры колебаний можно проконтролировать осциллографом в контрольной точке Кт1. Они должны соответствовать рис. 5.21, б. Двузвенный фильтр нижних частот R2, С6, R4, С7 выделяет постоянную составляющую этих колебаний, изменяющуюся, как известно, по закону огибающей принимаемого сигнала, и подавляет колебания на частоте суперизации.

   Для того чтобы коэффициент передачи фильтра был близок к единице, он должен быть нагружен на сопротивление, существенно превышающее сумму R2 и R4. С этой целью далее установлен истоковый повторитель на полевом транзисторе VT2. Усилитель низкой частоты реализован на транзисторе V3 и никаких особенностей не имеет.

   Конденсатор С9 дополнительно подавляет просочившееся напряжение суперизации. На выходе усилителя выделяется смесь полезного сигнала и шума, отношение амплитуд которых зависит от уровня входного сигнала (см. табл. 5.1). Каскад на транзисторе VT4 представляет собой, по сути, усилитель-ограни-читель «снизу». Его рабочая точка выбрана таким образом, что, в отсутствие сигнала, амплитуды шумов недостаточно для отпирания транзистора и выходное напряжение равно нулю. Полезный сигнал, имеющий в точке Кт2 отрицательную полярность и превышающий уровень шумов минимум в четыре раза, открывает последний транзистор, и на его выходе формируются положительные импульсы амплитудой 5 В. Конденсатор С13 очищает фронты импульсов от остатков напряжения суперизации.

Детали и конструкция

   Печатная плата приемника выполнена из одностороннего стеклотекстолита. Ее чертеж со стороны проводников приведен на рис. 5.22. Поскольку заявленные характеристики обеспечиваются в достаточно узком диапазоне питающих напряжений 5 ±0,5 В, источник питания должен быть стабилизирован. Стабилизатор, при желании, может быть размещен на плате приемника, для этого на ней предусмотрено место (элемент DA1). Подойдет, например интегральный стабилизатор 1170ЕН5 или его импортный аналог.

   Транзистор VT1 может быть заменен на КП303А(Б, В, Ж), при этом может потребоваться подбор величины резистора R1 по указанной ниже методике. Можно использовать и КП303Г (Д, Е), КП302 с любой буквой, но напряжение питания обязательно придется повысить до 9 В из-за того, что у них значительно больше напряжение отсечки. Транзистор VT2 должен быть из серии КПЗОЗГ—Е при любом напряжении питания.

   

    

   Транзисторы VT2, VT3 заменяются на КТ315 и КТ361 соответственно, с любыми буквенными индексами.

   Контурная катушка содержит 8 витков и наматывается проводом 0,35—0,5 мм на каркасе диаметром 5—9 мм с карбонильным подстроенным сердечником. Можно использовать и фер-ритовый, но обязательно убедиться, что он марки 15—50 ВЧ. Высокочастотный дроссель Др1 стандартный, типа ДПМ-0,1, ДМ-0,1 индуктивностью 10—68 мкГн.

   Можно использовать и самодельный, намотав 20—25 витков провода 0,15—0,25 мм на ферритовое кольцо диаметром 8—10 мм. Конденсаторы С2, СЗ — керамические с хорошим ТКЕ (группы МЗЗ, ПЗЗ, МП0). Остальные могут быть любыми керамическими. Электролитические конденсаторы С8, С12 — любого типа на напряжение не менее 6,3 В. Никаких особых требований не предъявляется и к постоянным резисторам. В качестве антенны приемника используется отрезок провода длиной 25—50 см. Понятно, что чем больше длина антенны, тем больше будет дальность действия аппаратуры. Выход приемника рассчитан на подключение цифровой части, собранной на микросхемах серии КМОП.

   Настройка

   Настройку приемника желательно проводить с помощью осциллографа. Убедившись в правильности монтажа, временно заменить резистор R1 на подстроенный, сопротивлением 10—47 кОм, подсоединив его к плате как можно более короткими проводниками.

   Осциллограф подключить к контрольной точке Кт1. Подать на плату питающее напряжение. Вращением ротора потенциометра добиться появления на экране пилообразных импульсов (рис. 5.21, б). Ручками синхронизации осциллографа обеспечить неподвижность первого импульса на экране. Подстройкой потенциометра установить частоту их следования равной 30—33 кГц.

   Дрожание импульсов, начиная со второго, происходит из-за наличия собственных шумов каскада и свидетельствует о его нормальной работе. Амплитуда их должна быть равной 0,7— 0,8 В. Подключив осциллограф к затвору первого транзистора через конденсатор емкостью 3—5 пФ, можно наблюдать вспышки высокочастотных колебаний на контуре (рис. 5.21, а). Измерить тестером сопротивление потенциометра, предварительно отключив его от схемы, и впаять постоянный резистор ближайшего номинала. Если требуемая частота и амплитуда импульсов одновременно не устанавливается, то подбором сопротивления потенциометра устанавливается нужная амплитуда импульсов, а затем подбором емкости конденсатора С5 — требуемая частота.

   При отсутствии осциллографа можно поступить следующим-образом. Временно соединить затвор первого транзистора с корпусом небольшим отрезком провода, обеспечив срыв колебаний. Контролируя вольтметром постоянного тока напряжение в Кт1, вращением оси потенциометра установить его равным 0,6— 0,65 В. Убрав перемычку, убедиться, что напряжение возрастает до 0,7—0,9 В, что свидетельствует о возникновении генерации. Установить оптимальные параметры «пилы» при этом методе, к сожалению, не удастся.

   Для дальнейшей настройки потребуется либо генератор стандартных сигналов, либо передатчик, совместно с которым пла

   нируется использование приемника. Генератор подключается непосредственно к антенному входу и настраивается на требуемую частоту, его выходное напряжение устанавливается равным 100 мкВ, а глубина внутренней модуляции — 90 %. Если используется передатчик, его предварительно настраивают и располагают на расстоянии 2—3 м от приемника.

   Осциллограф подключается к точке Кт2. Затвор транзистора VT2 временно соединяется с корпусом, а резистор R7 заменяется подстроенным, сопротивлением 47 кОм. Вращением ротора потенциометра необходимо установить постоянное напряжение в контрольной точке равным 3,15 В. При отсутствии осциллографа сделать это можно и с помощью вольтметра. Одновременно на базе транзистора VT4 (КтЗ) необходимо установить 4,65 В подбором величины резистора R10. В последнем случае на этом настройка и заканчивается.

   Отпаять перемычку от затвора VT2. На экране осциллографа должны наблюдаться синусоидальные колебания частотой 1 кГц при использовании генератора или примерно прямоугольные импульсы, когда источником контрольного сигнала служит передатчик. Наличие только шумовой дорожки говорит о том, что входной контур приемника сильно расстроен. Вращением сердечника катушки контура необходимо добиться максимальной амплитуды наблюдаемого сигнала, что будет свидетельствовать о настройке в резонанс. Для обеспечения высокой точности настройки сигнал генератора необходимо постепенно уменьшать .до границы чувствительности (передатчик относить на большее расстояние), о чем будет свидетельствовать появление на экране шумов заметной амплитуды. Окончательно установить движок потенциометра в положение, при котором отсутствует ограничение как положительных, так и отрицательных полуволн наблюдаемого сигнала. Заменить потенциометр постоянным резистором соответствующего сопротивления.

   Переключить осциллограф на выход приемника. На экране должны наблюдаться положительные импульсы, размахом 5 В. Подбором R10 добиться, чтобы амплитуда шумовых всплесков в их основании не превышала 0,5 В; уменьшать их до нуля не еледует, так как снижается чувствительность. На этом настройка приемника закончена.

   В заключение следует отметить, что сверхрегенеративный каскад устойчиво работает в интервале питающих напряжений от 3 до 9 В, потребляя ток соответственно 120—650 мкА. Для каждого питающего напряжения необходимо тщательно подбирать величину резистора R1 и конденсатора С4 по приведенной выше методике. Если изменяется напряжение питания всего приемника, то необходимо уточнять и режимы по постоянному току транзисторов VT3 и VT4.

   Если несколько снизить требования к экономичности, то усилитель низкой частоты и формирователь импульсов можно реализовать на операционном усилителе К140УД1208.

   

   Суммарный ток потребления приемника возрастет при этом до 1—1,2 мА. Конденсатор С9 добавлен для улучшения подавления напряжения суперизации, ухудшающего форму фронтов полезного сигнала. Операционный усилитель работает в режиме компаратора.

   Настройка выходного каскада сводится к следующему. Ротор потенциометра R10 устанавливается в нижнее (по схеме) положение. Потенциал на выводе 2 микросхемы DA1 оказывается ниже, чем на выводе 3, и контролируемое осциллографом напряжение на выходе каскада должно быть равно нулю. Подав на вход приемника сигнал одним из описанных выше способов, плавным вращением движка нотенциометра добиться появления на выходе импульсов положительной полярности.

   

    

   Поскольку амплитуда сигнала с выхода истокового повторителя лежит в пределах 2—15 мВ, разность потенциалов на выводах 3 и 2 должна быть 1—15 мВ, что требует тщательной установки порога. От величины последнего (разности потенциалов между выводах 3 и 2) зависит чувствительность приемника в целом. Наибольшей чувствительности соответствует такой порог, при котором снятие входного сигнала приводит к появлению на экране осциллографа хаотически изменяющихся импульсов амплитудой около 5 В, симметричных относительно уровня в 2,5 В.

   Необходимо иметь в виду, что такая настройка будет вызывать беспорядочное срабатывание исполнительных устройств аппаратуры при отсутствии входного сигнала. Если это недопустимо, то необходимо в отсутствие входного сигнала плавно повышать порог уменьшением сопротивления R10 до того момента, когда шумовые выбросы на экране осциллографа пропадут. Чувствительность приемника при этом снизится до 4—5 мкВ.

Детали и конструкция второго варианта приемника

   Печатная плата второго варианта приемника приведена на рис. 5.24. Для того чтобы настройки сохранялись в процессе эксплуатации, напряжение питания приемника должно быть стабилизировано. Стабилизатор может быть общий на все оборудование модели или предусмотренный только для приемника. В последнем случае его можно установить на печатной плате приемника, место для него предусмотрено (элемент DA2). Подойдет интегральный стабилизатор 1170ЕН5 или аналогичный импортный.

   

Днищенко В. А.

500 схем для радиолюбителей. Дистанционное управление моделями.

СПб.: Наука и техника, 2007. — 464 е.: ил.

nauchebe.net

Сверхрегенератор | NiceTV

РАДИО 2001 №11; 2002 №3

Что такое сверхрегенератор, как он работает, каковы его достоинства и недостатки, в каких радиолюбительских конструкциях его можно использовать? Этим вопросам и посвящена предлагаемая вниманию читателей статья. Сверхрегенератор (его ещё называют суперрегенератор) — это совершенно особый вид усилительного, или усилительно-детекторного устройства, обладающий при исключительной простоте уникальными свойствами, в частности, коэффициентом усиления по напряжению до 105…106, т.е. достигающим миллиона! Это означает, что входные сигналы с уровнем в доли микровольта могут быть усилены до долей вольта. Разумеется, обычным способом такое усиление в одном каскаде получить невозможно, но в сверхрегенераторе используется совершенно другой способ усиления. Если автору будет позволено немного пофилософствовать, то можно не совсем строго сказать, что сверхрегенеративное усиление происходит в иных физических координатах. Обычное усиление осуществляется непрерывно во времени, а вход и выход усилителя (четырёхполюсника), как правило, разнесены в пространстве. Это не относится к усилителям-двухполюсникам, например, регенератору. Регенеративное усиление происходит в том же колебательном контуре, к которому подводится входной сигнал, но опять-таки непрерывно во времени. Сверхрегенератор работает с выборками входного сигнала, взятыми в определённые моменты времени. Затем происходит усиление выборки во времени, и через какой-то промежуток снимается выходной усиленный сигнал, часто даже с тех же зажимов или гнёзд, к которым подведён и входной. Пока совершается процесс усиления, сверхрегенератор не реагирует на входные сигналы, а следующая выборка делается только тогда, когда все процессы усиления завершены. Именно такой принцип усиления и позволяет получать огромные коэффициенты, вход и выход не надо развязывать или экранировать — ведь входные и выходные сигналы разнесены во времени, поэтому не могут взаимодействовать. В сверхрегенеративном способе усиления заложен и принципиальный недостаток. В соответствии с теоремой Котельникова-Найквиста, для неискажённой передачи огибающей сигнала (модулирующих частот) частота выборок должна быть не менее удвоенной наивысшей частоты модуляции. В случае радиовещательного АМ сигнала наивысшая модулирующая частота составляет 10 кГц, ЧМ сигнала — 15 кГц и частота выборок должна быть не менее 20…30 кГц (о стерео речь не идёт). Полоса пропускания сверхрегенератора получается при этом почти на порядок больше, т. е. 200…300 кГц. Этот недостаток неустраним при приёме АМ сигналов и послужил одной из главных причин вытеснения сверхрегенераторов более совершенными, хотя и более сложными супергетеродинными приёмниками, в которых полоса пропускания равна удвоенной наивысшей модулирующей частоте. Как ни странно, при ЧМ описанный недостаток проявляется в значительно меньшей мере. Демодуляция ЧМ происходит на скате резонансной кривой сверхрегенератора — ЧМ превращается в АМ и затем детектируется. При этом ширина резонансной кривой должна быть не меньше удвоенной девиации частоты (100…150 кГц) и получается гораздо лучшее согласование полосы пропускания с шириной спектра сигнала. Ранее сверхрегенераторы выполнялись на электронных лампах и получили значительное распространение в середине прошлого века. Тогда на диапазоне УКВ радиостанций было мало, и широкая полоса пропускания не считалась особым недостатком, в ряде случаев даже облегчая настройку и поиск редких станций. Затем появились сверхрегенераторы на транзисторах. Сейчас они используются в системах радиоуправления моделями, охранной сигнализации и лишь изредка в радиоприёмниках. Схемы сверхрегенераторов мало отличаются от схем регенераторов: если у последнего периодически увеличивать обратную связь до порога генерации, а затем уменьшать её до срыва колебаний, то и получается сверхрегенератор. Вспомогательные гасящие колебания с частотой 20…50 кГц, периодически изменяющие обратную связь, получаются либо от отдельного генератора, либо возникают в самом высокочастотном устройстве (сверхрегенератор с самогашением).

Базовая схема регенератора-сверхрегенератора

Для лучшего уяснения процессов, происходящих в сверхрегенераторе, обратимся к устройству, изображённому на рис. 1, которое, в зависимости от постоянной времени цепочки R1C2, может быть и регенератором, и сверхрегенератором.

Рис. 1 Сверхрегенератор

Эта схема была разработана в результате многочисленных экспериментов и, как представляется автору, оптимальна по простоте, лёгкости налаживания и получаемым результатам. Транзистор VT1 включён по схеме автогенератора — индуктивной трёхточки. Контур генератора образован катушкой L1 и конденсатором С1, отвод катушки сделан ближе к выводу базы. Таким образом осуществляется согласование высокого выходного сопротивления транзистора (цепи коллектора) с меньшим входным сопротивлением (цепи базы). Схема питания транзистора несколько необычна — постоянное напряжение на его базе равно напряжению коллектора. Транзистор, особенно кремниевый, вполне может работать в таком режиме, ведь открывается он при напряжении на базе (относительно эмиттера) около 0,5 В, а напряжение насыщения коллектор-эмиттер составляет, в зависимости от типа транзистора, 0,2…0,4 В. В данной схеме и коллектор, и база по постоянному току соединены с общим проводом, а питание поступает по цепи эмиттера через резистор R1. При этом напряжение на эмиттере автоматически стабилизируется на уровне 0,5 В — транзистор работает подобно стабилитрону с указанным напряжением стабилизации. Действительно, если напряжение на эмиттере упадет, транзистор закроется, эмиттерный ток уменьшится, а вслед за этим уменьшится и падение напряжения на резисторе, что приведёт к возрастанию эмиттерного напряжения. Если же оно возрастет, транзистор откроется сильнее и увеличившееся падение напряжения на резисторе скомпенсирует это возрастание. Единственное условие правильной работы устройства — напряжение питания должно быть заметно больше — от 1,2 В и выше. Тогда ток транзистора удастся установить подбором резистора R1. Рассмотрим работу устройства на высокой частоте. Напряжение с нижней (по схеме) части витков катушки L1 приложено к переходу база-эмиттер транзистора VT1 и усиливается им. Конденсатор С2 — блокировочный, для токов высокой частоты он представляет малое сопротивление. Нагрузкой в коллекторной цепи служит резонансное сопротивление контура, несколько уменьшенное из-за трансформации верхней частью обмотки катушки. При усилении транзистор инвертирует фазу сигнала, затем её инвертирует трансформатор, образованный частями катушки L1 — выполняется баланс фаз.

А баланс амплитуд, необходимый для самовозбуждения, получается при достаточном усилении транзистора. Последнее зависит от тока эмиттера, а его очень легко регулировать, изменяя сопротивление резистора R1, включив, например, вместо него последовательно два резистора, постоянный и переменный. Устройство обладает рядом достоинств, к которым относятся простота конструкции, лёгкость налаживания и высокая экономичность: транзистор потребляет ровно столько тока, сколько необходимо для достаточного усиления сигнала. Подход к порогу генерации получается весьма плавным, к тому же регулировка происходит в низкочастотной цепи, и регулятор можно отнести от контура в удобное место. Регулировка слабо влияет на частоту настройки контура, поскольку напряжение питания транзистора остается постоянным (0,5 В), а следовательно, почти не изменяются и междуэлектродные ёмкости. Описанный регенератор способен повышать добротность контуров в любом диапазоне волн, от ДВ до УКВ, причём катушка L1 не обязательно должна быть контурной — допустимо использовать катушку связи с другим контуром (конденсатор С1 в этом случае не нужен). Можно намотать такую катушку на стержень магнитной антенны ДВ-СВ приёмника, причём число витков её должно составить всего 10-20 % от числа витков контурной катушки, Q-умножитель на биполярном транзисторе получается дешевле и проще, чем на полевом. Регенератор подойдет и для KB диапазона, если связать антенну с контуром L1C1 либо катушкой связи, либо конденсатором малой ёмкости (вплоть до долей пикофарады). Низкочастотный сигнал снимают с эмиттера транзистора VT1 и подают через разделительный конденсатор ёмкостью 0,1…0,5 мкф на усилитель ЗЧ. При приёме AM станций подобный приёмник обеспечивал чувствительность 10…30 мкВ (обратная связь ниже порога генерации), а при приёме телеграфных станций на биениях (обратная связь выше порога) — единицы микровольт.

Процессы нарастания и спада колебаний.


Рис. 2 Колебания

Но вернемся к сверхрегенератору. Пусть напряжение питания на описанное устройство подается в виде импульса в момент времени t0, как показано на рис. 2 сверху. Даже, если усиление транзистора и обратная связь достаточны для генерации, колебания в контуре возникнут не сразу, а будут нарастать по экспоненциальному закону некоторое время τн. По такому же закону происходит и спад колебаний после выключения питания, время спада обозначено как τс.

Рис. 3 Колебательный контур

В общем виде закон нарастания и спада колебаний выражается формулой Uконт = U0exp(-rt/2L), где U0 — напряжение в контуре, с которого начался процесс; r — эквивалентное сопротивление потерь в контуре; L — его индуктивность; t — текущее время. Всё просто в случае спада колебаний, когда r = rп (сопротивление потерь самого контура, рис. 3). Иначе обстоит дело при нарастании колебаний: транзистор вносит в контур отрицательное сопротивление — rос (обратная связь компенсирует потери), и общее эквивалентное сопротивление становится отрицательным. Знак минус в показателе экспоненты исчезает, и закон нарастания запишется:

конт = Uсexp(rt/2L), где r = rос — rп

Из приведённой формулы можно найти и время нарастания колебаний, учитывая, что рост начинается с амплитуды сигнала в контуре Uc и продолжается только до амплитуды U0, далее транзистор входит в режим ограничения, его усиление уменьшается и амплитуда колебаний стабилизируется: τн = (2L/r)ln(U0/Uc). Как видим, время нарастания пропорционально логарифму величины, обратной уровню принимаемого сигнала в контуре. Чем больше сигнал, тем меньше время нарастания. Если импульсы питания подавать на сверхрегенератор периодически, с частотой суперизации (гашения) 20…50 кГц, то в контуре будут происходить вспышки колебаний (рис. 4), длительность которых зависит от амплитуды сигнала — чем меньше время нарастания, тем больше длительность вспышки. Если вспышки продетектировать, на выходе получится демодулированный сигнал, пропорциональный среднему значению огибающей вспышек.


Рис. 4 Вспышки колебании

Усиление самого транзистора может быть небольшим (единицы, десятки), достаточным лишь для самовозбуждения колебаний, в то время как усиление всего сверхрегенератора, равное отношению амплитуды демодулированного выходного сигнала к амплитуде входного, весьма велико. Описанный режим работы сверхрегенератора называют нелинейным, или логарифмическим, поскольку выходной сигнал пропорционален логарифму входного. Это вносит некоторые нелинейные искажения, но играет и полезную роль — чувствительность сверхрегенератора к слабым сигналам больше, а к сильным меньше — здесь действует как бы естественная АРУ. Для полноты описания надо сказать, что возможен и линейный режим работы сверхрегенератора, если длительность импульса питания (см. рис. 2) будет меньше времени нарастания колебаний. Последние не успеют нарасти до максимальной амплитуды, а транзистор — не будет входить в режим ограничения. Тогда амплитуда вспышки станет прямо пропорциональна амплитуде сигнала. Такой режим, однако, нестабилен — малейшее изменение усиления транзистора или эквивалентного сопротивления контура r приведёт к тому, что либо резко упадет амплитуда вспышек, а следовательно, и усиление сверхрегенератора, либо устройство выйдет на нелинейный режим. По этой причине линейный режим сверхрегенератора используется редко. Надо также заметить, что совершенно необязательно коммутировать напряжение питания, чтобы получить вспышки колебаний. С равным успехом можно подавать вспомогательное напряжение суперизации на сетку лампы, базу или затвор транзистора, модулируя их усиление, а значит, и обратную связь. Прямоугольная форма гасящих колебаний также неоптимальна, предпочтительнее синусоидальная, а ещё лучше пилообразная с пологим нарастанием и резким спадом. В последнем варианте сверхрегенератор плавно подходит к точке возникновения колебаний, полоса пропускания несколько сужается и появляется усиление за счёт регенерации. Возникшие колебания растут сначала медленно, затем все быстрее. Спад же колебаний получается максимально быстрым. Наибольшее распространение получили сверхрегенераторы с автосуперизацией, или с самогашением, не имеющие отдельного генератора вспомогательных колебаний. Они работают только в нелинейном режиме. Самогашение, иначе говоря, прерывистую генерацию, легко получить в устройстве, выполненном по схеме рис. 1, надо лишь, чтобы постоянная времени цепочки R1C2 была больше времени нарастания колебаний. Тогда произойдет следующее: возникшие колебания вызовут увеличение тока через транзистор, но колебания будут некоторое время поддерживаться зарядом конденсатора С2. Когда он израсходуется, напряжение на эмиттере упадет, транзистор закроется и колебания прекратятся. Конденсатор С2 начнёт относительно медленно заряжаться от источника питания через резистор R1 до тех пор, пока не откроется транзистор и возникнет новая вспышка.

Эпюры напряжений в сверхрегенераторе.

Осциллограммы напряжений на эмиттере транзистора и в контуре показаны на рис. 4 так, как они обычно видны на экране широкополосного осциллографа. Уровни напряжений 0,5 и 0,4 В показаны совершенно условно — они зависят от типа применённого транзистора и его режима. Что же произойдет при поступлении в контур внешнего сигнала, ведь длительность вспышки теперь определяется зарядом конденсатора С2 и, следовательно, постоянна? С ростом сигнала, как и прежде, уменьшается время нарастания колебаний, вспышки следуют чаще. Если их продетектировать отдельным детектором, то средний уровень сигнала будет возрастать пропорционально логарифму входного сигнала. Но роль детектора с успехом выполняет и сам транзистор VT1 (см. рис. 1) -средний уровень напряжения на эмиттере падает с ростом сигнала. Наконец, что же произойдет в отсутствие сигнала? Все то же самое, только рост амплитуды колебаний каждой вспышки будет начинаться от случайного напряжения шумов в контуре сверхрегенератора. Частота вспышек при этом минимальна, но нестабильна — период повторения меняется хаотическим образом. Усиление сверхрегенератора при этом максимально, а в телефонах или громкоговорителе слышен сильный шум. Он резко снижается при настройке на частоту сигнала. Таким образом, чувствительность сверхрегенератора по самому принципу его работы очень высока — она определяется уровнем внутренних шумов. Дополнительные сведения по теории сверхрегенеративного приёма даны в [1,2].

УКВ ЧМ приёмник с низковольтным питанием

А теперь рассмотрим практические схемы сверхрегенераторов. Их в литературе, особенно давних лет, можно найти довольно много. Любопытный пример: описание сверхрегенератора, выполненного всего на одном транзисторе, было опубликовано в журнале «Popular Electronics» № 3 за 1968 г., его краткий перевод дан в [3]. Сравнительно высокое напряжение питания (9 В) обеспечивает большую амплитуду вспышек колебаний в контуре сверхрегенератора, а следовательно, и большое усиление. Такое решение имеет и существенный недостаток: сверхрегенератор сильно излучает, поскольку антенна связана непосредственно с контуром катушкой связи. Подобный приёмник рекомендуется включать лишь где-нибудь на природе, вдали от населённых мест. Схема простого УКВ ЧМ приёмника с низковольтным питанием, разработанного автором на основе базовой схемы (см. рис. 1), приведена на рис. 5. Антенной в приёмнике служит сама контурная катушка L1, выполненная в виде одновитковой рамки из толстого медного провода (ПЭЛ 1,5 и выше). Диаметр рамки 90 мм. На частоту сигнала контур настраивают конденсатором переменной ёмкости (КПЕ) С1. Ввиду того, что от рамки сложно сделать отвод, транзистор VT1 включён по схеме ёмкостной трёхточки — напряжение ОС на эмиттер подается с ёмкостного делителя С2С3. Частота суперизации определяется суммарным сопротивлением резисторов R1-R3 и ёмкостью конденсатора С4. Если её уменьшить до нескольких сотен пикофарад, прерывистая генерация прекращается и устройство становится регенеративным приёмником. При желании можно установить переключатель, а конденсатор С4 составить из двух, например, ёмкостью 470 пф с подключаемым параллельно 0,047 мкф. Тогда приёмник, в зависимости от условий приёма, можно будет использовать в обоих режимах. Регенеративный режим обеспечивает более чистый и качественный приём, с меньшим уровнем шума, но требует значительно большей напряжённости поля. Обратную связь регулируют переменным резистором R2, ручку которого (так же, как и ручку настройки) рекомендуется вывести на переднюю панель корпуса приёмника. Излучение этого приёмника в сверхрегенеративном режиме ослаблено по следующим причинам: амплитуда вспышек колебаний в контуре невелика, порядка десятой доли вольта, к тому же маленькая рамочная антенна излучает крайне неэффективно, имея низкий КПД в режиме передачи. Усилитель ЗЧ приёмника двухкаскадный, собран по схеме с непосредственной связью на транзисторах VT2 и VT3 разной структуры. В коллекторную цепь выходного транзистора включёны низкоомные головные телефоны (или один телефон) типов ТМ-2, ТМ-4, ТМ-6 или ТК-67-НТ сопротивлением 50-200 Ом. Подойдут телефоны от плейера.

Рис. 5 Принципиальная схема сверхрегенератора

Необходимое смещение на базу первого транзистора УЗЧ подается не от источника питания, а через резистор R4 из эмиттерной цепи транзистора VT1, где, как упоминалось, имеется стабильное напряжение около 0,5 В. Конденсатор С5 пропускает к базе транзистора VT2 колебания ЗЧ. Пульсации гасящей частоты 30…60 кГц на входе УЗЧ не фильтруются, поэтому усилитель работает как бы в импульсном режиме — выходной транзистор закрывается полностью и открывается до насыщения. Ультразвуковая частота вспышек телефонами не воспроизводится, но импульсная последовательность содержит составляющую со звуковыми частотами, которые и слышны. Диод VD1 служит для замыкания экстратока телефонов в момент окончания импульса и закрывания транзистора VT3, он срезает выбросы напряжения, улучшая качество и несколько повышая громкость воспроизведения звука. Питается приёмник от гальванического элемента напряжением 1,5 В или дискового аккумулятора напряжением 1,2 В. Потребляемый ток не превышает 3 мА, при необходимости его можно установить подбором резистора R4. Налаживание приёмника начинается с проверки наличия генерации, вращая ручку переменного резистора R2. Она обнаруживается по появлению довольно сильного шума в телефонах, или при наблюдении на экране осциллографа «пилы» в форме напряжения на конденсаторе С4. Частота суперизации подбирается изменением его ёмкости, она зависит и от положения движка переменного резистора R2. Следует избегать близости частоты суперизации к частоте стереоподнесущей 31,25 кГц или к её второй гармонике 62,5 кГц, иначе могут прослушиваться биения, мешающие приёму. Далее нужно установить диапазон перестройки приёмника, изменяя размеры рамочной антенны — увеличение диаметра понижает частоту настройки. Повысить частоту можно не только уменьшением диаметра самой рамки, но и увеличением диаметра провода, из которого она выполнена. Неплохое решение — использовать оплетку отрезка коаксиального кабеля, свёрнутого в кольцо. Индуктивность понижается и при изготовлении рамки из медной ленты или из двух-трёх параллельных проводов диаметром 1,5-2 мм. Диапазон перестройки достаточно широк, и операцию его установки нетрудно выполнить без приборов, ориентируясь на прослушиваемые станции. В диапазоне УКВ-2 (верхнем) транзистор КТ361 иногда работает неустойчиво — тогда его заменяют на более высокочастотный, например, КТ363. Недостатком приёмника является заметное влияние рук, подносимых к антенне, на частоту настройки. Впрочем, он характерен и для других приёмников, в которых антенна связана непосредственно с колебательным контуром. Этот недостаток устраняется при использовании усилителя РЧ, как бы «изолирующего» контур сверхрегенератора от антенны. Другое полезное назначение такого усилителя — устранить излучение вспышек колебаний антенной, что практически полностью избавляет от помех соседним приёмникам. Усиление УРЧ должно быть очень небольшим, ведь и усиление, и чувствительность сверхрегенератора достаточно высоки. Этим требованиям в наибольшей степени отвечает транзисторный УРЧ по схеме с общей базой или с общим затвором. Снова обращаясь к иностранным разработкам, упомянем схему сверхрегенератора с УРЧ на полевых транзисторах [4].

Экономичный сверхрегенеративный приёмник

В целях достижения предельной экономичности автором был разработан сверхрегенеративный радиоприёмник (рис. 6), потребляющий ток менее 0,5 мА от батареи напряжением 3 В, причём, если отказаться от УРЧ, ток снижается до 0,16 мА. В то же время чувствительность — около 1 мкВ. Сигнал от антенны подается на эмиттер транзистора УРЧ VT1, включённого по схеме с общей базой. Поскольку его входное сопротивление невелико, и учитывая сопротивление резистора R1, получаем входное сопротивление приёмника около 75 Ом, что позволяет использовать наружные антенны со снижением из коаксиального кабеля или ленточного УКВ кабеля с ферритовым трансформатором 300/75 Ом. Такая необходимость может возникнуть при удалении от радиостанций более 100 км. Конденсатор С1 небольшой ёмкости служит элементарным ФВЧ, ослабляя KB помехи. В лучших условиях приёма годится любая суррогатная проволочная антенна. Транзистор УРЧ работает при коллекторном напряжении, равном базовому, — около 0,5 В. Это стабилизирует режим и исключает необходимость налаживания. В коллекторную цепь включёна катушка связи L1, намотанная на одном каркасе с контурной катушкой L2. Катушки содержат 3 витка провода ПЭЛШО 0,25 и 5,75 витка ПЭЛ 0,6 соответственно. Диаметр каркаса — 5,5 мм, расстояние между катушками — 2 мм. Отвод к общему проводу сделан от 2-го витка катушки L2, считая от вывода, соединённого с базой транзистора VT2. Для облегчения настройки каркас полезно оснастить подстроечником с резьбой М4 из магнитодиэлектрика или латуни. Другой вариант, облегчающий настройку, — заменить конденсатор С3 подстроечным, с изменением ёмкости от 6 до 25 или от 8 до 30 пф. Конденсатор настройки С4 типа КПВ, он содержит одну роторную и две статорные пластины. Сверхрегенеративный каскад собран по уже описанной схеме (см. рис. 1) на транзисторе VT2. Режим работы подбирают подстроечным резистором R4,частота вспышек (суперизации) зависит от ёмкости конденсатора С5. На выходе каскада включён двухзвенный ФНЧ R6C6R7C7, ослабляющий колебания с частотой суперизации на входе УЗЧ, чтобы последний не перегружался ими.

Рис. 6 Cверхрегенераторный каскад

Использованный сверхрегенеративный каскад отдает небольшое продетектированное напряжение и, как показала практика, требует двух каскадов усиления напряжения 34. В этом же приёмнике транзисторы УЗЧ работают в режиме микротоков (обратите внимание на большие сопротивления нагрузочных резисторов), усиление их меньше, поэтому использовано три каскада усиления напряжения (транзисторы VT3-VT5) с непосредственной связью между ними. Каскады охвачены ООС через резисторы R12, R13, стабилизирующей их режим. По переменному току ООС ослаблена конденсатором С9. Резистор R14 позволяет регулировать в некоторых пределах усиление каскадов. Выходной каскад собран по схеме двухтактного эмиттерного повторителя на комплементарных германиевых транзисторах VT6, VT7. Они работают без смещения, но искажения типа «ступенька» отсутствуют, во-первых, из-за низкого порогового напряжения германиевых полупроводниковых приборов (0,15 В вместо 0,5 В у кремниевых), а во-вторых, из-за того, что колебания с частотой суперизации все-таки немного проникают через ФНЧ в УЗЧ и как бы «размывают» ступеньку, действуя подобно ВЧ подмагничиванию в магнитофонах. Достижение высокой экономичности приёмника требует использования высокоомных головных телефонов сопротивлением не менее 1 кОм. Если же задачу получения предельной экономичности не ставить, целесообразно использовать более мощный оконечный УЗЧ. Налаживание приёмника начинают с УЗЧ. Подбором резистора R13 устанавливают напряжение на базах транзисторов VT6, VT7 равным половине напряжения питания (1,5 В). Убеждаются в отсутствии самовозбуждения при любом положении движка резистора R14 (желательно, с помощью осциллографа). Полезно подать на вход УЗЧ какой либо звуковой сигнал амплитудой не более нескольких милливольт и убедиться в отсутствии искажений и симметричности ограничения при перегрузке. Подключив сверхрегенеративный каскад, регулировкой резистора R4 добиваются появления шума в телефонах (амплитуда шумового напряжения на выходе — около 0,3 В). Полезно сказать, что, кроме указанных на схеме, в УРЧ и сверхрегенеративном каскаде хорошо работают любые другие кремниевые высокочастотные транзисторы структуры р-n-р. Теперь можно уже попытаться принять радиостанции, связав антенну с контуром через конденсатор связи ёмкостью не более 1 пф или с помощью катушки связи. Далее подсоединяют УРЧ и подгоняют диапазон принимаемых частот, изменяя индуктивность катушки L2 и ёмкость конденсатора С3. В заключение надо заметить, что подобный приёмник, ввиду его высокой экономичности и чувствительности, может найти применение и в переговорных системах, и в устройствах охранной сигнализации. К сожалению, приём ЧМ на сверхрегенератор получается не самым оптимальным образом: работа на скате резонансной кривой уже гарантирует ухудшение отношения сигнал/шум на 6 дБ. Нелинейный режим сверхрегенератора тоже не слишком способствует высококачественному приёму, тем не менее качество звука получилось неплохим.

ЛИТЕРАТУРА

1. Белкин М. К. Сверхрегенеративный радиоприём. — Киев: Техника, 1968.
2. Хевролин В. Сверхрегенеративный приём.- Радио,1953, № 8,с.37.
3. УКВ ЧМ приёмник на одном транзисторе. — Радио,1970,№ 6,с.59.
4. «Последний из могикан…». — Радио, 1997, № 4,0.20,21

 

В. ПОЛЯКОВ, г. Москва

nice.artip.ru

Сверхрегенератор на полевом транзисторе с внешней суперизацией

   Многофункциональность сверхрегенеративного каскада усложняет его настройку и уменьшает устойчивость работы в процессе эксплуатации. В значительной степени эти недостатки устраняются применением внешней суперизации в каскаде. Вариант схемы такого приемника приведен на рисунке.

   

   При напряжении питания +5 В приемник потребляет ток 1,6 мА. Его чувствительность при отношении «сигнал/шум» = 4 и глубине модуляции т = 90 % составляет 1—2 мкВ. Частота настройки— 27,12 МГц (28—28,2 МГц). Приемник предназначен для работы с импульсными сигналами.

   Первый каскад отличается от рассмотренного в предыдущем параграфе отсутствием RC-цепи, обеспечивавшей режим пре-

   рывистой генерации. Теперь такой режим реализован за счет того, что питание на каскад подается через электронный ключ, собранный на транзисторе VT3. Управляется ключ подачей в базу импульсов суперизации со специального генератора, реализованного на элементах DD1.1, DD1.2.

   Форма вырабатываемых колебаний в контрольной точке Кт2 изображена на рис. 5.26, а. Частота суперизации устанавливается подбором величины R6. Интегрирующая цепочка R2C2 преобразует прямоугольные импульсы в экспоненциальные, форма которых в Кт1 приведена на рис. 5.26, б.

   Параметры положительной обратной связи в каскаде подобраны таким образом, что условия самовозбуждения выполняются при напряжении на стоке транзистора, примерно равном UCKр = 1 В (горизонтальная линия на рис. 5.26, б). На интервале времени, в течение которого напряжение на стоке превышает критическое значение, в контуре возникают нарастающие по амплитуде высокочастотные колебания. На это же время напряжение на стоке транзистора получает дополнительный прирост. При внимательном рассмотрении графика на рис. 5.26, б это хорошо заметно.

   По окончании упомянутого интервала колебания в контуре затухают по экспоненте с постоянной времени, определяемой добротностью контура (рис. 5.26, в). Существенным является тот факт, что величина прироста напряжения на стоке, а точнее площадь треугольной области стоковых импульсов, находящейся над уровнем UC K , зависит от амплитуды высокочастотных вспышек.

   При наличии в контуре напряжения полезного сигнала, амплитуда и площадь высокочастотных вспышек будет изменяться во времени по закону изменения огибающей этого сигнала, аналогично будут меняться и площади упомянутых треугольных областей. Это означает, что в спектре стоковых импульсов содержатся гармоники огибающей принимаемого сигнала.

   Выделить их можно с помощью фильтра нижних частот, роль которого в схеме играют элементы Rl, С6, R3, С7. Конденсатор С5 предотвращает попадание постоянной составляющей стокового напряжения на базу транзистора VT2. На этом транзисторе

   

   собран усилитель низкой частоты, доводящий уровень выходного сигнала до 0,15—0,2 В.

   К нагрузке усилителя (резистор R9) непосредственно подключен логический элемент DD1.3, выполняющий функции компаратора. Графики на рис. 5.27 поясняют работу этого устройства. Напряжение в контрольной точке КтЗ (рис. 5.27, а) представляет собой сумму постоянного напряжения С/Кт3, принятого сигнала в виде отрицательных импульсов и напряжения шумов. Известно, что входное напряжение С/пор, при котором происходит переключение логического элемента, для микросхем 561-й серии составляет величину, примерно равную половине напряжения питания. С помощью потенциометра R5 устанавливается такое исходное напряжение в КтЗ, при котором пороговый уровень пересекается только отрицательными сигнальными импульсами (рис. 5.27, а). На выходе приемника при этом формируются положительные импульсы стандартной амплитуды 5 В (рис. 5.27, б).

   Детали и конструкция

   Печатная плата приемника изображена на рис. 5.28 и никаких особенностей не имеет. В правом верхнем углу платы предусмотрено место для установки, при необходимости, интегрального стабилизатора напряжения типа КР1170ЕН5. Все детали сверхрегенеративного каскада такие же, как и в предыдущем варианте приемника.

   Транзистор VT2 типа КТ315Б, VT2 — любой транзистор п-р-п структуры. Микросхема DDI может быть либо K561JIA7, либо К561ЛЕ5. Подстроенный резистор R5 марки СПЗ-Э8Б либо любой другой (при изменении рисунка печатной платы).

   Настройка приемника. После проверки правильности монтажа подать на схему напряжение 5 ±0,2 В. Подключить осциллограф к контрольной точке Кт2 и подбором величины резистора R6 установить частоту наблюдаемых прямоугольных импульсов (рис. 5.26, а) в пределах 40—44 кГц. Убедится, что форма импульсов в Кт1 соответствует рис. 5.26, б. Подключить осциллограф или высокоомный вольтметр к контрольной точке КтЗ и движком потенциометра R5 установить уровень постоянного напряжения в ней равным 2,5 В.

   От генератора стандартных сигналов подать на вход приемника высокочастотное напряжение на предполагаемой частоте работы приемника. Амплитуду установить 10 мкВ, глубину модуляции— 90 %. Вращением сердечника катушки L1 добиться появления на экране осциллографа, подключенного к КтЗ, синусоидального сигнала на частоте 1кГц амплитудой 100—300 мВ (огибающая испытательного сигнала).

   Отсутствие этого сигнала, а также шумовой дорожки на экране осциллографа свидетельствуют об отсутствии генерации в первом каскаде приемника. Дело в том, что питающим напряжением для каскада являются экспоненциальные импульсы (рис. 5.26, б) и, с учетом разброса параметров транзисторов, их амплитуды может оказаться недостаточно для самовозбуждения каскада. В этом случае следует временно заменить резистор R2 подстроечным на 3,3—6,8 кОм, и вращением его ротора не

   

   только добиться появления сигнала в контрольной точке КтЗ, но и сделать амплитуду этого сигнала максимальной.

   Полезно иметь в виду, что чувствительность приемника зависит от длительности интервала времени, в течение которого выполняются условия самовозбуждения (рис. 5.26, б). Чем меньше эта длительность, тем выше чувствительность, поэтому необходимо тщательно подобрать величину резистора R2, чтобы амплитуда импульсов на стоке транзистора превышала порог UCKр на небольшую величину. Однако чрезмерно малая величина превышения приводит к неустойчивой работе каскада из-за действия различных дестабилизирующих факторов. Требуется отыскать разумный компромисс между устойчивостью и чувствительностью.

   Заключительный этап настройки лучше проводить по сигналам передатчика, совместно с которым планируется использо

   

   вать приемник. Включив передатчик, расположенный на расстоянии 3—4 м от приемника, необходимо, контролируя сигнал в КтЗ, уточнить положение сердечника катушки L1, добиваясь настройки в резонанс. Затем необходимо уменьшить уровень выходного сигнала в КтЗ до величины, при которой он будет превышать уровень шумов в 4—5 раз (рис. 5.27, а). Уменьшение сигнала достигается отключением антенны от передатчика, помещением его в металлический сосуд (например кастрюлю), увеличением расстояния до него и т. д. После этого осциллограф переключить на выход приемника и отыскать такое положение движка потенциометра R5, вращая его в небольших пределах вокруг ранее установленной точки, при котором выходные импульсы будут образовываться только отрицательными импульсами сигнала, а срабатывание от шумовых выбросов будет отсутствовать.

   Необходимо иметь в виду, что потенциометр R5 определяет величину постоянного напряжения UKt3. Чрезмерно большая величина зазора £/Кт3—t/nop приведет к снижению чувствительности приемника, так как сигнал небольшой амплитуды не будет вызывать срабатывания компаратора. Малая же величина зазора приведет, как это видно из рис. 5.28, а, к срабатыванию компаратора от шумовых выбросов. Необходимо выбрать разумный компромисс.

   В заключение отметим, что при отсутствии входного сигнала (передатчик выключен) амплитуда шумов в КтЗ возрастает и на выходе приемника появляются хаотические импульсы. Если это недопустимо, то порог нужно устанавливать именно в

   таком положении, добиваясь пропадания ложных срабатываний. Величину его при этом приходится увеличивать, и чувствительность приемника падает до 4—5 мкВ.

   

Днищенко В. А.

500 схем для радиолюбителей. Дистанционное управление моделями.

СПб.: Наука и техника, 2007. — 464 е.: ил.

nauchebe.net

Схемы приемников-сверхрегенераторов на полевом транзисторе

Чувствительность сверхрегенеративных приемников в значительной степени определяется собственными шумами используемого транзистора. В этом смысле целесообразно применение полевых транзисторов, как менее шумящих.

Наиболее интересные параметры схемы сведены в таблицу.

Результаты получены при напряжении питания 5 В, глубине модуляции испытательного сигнала т — 0,9 и частоте модуляции 1 кГц. Приемник предназначен для работы с импульсными сигналами, поэтому выбран нелинейный режим, обеспечивающий эффективную АРУ. При увеличении амплитуды входного сигнала с 3,5 мкВ до 4,5 мВ (в 1300 раз), уровень сигнала в контрольной точке Кт2 меняется всего в пределах 160—350 мВ. Приемник предназначен для работы с амплитудно-манипулированными сигналами.

Сверхрегенеративный каскад собран на транзисторе VT1. Колебательный контур включен в затворную цепь. Это, во-первых, практически исключило шунтирующее действие транзистора на контур, что существенно повысило его нагруженную добротность. Во-вторых, снизило мощность колебаний в контуре и, как следствие, паразитное излучение через антенну. Емкость контура образована двумя конденсаторами С2 и СЗ, точка соединения которых подключена к истоку транзистора, что и обеспечивает положительную обратную связь, необходимую для самовозбуждения каскада.

Величина резистора R1, постоянное падение напряжения на котором определяет исходное положение рабочей точки, выбрано такой, чтобы крутизна в этой точке превышала критическое значение. Совместно с конденсатором С5 этот резистор образует цепь формирования вспомогательных колебаний супе-ризации.

Форму и параметры колебаний можно проконтролировать осциллографом в контрольной точке Кт1. Они должны соответствовать рис. 5.21, б. Двузвенный фильтр нижних частот R2, С6, R4, С7 выделяет постоянную составляющую этих колебаний, изменяющуюся, как известно, по закону огибающей принимаемого сигнала, и подавляет колебания на частоте суперизации.

Для того чтобы коэффициент передачи фильтра был близок к единице, он должен быть нагружен на сопротивление, существенно превышающее сумму R2 и R4. С этой целью далее установлен истоковый повторитель на полевом транзисторе VT2. Усилитель низкой частоты реализован на транзисторе V3 и никаких особенностей не имеет.

Конденсатор С9 дополнительно подавляет просочившееся напряжение суперизации. На выходе усилителя выделяется смесь полезного сигнала и шума, отношение амплитуд которых зависит от уровня входного сигнала (см. табл. 5.1). Каскад на транзисторе VT4 представляет собой, по сути, усилитель-ограни-читель «снизу». Его рабочая точка выбрана таким образом, что, в отсутствие сигнала, амплитуды шумов недостаточно для отпирания транзистора и выходное напряжение равно нулю. Полезный сигнал, имеющий в точке Кт2 отрицательную полярность и превышающий уровень шумов минимум в четыре раза, открывает последний транзистор, и на его выходе формируются положительные импульсы амплитудой 5 В. Конденсатор С13 очищает фронты импульсов от остатков напряжения суперизации.

Детали и конструкция

Печатная плата приемника выполнена из одностороннего стеклотекстолита. Ее чертеж со стороны проводников приведен на рис. 5.22. Поскольку заявленные характеристики обеспечиваются в достаточно узком диапазоне питающих напряжений 5 ±0,5 В, источник питания должен быть стабилизирован. Стабилизатор, при желании, может быть размещен на плате приемника, для этого на ней предусмотрено место (элемент DA1). Подойдет, например интегральный стабилизатор 1170ЕН5 или его импортный аналог.

Транзистор VT1 может быть заменен на КП303А(Б, В, Ж), при этом может потребоваться подбор величины резистора R1 по указанной ниже методике. Можно использовать и КП303Г (Д, Е), КП302 с любой буквой, но напряжение питания обязательно придется повысить до 9 В из-за того, что у них значительно больше напряжение отсечки. Транзистор VT2 должен быть из серии КПЗОЗГ—Е при любом напряжении питания.

Транзисторы VT2, VT3 заменяются на КТ315 и КТ361 соответственно, с любыми буквенными индексами.

Контурная катушка содержит 8 витков и наматывается проводом 0,35—0,5 мм на каркасе диаметром 5—9 мм с карбонильным подстроенным сердечником. Можно использовать и фер-ритовый, но обязательно убедиться, что он марки 15—50 ВЧ. Высокочастотный дроссель Др1 стандартный, типа ДПМ-0,1, ДМ-0,1 индуктивностью 10—68 мкГн.

Можно использовать и самодельный, намотав 20—25 витков провода 0,15—0,25 мм на ферритовое кольцо диаметром 8—10 мм. Конденсаторы С2, СЗ — керамические с хорошим ТКЕ (группы МЗЗ, ПЗЗ, МП0). Остальные могут быть любыми керамическими. Электролитические конденсаторы С8, С12 — любого типа на напряжение не менее 6,3 В. Никаких особых требований не предъявляется и к постоянным резисторам. В качестве антенны приемника используется отрезок провода длиной 25—50 см. Понятно, что чем больше длина антенны, тем больше будет дальность действия аппаратуры. Выход приемника рассчитан на подключение цифровой части, собранной на микросхемах серии КМОП.

Настройка

Настройку приемника желательно проводить с помощью осциллографа. Убедившись в правильности монтажа, временно заменить резистор R1 на подстроенный, сопротивлением 10—47 кОм, подсоединив его к плате как можно более короткими проводниками.

Осциллограф подключить к контрольной точке Кт1. Подать на плату питающее напряжение. Вращением ротора потенциометра добиться появления на экране пилообразных импульсов (рис. 5.21, б). Ручками синхронизации осциллографа обеспечить неподвижность первого импульса на экране. Подстройкой потенциометра установить частоту их следования равной 30—33 кГц.

Дрожание импульсов, начиная со второго, происходит из-за наличия собственных шумов каскада и свидетельствует о его нормальной работе. Амплитуда их должна быть равной 0,7— 0,8 В. Подключив осциллограф к затвору первого транзистора через конденсатор емкостью 3—5 пФ, можно наблюдать вспышки высокочастотных колебаний на контуре (рис. 5.21, а). Измерить тестером сопротивление потенциометра, предварительно отключив его от схемы, и впаять постоянный резистор ближайшего номинала. Если требуемая частота и амплитуда импульсов одновременно не устанавливается, то подбором сопротивления потенциометра устанавливается нужная амплитуда импульсов, а затем подбором емкости конденсатора С5 — требуемая частота.

При отсутствии осциллографа можно поступить следующим-образом. Временно соединить затвор первого транзистора с корпусом небольшим отрезком провода, обеспечив срыв колебаний. Контролируя вольтметром постоянного тока напряжение в Кт1, вращением оси потенциометра установить его равным 0,6— 0,65 В. Убрав перемычку, убедиться, что напряжение возрастает до 0,7—0,9 В, что свидетельствует о возникновении генерации. Установить оптимальные параметры «пилы» при этом методе, к сожалению, не удастся.

Для дальнейшей настройки потребуется либо генератор стандартных сигналов, либо передатчик, совместно с которым планируется использование приемника. Генератор подключается непосредственно к антенному входу и настраивается на требуемую частоту, его выходное напряжение устанавливается равным 100 мкВ, а глубина внутренней модуляции — 90 %. Если используется передатчик, его предварительно настраивают и располагают на расстоянии 2—3 м от приемника.

Осциллограф подключается к точке Кт2. Затвор транзистора VT2 временно соединяется с корпусом, а резистор R7 заменяется подстроенным, сопротивлением 47 кОм. Вращением ротора потенциометра необходимо установить постоянное напряжение в контрольной точке равным 3,15 В. При отсутствии осциллографа сделать это можно и с помощью вольтметра. Одновременно на базе транзистора VT4 (КтЗ) необходимо установить 4,65 В подбором величины резистора R10. В последнем случае на этом настройка и заканчивается.

Отпаять перемычку от затвора VT2. На экране осциллографа должны наблюдаться синусоидальные колебания частотой 1 кГц при использовании генератора или примерно прямоугольные импульсы, когда источником контрольного сигнала служит передатчик. Наличие только шумовой дорожки говорит о том, что входной контур приемника сильно расстроен. Вращением сердечника катушки контура необходимо добиться максимальной амплитуды наблюдаемого сигнала, что будет свидетельствовать о настройке в резонанс. Для обеспечения высокой точности настройки сигнал генератора необходимо постепенно уменьшать .до границы чувствительности (передатчик относить на большее расстояние), о чем будет свидетельствовать появление на экране шумов заметной амплитуды. Окончательно установить движок потенциометра в положение, при котором отсутствует ограничение как положительных, так и отрицательных полуволн наблюдаемого сигнала. Заменить потенциометр постоянным резистором соответствующего сопротивления.

Переключить осциллограф на выход приемника. На экране должны наблюдаться положительные импульсы, размахом 5 В. Подбором R10 добиться, чтобы амплитуда шумовых всплесков в их основании не превышала 0,5 В; уменьшать их до нуля не еледует, так как снижается чувствительность. На этом настройка приемника закончена.

В заключение следует отметить, что сверхрегенеративный каскад устойчиво работает в интервале питающих напряжений от 3 до 9 В, потребляя ток соответственно 120—650 мкА. Для каждого питающего напряжения необходимо тщательно подбирать величину резистора R1 и конденсатора С4 по приведенной выше методике. Если изменяется напряжение питания всего приемника, то необходимо уточнять и режимы по постоянному току транзисторов VT3 и VT4.

Схема сверхгенеративного приемника с использованием микросхемы К140УД1208

Если несколько снизить требования к экономичности, то усилитель низкой частоты и формирователь импульсов можно реализовать на операционном усилителе К140УД1208.

Суммарный ток потребления приемника возрастет при этом до 1—1,2 мА. Конденсатор С9 добавлен для улучшения подавления напряжения суперизации, ухудшающего форму фронтов полезного сигнала. Операционный усилитель работает в режиме компаратора.

Настройка выходного каскада сводится к следующему. Ротор потенциометра R10 устанавливается в нижнее (по схеме) положение. Потенциал на выводе 2 микросхемы DA1 оказывается ниже, чем на выводе 3, и контролируемое осциллографом напряжение на выходе каскада должно быть равно нулю. Подав на вход приемника сигнал одним из описанных выше способов, плавным вращением движка нотенциометра добиться появления на выходе импульсов положительной полярности.

Поскольку амплитуда сигнала с выхода истокового повторителя лежит в пределах 2—15 мВ, разность потенциалов на выводах 3 и 2 должна быть 1—15 мВ, что требует тщательной установки порога. От величины последнего (разности потенциалов между выводах 3 и 2) зависит чувствительность приемника в целом. Наибольшей чувствительности соответствует такой порог, при котором снятие входного сигнала приводит к появлению на экране осциллографа хаотически изменяющихся импульсов амплитудой около 5 В, симметричных относительно уровня в 2,5 В.

Необходимо иметь в виду, что такая настройка будет вызывать беспорядочное срабатывание исполнительных устройств аппаратуры при отсутствии входного сигнала. Если это недопустимо, то необходимо в отсутствие входного сигнала плавно повышать порог уменьшением сопротивления R10 до того момента, когда шумовые выбросы на экране осциллографа пропадут. Чувствительность приемника при этом снизится до 4—5 мкВ.

Детали и конструкция второго варианта приемника

Печатная плата второго варианта приемника приведена на рис. 5.24. Для того чтобы настройки сохранялись в процессе эксплуатации, напряжение питания приемника должно быть стабилизировано. Стабилизатор может быть общий на все оборудование модели или предусмотренный только для приемника. В последнем случае его можно установить на печатной плате приемника, место для него предусмотрено (элемент DA2). Подойдет интегральный стабилизатор 1170ЕН5 или аналогичный импортный.

Днищенко В. А. 500 схем для радиолюбителей. Дистанционное управление моделями.  СПб.: Наука и техника, 2007. — 464 е.: ил.

www.qrz.ru

мир электроники — Сверхрегенератор

категория

Электронные устройства

материалы в категории

В. ПОЛЯКОВ, г. Москва
Радио, 2001 №11; 2002 №3

Что такое сверхрегенератор, как он работает, каковы его достоинства и недостатки, в каких радиолюбительских конструкциях его можно использовать? Этим вопросам и посвящена предлагаемая вниманию читателей статья.

Сверхрегенератор (его ещё называют суперрегенератор) — это совершенно особый вид усилительного, или усилительно-детекторного устройства, обладающий при исключительной простоте уникальными свойствами, в частности, коэффициентом усиления по напряжению до 105…106, т.е. достигающим миллиона! Это означает, что входные сигналы с уровнем в доли микровольта могут быть усилены до долей вольта. Разумеется, обычным способом такое усиление в одном каскаде получить невозможно, но в сверхрегенераторе используется совершенно другой способ усиления. Если автору будет позволено немного пофилософствовать, то можно не совсем строго сказать, что сверхрегенеративное усиление происходит в иных физических координатах. Обычное усиление осуществляется непрерывно во времени, а вход и выход усилителя (четырёхполюсника), как правило, разнесены в пространстве. Это не относится к усилителям-двухполюсникам, например, регенератору. Регенеративное усиление происходит в том же колебательном контуре, к которому подводится входной сигнал, но опять-таки непрерывно во времени. Сверхрегенератор работает с выборками входного сигнала, взятыми в определённые моменты времени. Затем происходит усиление выборки во времени, и через какой-то промежуток снимается выходной усиленный сигнал, часто даже с тех же зажимов или гнёзд, к которым подведён и входной. Пока совершается процесс усиления, сверхрегенератор не реагирует на входные сигналы, а следующая выборка делается только тогда, когда все процессы усиления завершены. Именно такой принцип усиления и позволяет получать огромные коэффициенты, вход и выход не надо развязывать или экранировать — ведь входные и выходные сигналы разнесены во времени, поэтому не могут взаимодействовать. В сверхрегенеративном способе усиления заложен и принципиальный недостаток. В соответствии с теоремой Котельникова-Найквиста, для неискажённой передачи огибающей сигнала (модулирующих частот) частота выборок должна быть не менее удвоенной наивысшей частоты модуляции. В случае радиовещательного АМ сигнала наивысшая модулирующая частота составляет 10 кГц, ЧМ сигнала — 15 кГц и частота выборок должна быть не менее 20…30 кГц (о стерео речь не идёт). Полоса пропускания сверхрегенератора получается при этом почти на порядок больше, т. е. 200…300 кГц. Этот недостаток неустраним при приёме АМ сигналов и послужил одной из главных причин вытеснения сверхрегенераторов более совершенными, хотя и более сложными супергетеродинными приёмниками, в которых полоса пропускания равна удвоенной наивысшей модулирующей частоте. Как ни странно, при ЧМ описанный недостаток проявляется в значительно меньшей мере. Демодуляция ЧМ происходит на скате резонансной кривой сверхрегенератора — ЧМ превращается в АМ и затем детектируется. При этом ширина резонансной кривой должна быть не меньше удвоенной девиации частоты (100…150 кГц) и получается гораздо лучшее согласование полосы пропускания с шириной спектра сигнала. Ранее сверхрегенераторы выполнялись на электронных лампах и получили значительное распространение в середине прошлого века. Тогда на диапазоне УКВ радиостанций было мало, и широкая полоса пропускания не считалась особым недостатком, в ряде случаев даже облегчая настройку и поиск редких станций. Затем появились сверхрегенераторы на транзисторах. Сейчас они используются в системах радиоуправления моделями, охранной сигнализации и лишь изредка в радиоприёмниках. Схемы сверхрегенераторов мало отличаются от схем регенераторов: если у последнего периодически увеличивать обратную связь до порога генерации, а затем уменьшать её до срыва колебаний, то и получается сверхрегенератор. Вспомогательные гасящие колебания с частотой 20…50 кГц, периодически изменяющие обратную связь, получаются либо от отдельного генератора, либо возникают в самом высокочастотном устройстве (сверхрегенератор с самогашением).

Базовая схема регенератора-сверхрегенератора

Для лучшего уяснения процессов, происходящих в сверхрегенераторе, обратимся к устройству, изображённому на рис. 1, которое, в зависимости от постоянной времени цепочки R1C2, может быть и регенератором, и сверхрегенератором.

Эта схема была разработана в результате многочисленных экспериментов и, как представляется автору, оптимальна по простоте, лёгкости налаживания и получаемым результатам. Транзистор VT1 включён по схеме автогенератора — индуктивной трёхточки. Контур генератора образован катушкой L1 и конденсатором С1, отвод катушки сделан ближе к выводу базы. Таким образом осуществляется согласование высокого выходного сопротивления транзистора (цепи коллектора) с меньшим входным сопротивлением (цепи базы). Схема питания транзистора несколько необычна — постоянное напряжение на его базе равно напряжению коллектора. Транзистор, особенно кремниевый, вполне может работать в таком режиме, ведь открывается он при напряжении на базе (относительно эмиттера) около 0,5 В, а напряжение насыщения коллектор-эмиттер составляет, в зависимости от типа транзистора, 0,2…0,4 В. В данной схеме и коллектор, и база по постоянному току соединены с общим проводом, а питание поступает по цепи эмиттера через резистор R1. При этом напряжение на эмиттере автоматически стабилизируется на уровне 0,5 В — транзистор работает подобно стабилитрону с указанным напряжением стабилизации. Действительно, если напряжение на эмиттере упадет, транзистор закроется, эмиттерный ток уменьшится, а вслед за этим уменьшится и падение напряжения на резисторе, что приведёт к возрастанию эмиттерного напряжения. Если же оно возрастет, транзистор откроется сильнее и увеличившееся падение напряжения на резисторе скомпенсирует это возрастание. Единственное условие правильной работы устройства — напряжение питания должно быть заметно больше — от 1,2 В и выше. Тогда ток транзистора удастся установить подбором резистора R1. Рассмотрим работу устройства на высокой частоте. Напряжение с нижней (по схеме) части витков катушки L1 приложено к переходу база-эмиттер транзистора VT1 и усиливается им. Конденсатор С2 — блокировочный, для токов высокой частоты он представляет малое сопротивление. Нагрузкой в коллекторной цепи служит резонансное сопротивление контура, несколько уменьшенное из-за трансформации верхней частью обмотки катушки. При усилении транзистор инвертирует фазу сигнала, затем её инвертирует трансформатор, образованный частями катушки L1 — выполняется баланс фаз.

А баланс амплитуд, необходимый для самовозбуждения, получается при достаточном усилении транзистора. Последнее зависит от тока эмиттера, а его очень легко регулировать, изменяя сопротивление резистора R1, включив, например, вместо него последовательно два резистора, постоянный и переменный. Устройство обладает рядом достоинств, к которым относятся простота конструкции, лёгкость налаживания и высокая экономичность: транзистор потребляет ровно столько тока, сколько необходимо для достаточного усиления сигнала. Подход к порогу генерации получается весьма плавным, к тому же регулировка происходит в низкочастотной цепи, и регулятор можно отнести от контура в удобное место. Регулировка слабо влияет на частоту настройки контура, поскольку напряжение питания транзистора остается постоянным (0,5 В), а следовательно, почти не изменяются и междуэлектродные ёмкости. Описанный регенератор способен повышать добротность контуров в любом диапазоне волн, от ДВ до УКВ, причём катушка L1 не обязательно должна быть контурной — допустимо использовать катушку связи с другим контуром (конденсатор С1 в этом случае не нужен). Можно намотать такую катушку на стержень магнитной антенны ДВ-СВ приёмника, причём число витков её должно составить всего 10-20 % от числа витков контурной катушки, Q-умножитель на биполярном транзисторе получается дешевле и проще, чем на полевом. Регенератор подойдет и для KB диапазона, если связать антенну с контуром L1C1 либо катушкой связи, либо конденсатором малой ёмкости (вплоть до долей пикофарады). Низкочастотный сигнал снимают с эмиттера транзистора VT1 и подают через разделительный конденсатор ёмкостью 0,1…0,5 мкф на усилитель ЗЧ. При приёме AM станций подобный приёмник обеспечивал чувствительность 10…30 мкВ (обратная связь ниже порога генерации), а при приёме телеграфных станций на биениях (обратная связь выше порога) — единицы микровольт.

Процессы нарастания и спада колебаний.

Но вернемся к сверхрегенератору. Пусть напряжение питания на описанное устройство подается в виде импульса в момент времени t0, как показано на рис. 2 сверху. Даже, если усиление транзистора и обратная связь достаточны для генерации, колебания в контуре возникнут не сразу, а будут нарастать по экспоненциальному закону некоторое время τн. По такому же закону происходит и спад колебаний после выключения питания, время спада обозначено как τс.

В общем виде закон нарастания и спада колебаний выражается формулой Uконт = U0exp(-rt/2L), где U0 — напряжение в контуре, с которого начался процесс; r — эквивалентное сопротивление потерь в контуре; L — его индуктивность; t — текущее время. Всё просто в случае спада колебаний, когда r = rп (сопротивление потерь самого контура, рис. 3). Иначе обстоит дело при нарастании колебаний: транзистор вносит в контур отрицательное сопротивление — rос (обратная связь компенсирует потери), и общее эквивалентное сопротивление становится отрицательным. Знак минус в показателе экспоненты исчезает, и закон нарастания запишется:

конт = Uсexp(rt/2L), где r = rос — rп

Из приведённой формулы можно найти и время нарастания колебаний, учитывая, что рост начинается с амплитуды сигнала в контуре Uc и продолжается только до амплитуды U0, далее транзистор входит в режим ограничения, его усиление уменьшается и амплитуда колебаний стабилизируется: τн = (2L/r)ln(U0/Uc). Как видим, время нарастания пропорционально логарифму величины, обратной уровню принимаемого сигнала в контуре. Чем больше сигнал, тем меньше время нарастания. Если импульсы питания подавать на сверхрегенератор периодически, с частотой суперизации (гашения) 20…50 кГц, то в контуре будут происходить вспышки колебаний(рис. 4), длительность которых зависит от амплитуды сигнала — чем меньше время нарастания, тем больше длительность вспышки. Если вспышки продетектировать, на выходе получится демодулированный сигнал, пропорциональный среднему значению огибающей вспышек.

Усиление самого транзистора может быть небольшим (единицы, десятки), достаточным лишь для самовозбуждения колебаний, в то время как усиление всего сверхрегенератора, равное отношению амплитуды демодулированного выходного сигнала к амплитуде входного, весьма велико. Описанный режим работы сверхрегенератора называют нелинейным, или логарифмическим, поскольку выходной сигнал пропорционален логарифму входного. Это вносит некоторые нелинейные искажения, но играет и полезную роль — чувствительность сверхрегенератора к слабым сигналам больше, а к сильным меньше — здесь действует как бы естественная АРУ. Для полноты описания надо сказать, что возможен и линейный режим работы сверхрегенератора, если длительность импульса питания (см. рис. 2) будет меньше времени нарастания колебаний. Последние не успеют нарасти до максимальной амплитуды, а транзистор — не будет входить в режим ограничения. Тогда амплитуда вспышки станет прямо пропорциональна амплитуде сигнала. Такой режим, однако, нестабилен — малейшее изменение усиления транзистора или эквивалентного сопротивления контура r приведёт к тому, что либо резко упадет амплитуда вспышек, а следовательно, и усиление сверхрегенератора, либо устройство выйдет на нелинейный режим. По этой причине линейный режим сверхрегенератора используется редко. Надо также заметить, что совершенно необязательно коммутировать напряжение питания, чтобы получить вспышки колебаний. С равным успехом можно подавать вспомогательное напряжение суперизации на сетку лампы, базу или затвор транзистора, модулируя их усиление, а значит, и обратную связь. Прямоугольная форма гасящих колебаний также неоптимальна, предпочтительнее синусоидальная, а ещё лучше пилообразная с пологим нарастанием и резким спадом. В последнем варианте сверхрегенератор плавно подходит к точке возникновения колебаний, полоса пропускания несколько сужается и появляется усиление за счёт регенерации. Возникшие колебания растут сначала медленно, затем все быстрее. Спад же колебаний получается максимально быстрым. Наибольшее распространение получили сверхрегенераторы с автосуперизацией, или с самогашением, не имеющие отдельного генератора вспомогательных колебаний. Они работают только в нелинейном режиме. Самогашение, иначе говоря, прерывистую генерацию, легко получить в устройстве, выполненном по схеме рис. 1, надо лишь, чтобы постоянная времени цепочки R1C2 была больше времени нарастания колебаний. Тогда произойдет следующее: возникшие колебания вызовут увеличение тока через транзистор, но колебания будут некоторое время поддерживаться зарядом конденсатора С2. Когда он израсходуется, напряжение на эмиттере упадет, транзистор закроется и колебания прекратятся. Конденсатор С2 начнёт относительно медленно заряжаться от источника питания через резистор R1 до тех пор, пока не откроется транзистор и возникнет новая вспышка.

Эпюры напряжений в сверхрегенераторе.

Осциллограммы напряжений на эмиттере транзистора и в контуре показаны на рис. 4 так, как они обычно видны на экране широкополосного осциллографа. Уровни напряжений 0,5 и 0,4 В показаны совершенно условно — они зависят от типа применённого транзистора и его режима. Что же произойдет при поступлении в контур внешнего сигнала, ведь длительность вспышки теперь определяется зарядом конденсатора С2 и, следовательно, постоянна? С ростом сигнала, как и прежде, уменьшается время нарастания колебаний, вспышки следуют чаще. Если их продетектировать отдельным детектором, то средний уровень сигнала будет возрастать пропорционально логарифму входного сигнала. Но роль детектора с успехом выполняет и сам транзистор VT1 (см. рис. 1) -средний уровень напряжения на эмиттере падает с ростом сигнала. Наконец, что же произойдет в отсутствие сигнала? Все то же самое, только рост амплитуды колебаний каждой вспышки будет начинаться от случайного напряжения шумов в контуре сверхрегенератора. Частота вспышек при этом минимальна, но нестабильна — период повторения меняется хаотическим образом. Усиление сверхрегенератора при этом максимально, а в телефонах или громкоговорителе слышен сильный шум. Он резко снижается при настройке на частоту сигнала. Таким образом, чувствительность сверхрегенератора по самому принципу его работы очень высока — она определяется уровнем внутренних шумов. Дополнительные сведения по теории сверхрегенеративного приёма даны в [1,2].

УКВ ЧМ приёмник с низковольтным питанием

А теперь рассмотрим практические схемы сверхрегенераторов. Их в литературе, особенно давних лет, можно найти довольно много. Любопытный пример: описание сверхрегенератора, выполненного всего на одном транзисторе, было опубликовано в журнале «Popular Electronics» № 3 за 1968 г., его краткий перевод дан в [3]. Сравнительно высокое напряжение питания (9 В) обеспечивает большую амплитуду вспышек колебаний в контуре сверхрегенератора, а следовательно, и большое усиление. Такое решение имеет и существенный недостаток: сверхрегенератор сильно излучает, поскольку антенна связана непосредственно с контуром катушкой связи. Подобный приёмник рекомендуется включать лишь где-нибудь на природе, вдали от населённых мест. Схема простого УКВ ЧМ приёмника с низковольтным питанием, разработанного автором на основе базовой схемы (см. рис. 1), приведена на рис. 5. Антенной в приёмнике служит сама контурная катушка L1, выполненная в виде одновитковой рамки из толстого медного провода (ПЭЛ 1,5 и выше). Диаметр рамки 90 мм. На частоту сигнала контур настраивают конденсатором переменной ёмкости (КПЕ) С1. Ввиду того, что от рамки сложно сделать отвод, транзистор VT1 включён по схеме ёмкостной трёхточки — напряжение ОС на эмиттер подается с ёмкостного делителя С2С3. Частота суперизации определяется суммарным сопротивлением резисторов R1-R3 и ёмкостью конденсатора С4. Если её уменьшить до нескольких сотен пикофарад, прерывистая генерация прекращается и устройство становится регенеративным приёмником. При желании можно установить переключатель, а конденсатор С4 составить из двух, например, ёмкостью 470 пф с подключаемым параллельно 0,047 мкф. Тогда приёмник, в зависимости от условий приёма, можно будет использовать в обоих режимах. Регенеративный режим обеспечивает более чистый и качественный приём, с меньшим уровнем шума, но требует значительно большей напряжённости поля. Обратную связь регулируют переменным резистором R2, ручку которого (так же, как и ручку настройки) рекомендуется вывести на переднюю панель корпуса приёмника. Излучение этого приёмника в сверхрегенеративном режиме ослаблено по следующим причинам: амплитуда вспышек колебаний в контуре невелика, порядка десятой доли вольта, к тому же маленькая рамочная антенна излучает крайне неэффективно, имея низкий КПД в режиме передачи. Усилитель ЗЧ приёмника двухкаскадный, собран по схеме с непосредственной связью на транзисторах VT2 и VT3 разной структуры. В коллекторную цепь выходного транзистора включёны низкоомные головные телефоны (или один телефон) типов ТМ-2, ТМ-4, ТМ-6 или ТК-67-НТ сопротивлением 50-200 Ом. Подойдут телефоны от плейера.

Необходимое смещение на базу первого транзистора УЗЧ подается не от источника питания, а через резистор R4 из эмиттерной цепи транзистора VT1, где, как упоминалось, имеется стабильное напряжение около 0,5 В. Конденсатор С5 пропускает к базе транзистора VT2 колебания ЗЧ. Пульсации гасящей частоты 30…60 кГц на входе УЗЧ не фильтруются, поэтому усилитель работает как бы в импульсном режиме — выходной транзистор закрывается полностью и открывается до насыщения. Ультразвуковая частота вспышек телефонами не воспроизводится, но импульсная последовательность содержит составляющую со звуковыми частотами, которые и слышны. Диод VD1 служит для замыкания экстратока телефонов в момент окончания импульса и закрывания транзистора VT3, он срезает выбросы напряжения, улучшая качество и несколько повышая громкость воспроизведения звука. Питается приёмник от гальванического элемента напряжением 1,5 В или дискового аккумулятора напряжением 1,2 В. Потребляемый ток не превышает 3 мА, при необходимости его можно установить подбором резистора R4. Налаживание приёмника начинается с проверки наличия генерации, вращая ручку переменного резистора R2. Она обнаруживается по появлению довольно сильного шума в телефонах, или при наблюдении на экране осциллографа «пилы» в форме напряжения на конденсаторе С4. Частота суперизации подбирается изменением его ёмкости, она зависит и от положения движка переменного резистора R2. Следует избегать близости частоты суперизации к частоте стереоподнесущей 31,25 кГц или к её второй гармонике 62,5 кГц, иначе могут прослушиваться биения, мешающие приёму. Далее нужно установить диапазон перестройки приёмника, изменяя размеры рамочной антенны — увеличение диаметра понижает частоту настройки. Повысить частоту можно не только уменьшением диаметра самой рамки, но и увеличением диаметра провода, из которого она выполнена. Неплохое решение — использовать оплетку отрезка коаксиального кабеля, свёрнутого в кольцо. Индуктивность понижается и при изготовлении рамки из медной ленты или из двух-трёх параллельных проводов диаметром 1,5-2 мм. Диапазон перестройки достаточно широк, и операцию его установки нетрудно выполнить без приборов, ориентируясь на прослушиваемые станции. В диапазоне УКВ-2 (верхнем) транзистор КТ361 иногда работает неустойчиво — тогда его заменяют на более высокочастотный, например, КТ363. Недостатком приёмника является заметное влияние рук, подносимых к антенне, на частоту настройки. Впрочем, он характерен и для других приёмников, в которых антенна связана непосредственно с колебательным контуром. Этот недостаток устраняется при использовании усилителя РЧ, как бы «изолирующего» контур сверхрегенератора от антенны. Другое полезное назначение такого усилителя — устранить излучение вспышек колебаний антенной, что практически полностью избавляет от помех соседним приёмникам. Усиление УРЧ должно быть очень небольшим, ведь и усиление, и чувствительность сверхрегенератора достаточно высоки. Этим требованиям в наибольшей степени отвечает транзисторный УРЧ по схеме с общей базой или с общим затвором. Снова обращаясь к иностранным разработкам, упомянем схему сверхрегенератора с УРЧ на полевых транзисторах [4].

Экономичный сверхрегенеративный приёмник

В целях достижения предельной экономичности автором был разработан сверхрегенеративный радиоприёмник (рис. 6), потребляющий ток менее 0,5 мА от батареи напряжением 3 В, причём, если отказаться от УРЧ, ток снижается до 0,16 мА. В то же время чувствительность — около 1 мкВ. Сигнал от антенны подается на эмиттер транзистора УРЧ VT1, включённого по схеме с общей базой. Поскольку его входное сопротивление невелико, и учитывая сопротивление резистора R1, получаем входное сопротивление приёмника около 75 Ом, что позволяет использовать наружные антенны со снижением из коаксиального кабеля или ленточного УКВ кабеля с ферритовым трансформатором 300/75 Ом. Такая необходимость может возникнуть при удалении от радиостанций более 100 км. Конденсатор С1 небольшой ёмкости служит элементарным ФВЧ, ослабляя KB помехи. В лучших условиях приёма годится любая суррогатная проволочная антенна. Транзистор УРЧ работает при коллекторном напряжении, равном базовому, — около 0,5 В. Это стабилизирует режим и исключает необходимость налаживания. В коллекторную цепь включёна катушка связи L1, намотанная на одном каркасе с контурной катушкой L2. Катушки содержат 3 витка провода ПЭЛШО 0,25 и 5,75 витка ПЭЛ 0,6 соответственно. Диаметр каркаса — 5,5 мм, расстояние между катушками — 2 мм. Отвод к общему проводу сделан от 2-го витка катушки L2, считая от вывода, соединённого с базой транзистора VT2. Для облегчения настройки каркас полезно оснастить подстроечником с резьбой М4 из магнитодиэлектрика или латуни. Другой вариант, облегчающий настройку, — заменить конденсатор С3 подстроечным, с изменением ёмкости от 6 до 25 или от 8 до 30 пф. Конденсатор настройки С4 типа КПВ, он содержит одну роторную и две статорные пластины. Сверхрегенеративный каскад собран по уже описанной схеме (см. рис. 1) на транзисторе VT2. Режим работы подбирают подстроечным резистором R4,частота вспышек (суперизации) зависит от ёмкости конденсатора С5. На выходе каскада включён двухзвенный ФНЧ R6C6R7C7, ослабляющий колебания с частотой суперизации на входе УЗЧ, чтобы последний не перегружался ими.

Использованный сверхрегенеративный каскад отдает небольшое продетектированное напряжение и, как показала практика, требует двух каскадов усиления напряжения 34. В этом же приёмнике транзисторы УЗЧ работают в режиме микротоков (обратите внимание на большие сопротивления нагрузочных резисторов), усиление их меньше, поэтому использовано три каскада усиления напряжения (транзисторы VT3-VT5) с непосредственной связью между ними. Каскады охвачены ООС через резисторы R12, R13, стабилизирующей их режим. По переменному току ООС ослаблена конденсатором С9. Резистор R14 позволяет регулировать в некоторых пределах усиление каскадов. Выходной каскад собран по схеме двухтактного эмиттерного повторителя на комплементарных германиевых транзисторах VT6, VT7. Они работают без смещения, но искажения типа «ступенька» отсутствуют, во-первых, из-за низкого порогового напряжения германиевых полупроводниковых приборов (0,15 В вместо 0,5 В у кремниевых), а во-вторых, из-за того, что колебания с частотой суперизации все-таки немного проникают через ФНЧ в УЗЧ и как бы «размывают» ступеньку, действуя подобно ВЧ подмагничиванию в магнитофонах. Достижение высокой экономичности приёмника требует использования высокоомных головных телефонов сопротивлением не менее 1 кОм. Если же задачу получения предельной экономичности не ставить, целесообразно использовать более мощный оконечный УЗЧ. Налаживание приёмника начинают с УЗЧ. Подбором резистора R13 устанавливают напряжение на базах транзисторов VT6, VT7 равным половине напряжения питания (1,5 В). Убеждаются в отсутствии самовозбуждения при любом положении движка резистора R14 (желательно, с помощью осциллографа). Полезно подать на вход УЗЧ какой либо звуковой сигнал амплитудой не более нескольких милливольт и убедиться в отсутствии искажений и симметричности ограничения при перегрузке. Подключив сверхрегенеративный каскад, регулировкой резистора R4 добиваются появления шума в телефонах (амплитуда шумового напряжения на выходе — около 0,3 В). Полезно сказать, что, кроме указанных на схеме, в УРЧ и сверхрегенеративном каскаде хорошо работают любые другие кремниевые высокочастотные транзисторы структуры р-n-р. Теперь можно уже попытаться принять радиостанции, связав антенну с контуром через конденсатор связи ёмкостью не более 1 пф или с помощью катушки связи. Далее подсоединяют УРЧ и подгоняют диапазон принимаемых частот, изменяя индуктивность катушки L2 и ёмкость конденсатора С3. В заключение надо заметить, что подобный приёмник, ввиду его высокой экономичности и чувствительности, может найти применение и в переговорных системах, и в устройствах охранной сигнализации. К сожалению, приём ЧМ на сверхрегенератор получается не самым оптимальным образом: работа на скате резонансной кривой уже гарантирует ухудшение отношения сигнал/шум на 6 дБ. Нелинейный режим сверхрегенератора тоже не слишком способствует высококачественному приёму, тем не менее качество звука получилось неплохим.

ЛИТЕРАТУРА

1. Белкин М. К. Сверхрегенеративный радиоприём. — Киев: Техника, 1968.
2. Хевролин В. Сверхрегенеративный приём.- Радио,1953, № 8,с.37.
3. УКВ ЧМ приёмник на одном транзисторе. — Радио,1970,№ 6,с.59.
4. «Последний из могикан…». — Радио, 1997, № 4,0.20,21

radio-uchebnik.ru

Сверхрегенератор с рамочной антенной — Рождённый с паяльником

Честно скажу, не интересовался я раньше сверхрегенераторами настолько, чтобы их делать. Но тут меня попросили помочь — проверить схему и сказать, нет ли в ней ошибок. Так как у меня не было опыта в сборке сверхрегенераторов, то, посмотрев на схему, я не нашёл в ней ничего подозрительного. Думал, что товарищ просто ошибся в монтаже. Но поскольку говорили мы только по телефону, а схема была простая (В.Поляков. Сверхрегенератор. Радио, 2002, №3, стр. 50), решил сам её собрать и проверить. Оказалось, что и в самом деле в схеме была ошибка.

Вот схема из журнала.

Вначале подстроил режим усилителя, т.к. с приведёнными номиналами резисторов все транзисторы были заперты. Но сколько я ни пытался крутить подстроечный резистор, ничего, кроме слабых шорохов, я не слышал. Никакого обещанного сильного шума не было. Заменил от безысходности транзистор — не помогло. Заменил резистор многооборотным, и однажды при его вращении услышал очень далёкий шум. Остановился, стал вращать КПЕ и… Настроился на станцию. Но слышно было тихо. Я думал, что победил, приёмник работал, нужно было только объяснить товарищу, как сложно его настроить. Но перед тем, как продемонстрировать настроенный приёмник, решил проверить пилообразные импульсы питания генератора. Подключил осциллограф, проглядел все глаза — ничего нет на экране. Звук в наушнике есть, а на экране пусто. Ухо оказалось гораздо чувствительнее осциллографа.
А дело вот в чём. То, что у меня получилось — регенератор, а не сверхрегенератор. Автор, скорей всего, рисовал схему для журнала по памяти и просто забыл одну деталь. Привожу здесь доработанную схему.

Стоило добавить дроссель, как всё сразу встало на свои места. Никакой подстройки резистора не потребовалось (да и от его положения теперь почти ничего не зависит), приёмник «зашумел» сразу, настройка на станции облегчилась. Одно смущает: не могу сказать, что возросла чувствительность, да и качество так себе. При настройке шум суперизации полностью не пропадает, появляется свист, приём идёт с большими искажениями. Второй приёмник тоже удалось довести до похожего состояния, только он почему-то почти ничего не ловит, только шипит. Возможно, во всём виноват монтаж.

ru-radio-electr.livejournal.com

Что такое сверхрегенератор как он работает

СВЕРХРЕГЕНЕРАТОР

РАДИО №11 — 2001г.; №3 — 2002г.

В. ПОЛЯКОВ, г. Москва

Что такое сверхрегенератор, как он работает, каковы его до­стоинства и недостатки, в каких радиолюбительских конструкци­ях его можно использовать? Этим вопросам и посвящена пред­лагаемая вниманию читателей статья.

Сверхрегенератор (его еще называют суперрегенератор) — это совершенно особый вид усилительного, или усили­тельно-детекторного устройства, обла­дающий при исключительной простоте уникальными свойствами, в частности, коэффициентом усиления по напряже­нию до 105…106, т.е. достигающим мил­лиона! Это означает, что входные сигна­лы с уровнем в доли микровольта могут быть усилены до долей вольта. Разумеет­ся, обычным способом такое усиление в одном каскаде получить невозможно, но в сверхрегенераторе используется совершенно другой способ усиления.

Если автору будет позволено немно­го пофилософствовать, то можно не совсем строго сказать, что сверхреге­неративное усиление происходит в иных физических координатах. Обыч­ное усиление осуществляется непре­рывно во времени, а вход и выход уси­лителя (четырехполюсника), как прави­ло, разнесены в пространстве. Это не относится к усилителям-двухполюсни­кам, например, регенератору. Регене­ративное усиление происходит в том же колебательном контуре, к которому подводится входной сигнал, но опять-таки непрерывно во времени.

Сверхрегенератор работает с вы­борками входного сигнала, взятыми в определенные моменты времени. За­тем происходит усиление выборки во времени, и через какой-то промежуток снимается выходной усиленный сигнал, часто даже с тех же зажимов или гнезд, к которым подведен и входной. Пока со­вершается процесс усиления, сверхрегенератор не реагирует на входные сиг­налы, а следующая выборка делается только тогда, когда все процессы уси­ления завершены. Именно такой прин­цип усиления и позволяет получать ог­ромные коэффициенты, вход и выход не надо развязывать или экраниро­вать — ведь входные и выходные сигна­лы разнесены во времени, поэтому не могут взаимодействовать.

В сверхрегенеративном способе уси­ления заложен и принципиальный недо­статок. В соответствии с теоремой Котельникова-Найквиста, для неискажен­ной передачи огибающей сигнала (моду­лирующих частот) частота выборок должна быть не менее удвоенной наи­высшей частоты модуляции. В случае ра­диовещательного АМ сигнала наивыс­шая модулирующая частота составляет 10 кГц, ЧМ сигнала — 15 кГц и частота вы­борок должна быть не менее 20…30 кГц (о стерео речь не идет). Полоса пропус­кания сверхрегенератора получается при этом почти на порядок больше, т. е. 200…300 кГц. Этот недостаток неустра­ним при приеме АМ сигналов и послужил одной из главных причин вытеснения сверхрегенераторов более совершенны­ми, хотя и более сложными супергетеро­динными приемниками, в которых поло­са пропускания равна удвоенной наи­высшей модулирующей частоте.

Как ни странно, при ЧМ описанный недостаток проявляется в значительно меньшей мере. Демодуляция ЧМ проис­ходит на скате резонансной кривой сверхрегенератора — ЧМ превращается в АМ и затем детектируется. При этом ширина резонансной кривой должна быть не меньше удвоенной девиации ча­стоты (100…150 кГц) и получается гораз­до лучшее согласование полосы пропус­кания с шириной спектра сигнала.

Ранее сверхрегенераторы выполня­лись на электронных лампах и получили значительное распространение в сере­дине прошлого века. Тогда на диапазоне УКВ радиостанций было мало, и широ­кая полоса пропускания не считалась особым недостатком, в ряде случаев да­же облегчая настройку и поиск редких станций. Затем появились сверхрегене­раторы на транзисторах. Сейчас они ис­пользуются в системах радиоуправле­ния моделями, охранной сигнализации и лишь изредка в радиоприемниках.

Схемы сверхрегенераторов мало отли­чаются от схем регенераторов: если у по­следнего периодически увеличивать об­ратную связь до порога генерации, а за­тем уменьшать ее до срыва колебаний, то и получается сверхрегенератор. Вспо­могательные гасящие колебания с часто­той 20…50 кГц, периодически изменяю­щие обратную связь, получаются либо от отдельного генератора, либо возникают в самом высокочастотном устройстве (сверхрегенератор с самогашением).

Базовая схема регенератора-сверхрегенератора

Для лучшего уяснения процессов, происходящих в сверхрегенераторе, обратимся к устройству, изображенно­му на рис. 1, которое, в зависимости от постоянной времени цепочки R1C2, может быть и регенератором, и сверх­регенератором.

Эта схема была разра­ботана в результате многочисленных экспериментов и, как представляется автору, оптимальна по простоте, легкости налаживания и получаемым результатам.

Транзистор VT1 включен по схеме автогенератора — индуктивной трех­точки. Контур генератора образован ка­тушкой L1 и конденсатором С1, отвод катушки сделан ближе к выводу базы. Таким образом осуществляется согла­сование высокого выходного сопротив­ления транзистора (цепи коллектора) с меньшим входным сопротивлением (цепи базы).

Схема питания транзистора не­сколько необычна — постоянное напря­жение на его базе равно напряжению коллектора. Транзистор, особенно кремниевый, вполне может работать в таком режиме, ведь открывается он при напряжении на базе (относительно эмиттера) около 0,5 В, а напряжение насыщения коллектор-эмиттер со­ставляет, в зависимости от типа транзи­стора, 0,2…0,4 В. В данной схеме и кол­лектор, и база по постоянному току со­единены с общим проводом, а питание поступает по цепи эмиттера через ре­зистор R1.

При этом напряжение на эмиттере автоматически стабилизируется на уровне 0,5 В — транзистор работает подобно стабилитрону с указанным напряжением стабилизации. Дейст­вительно, если напряжение на эмит­тере упадет, транзистор закроется, эмиттерный ток уменьшится, а вслед за этим уменьшится и падение напря­жения на резисторе, что приведет к возрастанию эмиттерного напряже­ния. Если же оно возрастет, транзис­тор откроется сильнее и увеличивше­еся падение напряжения на резисто­ре скомпенсирует это возрастание. Единственное условие правильной работы устройства — напряжение пи­тания должно быть заметно больше — от 1,2 В и выше. Тогда ток транзистора удастся установить подбором резис­тора R1.

Рассмотрим работу устройства на высокой частоте. Напряжение с нижней (по схеме) части витков катушки L1 приложено к переходу база-эмиттер транзистора VT1 и усиливается им. Конденсатор С2 — блокировочный, для токов высокой частоты он пред­ставляет малое сопротивление. На­грузкой в коллекторной цепи служит резонансное сопротивление контура, несколько уменьшенное из-за транс­формации верхней частью обмотки ка­тушки.

При усилении транзистор инверти­рует фазу сигнала, затем ее инвертиру­ет трансформатор, образованный частями катушки L1 — выполняется баланс фаз.

А баланс амплитуд, необходимый для самовозбуждения, получается при достаточном усилении транзистора. Последнее зависит от тока эмиттера, а его очень легко регулировать, изме­няя сопротивление резистора R1, вклю­чив, например, вместо него последова­тельно два резистора, постоянный и пе­ременный.

Устройство обладает рядом до­стоинств, к которым относятся про­стота конструкции, легкость налажи­вания и высокая экономичность: транзистор потребляет ровно столь­ко тока, сколько необходимо для до­статочного усиления сигнала. Под­ход к порогу генерации получается весьма плавным, к тому же регули­ровка происходит в низкочастотной цепи, и регулятор можно отнести от контура в удобное место. Регулиров­ка слабо влияет на частоту настрой­ки контура, поскольку напряжение питания транзистора остается по­стоянным (0,5 В), а следовательно, почти не изменяются и междуэлект­родные емкости.

Описанный регенератор способен повышать добротность контуров в лю­бом диапазоне волн, от ДВ до УКВ, при­чем катушка L1 не обязательно должна быть контурной — допустимо использо­вать катушку связи с другим контуром (конденсатор С1 в этом случае не ну­жен). Можно намотать такую катушку на стержень магнитной антенны ДВ-СВ приемника, причем число витков ее должно составить всего 10-20 % от числа витков контурной катушки, Q-умножитель на биполярном транзисторе получается дешевле и проще, чем на полевом.

Регенератор подойдет и для KB диапазона, если связать антенну с контуром L1C1 либо катушкой свя­зи, либо конденсатором малой ем­кости (вплоть до долей пикофарады). Низкочастотный сигнал снима­ют с эмиттера транзистора VT1 и по­дают через разделительный конден­сатор емкостью 0,1…0,5 мкф на усилитель ЗЧ. При приеме AM стан­ций подобный приемник обеспечи­вал чувствительность 10…30 мкВ (обратная связь ниже порога гене­рации), а при приеме телеграфных станций на биениях (обратная связь выше порога) — единицы микро­вольт.

Процессы нарастания и спада колебаний.

Но вернемся к сверхрегенерато­ру. Пусть напряжение питания на описанное устройство подается в виде импульса в момент времени t0, как показано нарис. 2 сверху. Да­же, если усиление транзистора и об­ратная связь достаточны для гене­рации, колебания в контуре возник­нут не сразу, а будут нарастать по экспоненциальному закону некото­рое время τн. По такому же закону происходит и спад колебаний после выключения питания, время спада обозначено как τс.

В общем виде закон нарастания и спада колебаний выражается формулой Uконт = U0exp(-rt/2L), где U0 — напря­жение в контуре, с которого начался процесс; r — эквивалентное сопро­тивление потерь в контуре; L — его индуктивность; t — текущее время. Все просто в случае спада колебаний, когда r = rп (сопротивление потерь са­мого контура,рис. 3). Иначе обстоит дело при нарастании колебаний: тран­зистор вносит в контур отрицательное

сопротивление — rос (обратная связь компенсирует потери), и общее эквива­лентное сопротивление становится от­рицательным. Знак минус в показателе экспоненты исчезает, и закон нараста­ния запишется: Uконт = Uсexp(rt/2L), где r = rос — rп

Из приведенной формулы можно найти и время нарастания колеба­ний, учитывая, что рост начинается с амплитуды сигнала в контуре Uc и продолжается только до амплиту­ды U0, далее транзистор входит в ре­жим ограничения, его усиление уменьшается и амплитуда колебаний стабилизируется: τн = (2L/r)ln(U0/Uc). Как видим, время нарастания про­порционально логарифму величи­ны, обратной уровню принимаемо­го сигнала в контуре. Чем больше сигнал, тем меньше время нараста­ния.

Если импульсы питания подавать на сверхрегенератор периодически, с ча­стотой суперизации (гашения) 20…50 кГц, то в контуре будут происхо­дить вспышки колебаний(рис. 4), дли­тельность которых зависит от амплиту­ды сигнала — чем меньше время нара­стания, тем больше длительность вспышки. Если вспышки продетектировать, на выходе получится демодулированный сигнал, пропорциональный среднему значению огибающей вспы­шек.

Усиление самого транзистора мо­жет быть небольшим (единицы, десят­ки), достаточным лишь для самовоз­буждения колебаний, в то время как усиление всего сверхрегенератора, равное отношению амплитуды демодулированного выходного сигнала к амп­литуде входного, весьма велико.

Описанный режим работы сверх­регенератора называют нелинейным, или логарифмическим, поскольку вы­ходной сигнал пропорционален лога­рифму входного. Это вносит некото­рые нелинейные искажения, но игра­ет и полезную роль — чувствитель­ность сверхрегенератора к слабым сигналам больше, а к сильным мень­ше — здесь действует как бы естест­венная АРУ.

Для полноты описания надо ска­зать, что возможен и линейный ре­жим работы сверхрегенератора, ес­ли длительность импульса питания (см. рис. 2) будет меньше времени нарастания колебаний. Последние не успеют нарасти до максимальной амплитуды, а транзистор — не будет входить в режим ограничения. Тогда амплитуда вспышки станет прямо пропорциональна амплитуде сигна­ла. Такой режим, однако, нестаби­лен — малейшее изменение усиле­ния транзистора или эквивалентного сопротивления контура r приведет к тому, что либо резко упадет ампли­туда вспышек, а следовательно, и усиление сверхрегенератора, ли­бо устройство выйдет на нелиней­ный режим. По этой причине линей­ный режим сверхрегенератора ис­пользуется редко.

Надо также заметить, что совер­шенно необязательно коммутировать напряжение питания, чтобы получить вспышки колебаний. С равным успе­хом можно подавать вспомогательное напряжение суперизации на сетку лампы, базу или затвор транзистора, модулируя их усиление, а значит, и об­ратную связь. Прямоугольная форма гасящих колебаний также неоптималь­на, предпочтительнее синусоидаль­ная, а еще лучше пилообразная с поло­гим нарастанием и резким спадом. В последнем варианте сверхрегенера­тор плавно подходит к точке возникно­вения колебаний, полоса пропускания несколько сужается и появляется уси­ление за счет регенерации. Возникшие колебания растут сначала медленно, затем все быстрее. Спад же колебаний получается максимально быстрым.

Наибольшее распространение по­лучили сверхрегенераторы с автосуперизацией, или с самогашением, не имеющие отдельного генератора вспомогательных колебаний. Они ра­ботают только в нелинейном режиме. Самогашение, иначе говоря, преры­вистую генерацию, легко получить в устройстве, выполненном по схеме рис. 1, надо лишь, чтобы постоянная времени цепочки R1C2 была больше времени нарастания колебаний.

Тогда произойдет следующее: воз­никшие колебания вызовут увеличе­ние тока через транзистор, но колеба­ния будут некоторое время поддержи­ваться зарядом конденсатора С2. Ког­да он израсходуется, напряжение на эмиттере упадет, транзистор закроет­ся и колебания прекратятся. Конден­сатор С2 начнет относительно мед­ленно заряжаться от источника пита­ния через резистор R1 до тех пор, по­ка не откроется транзистор и возник­нет новая вспышка.

Эпюры напряжений в сверхреге­нераторе.

Осциллограммы напряжений на эмиттере транзистора и в контуре по­казаны на рис. 4 так, как они обычно видны на экране широкополосного осциллографа. Уровни напряжений 0,5 и 0,4 В показаны совершенно ус­ловно — они зависят от типа приме­ненного транзистора и его режима.

Что же произойдет при поступле­нии в контур внешнего сигнала, ведь длительность вспышки теперь опре­деляется зарядом конденсатора С2 и, следовательно, постоянна? С рос­том сигнала, как и прежде, уменьша­ется время нарастания колебаний, вспышки следуют чаще. Если их продетектировать отдельным детекто­ром, то средний уровень сигнала бу­дет возрастать пропорционально ло­гарифму входного сигнала. Но роль детектора с успехом выполняет и сам транзистор VT1 (см. рис. 1) -средний уровень напряжения на эмиттере па­дает с ростом сигнала.

Наконец, что же произойдет в отсут­ствие сигнала? Все то же самое, только рост амплитуды колебаний каждой вспышки будет начинаться от случай­ного напряжения шумов в контуре сверхрегенератора. Частота вспышек при этом минимальна, но нестабиль­на — период повторения меняется хао­тическим образом. Усиление сверхре­генератора при этом максимально, а в телефонах или громкоговорителе слышен сильный шум. Он резко снижа­ется при настройке на частоту сигнала. Таким образом, чувствительность сверхрегенератора по самому принци­пу его работы очень высока — она оп­ределяется уровнем внутренних шу­мов. Дополнительные сведения по тео­рии сверхрегенеративного приема да­ны в [1,2].

УКВ ЧМ приемник с низковольтным питанием

А теперь рассмотрим практические схемы сверхрегенераторов. Их в лите­ратуре, особенно давних лет, можно найти довольно много. Любопытный пример: описание сверхрегенератора, выполненного всего на одном транзис­торе, было опубликовано в журнале «Popular Electronics» № 3 за 1968 г., его краткий перевод дан в [3]. Сравнитель­но высокое напряжение питания (9 В) обеспечивает большую амплитуду вспышек колебаний в контуре сверхре­генератора, а следовательно, и боль­шое усиление. Такое решение имеет и существенный недостаток: сверхре­генератор сильно излучает, поскольку антенна связана непосредственно с контуром катушкой связи. Подобный приемник рекомендуется включать лишь где-нибудь на природе, вдали от населенных мест.

Схема простого УКВ ЧМ приемника с низковольтным питанием, разрабо­танного автором на основе базовой схе­мы (см. рис. 1), приведена нарис. 5. Ан­тенной в приемнике служит сама контурная катушка L1, выполненная в виде одновитковой рамки из толстого медно­го провода (ПЭЛ 1,5 и выше). Диаметр рамки 90 мм. На частоту сигнала контур настраивают конденсатором перемен­ной емкости (КПЕ) С1. Ввиду того, что от рамки сложно сделать отвод, транзис­тор VT1 включен по схеме емкостной трехточки — напряжение ОС на эмиттер подается с емкостного делителя С2С3.

Частота суперизации определяется суммарным сопротивлением резисто­ров R1-R3 и емкостью конденсатора С4. Если ее уменьшить до нескольких сотен пикофарад, прерывистая генера­ция прекращается и устройство стано­вится регенеративным приемником. При желании можно установить пере­ключатель, а конденсатор С4 составить из двух, например, емкостью 470 пф с подключаемым параллельно 0,047 мкф. Тогда приемник, в зависи­мости от условий приема, можно будет использовать в обоих режимах. Регене­ративный режим обеспечивает более чистый и качественный прием, с мень­шим уровнем шума, но требует значи­тельно большей напряженности поля. Обратную связь регулируют перемен­ным резистором R2, ручку которого (так же, как и ручку настройки) рекоменду­ется вывести на переднюю панель кор­пуса приемника.

Излучение этого приемника в сверх­регенеративном режиме ослаблено по следующим причинам: амплитуда вспышек колебаний в контуре невели­ка, порядка десятой доли вольта, к тому же маленькая рамочная антенна излу­чает крайне неэффективно, имея низ­кий КПД в режиме передачи.

Усилитель ЗЧ приемника двухкас­кадный, собран по схеме с непосредст­венной связью на транзисторах VT2 и VT3 разной структуры. В коллектор­ную цепь выходного транзистора вклю­чены низкоомные головные телефоны (или один телефон) типов ТМ-2, ТМ-4, ТМ-6 или ТК-67-НТ сопротивлением 50-200 Ом. Подойдут телефоны от плейера.

Рис. 5

Необходимое смещение на базу первого транзистора УЗЧ подается не от источника питания, а через резис­тор R4 из эмиттерной цепи транзистора VT1, где, как упоминалось, имеется ста­бильное напряжение около 0,5 В. Кон­денсатор С5 пропускает к базе транзи­стора VT2 колебания ЗЧ.

Пульсации гасящей частоты 30…60 кГц на входе УЗЧ не фильтруют­ся, поэтому усилитель работает как бы в импульсном режиме — выходной транзистор закрывается полностью и открывается до насыщения. Ультра­звуковая частота вспышек телефонами не воспроизводится, но импульсная по­следовательность содержит составля­ющую со звуковыми частотами, кото­рые и слышны. Диод VD1 служит для за­мыкания экстратока телефонов в мо­мент окончания импульса и закрывания транзистора VT3, он срезает выбросы напряжения, улучшая качество и не­сколько повышая громкость воспроиз­ведения звука.

Питается приемник от гальваничес­кого элемента напряжением 1,5 В или дискового аккумулятора напряжением 1,2 В. Потребляемый ток не превышает 3 мА, при необходимости его можно ус­тановить подбором резистора R4.

Налаживание приемника начинается с проверки наличия генерации, вращая ручку переменного резистора R2. Она обнаруживается по появлению доволь­но сильного шума в телефонах, или при наблюдении на экране осциллографа «пилы» в форме напряжения на конден­саторе С4. Частота суперизации подби­рается изменением его емкости, она зависит и от положения движка пере­менного резистора R2. Следует избе­гать близости частоты суперизации к частоте стереоподнесущей 31,25 кГц или к ее второй гармонике 62,5 кГц, иначе могут прослушиваться биения, мешающие приему.

Далее нужно установить диапазон перестройки приемника, изменяя раз­меры рамочной антенны — увеличение диаметра понижает частоту настройки. Повысить частоту можно не только уменьшением диаметра самой рамки, но и увеличением диаметра провода, из которого она выполнена. Неплохое решение — использовать оплетку от­резка коаксиального кабеля, свернуто­го в кольцо. Индуктивность понижается и при изготовлении рамки из медной ленты или из двух-трех параллельных проводов диаметром 1,5-2 мм.

Диапазон перестройки достаточно широк, и операцию его установки не­трудно выполнить без приборов, ориен­тируясь на прослушиваемые станции. В диапазоне УКВ-2 (верхнем) транзис­тор КТ361 иногда работает неустойчи­во — тогда его заменяют на более высо­кочастотный, например, КТ363. Недо­статком приемника является заметное влияние рук, подносимых к антенне, на частоту настройки. Впрочем, он ха­рактерен и для других приемников, в которых антенна связана непосредст­венно с колебательным контуром.

Этот недостаток устраняется при ис­пользовании усилителя РЧ, как бы «изо­лирующего» контур сверхрегенератора от антенны. Другое полезное назначе­ние такого усилителя — устранить излу­чение вспышек колебаний антенной, что практически полностью избавляет от помех соседним приемникам. Усиле­ние УРЧ должно быть очень небольшим, ведь и усиление, и чувствительность сверхрегенератора достаточно высоки. Этим требованиям в наибольшей сте­пени отвечает транзисторный УРЧ по схеме с общей базой или с общим за­твором. Снова обращаясь к иностран­ным разработкам, упомянем схему сверхрегенератора с УРЧ на полевых транзисторах [4].

Экономичный сверхрегенера­тивный приемник

В целях достижения предельной экономичности автором был разра­ботан сверхрегенеративный радио­приемник(рис. 6), потребляющий ток менее 0,5 мА от батареи напряже­нием 3 В, причем, если отказаться от УРЧ, ток снижается до 0,16 мА. В то же время чувствительность — около 1 мкВ.

Сигнал от антенны подается на эмиттер транзистора УРЧ VT1, включен­ного по схеме с общей базой. Посколь­ку его входное сопротивление невели­ко, и учитывая сопротивление резисто­ра R1, получаем входное сопротивле­ние приемника около 75 Ом, что позво­ляет использовать наружные антенны со снижением из коаксиального кабеля или ленточного УКВ кабеля с ферритовым трансформатором 300/75 Ом. Та­кая необходимость может возникнуть при удалении от радиостанций более 100 км. Конденсатор С1 небольшой емкости служит элементарным ФВЧ, ос­лабляя KB помехи. В лучших условиях приема годится любая суррогатная проволочная антенна.

Транзистор УРЧ работает при кол­лекторном напряжении, равном базо­вому, — около 0,5 В. Это стабилизиру­ет режим и исключает необходимость налаживания. В коллекторную цепь включена катушка связи L1, намотан­ная на одном каркасе с контурной ка­тушкой L2. Катушки содержат 3 витка провода ПЭЛШО 0,25 и 5,75 витка ПЭЛ 0,6 соответственно. Диаметр каркаса — 5,5 мм, расстояние между катушками — 2 мм. Отвод к общему проводу сделан от 2-го витка катушки L2, считая от вывода, соединенного с базой транзистора VT2. Для облегче­ния настройки каркас полезно оснас­тить подстроечником с резьбой М4 из магнитодиэлектрика или латуни. Дру­гой вариант, облегчающий настрой­ку, — заменить конденсатор С3 подстроечным, с изменением емкости от 6 до 25 или от 8 до 30 пф.

Конденсатор настройки С4 типа КПВ, он содержит одну роторную и две статорные пластины. Сверхре­генеративный каскад собран по уже описанной схеме (см. рис. 1) на тран­зисторе VT2. Режим работы подбира­ют подстроечным резистором R4,ча­стота вспышек (суперизации) зави­сит от емкости конденсатора С5. На выходе каскада включен двухзвенный ФНЧ R6C6R7C7, ослабляющий колебания с частотой суперизации на входе УЗЧ, чтобы последний не пере­гружался ими.

Рис. 6

Использованный сверхрегенера­тивный каскад отдает небольшое продетектированное напряжение и, как показала практика, требует двух каска­дов усиления напряжения 34. В этом же приемнике транзисторы УЗЧ рабо­тают в режиме микротоков (обратите внимание на большие сопротивления нагрузочных резисторов), усиление их меньше, поэтому использовано три ка­скада усиления напряжения (транзис­торы VT3-VT5) с непосредственной связью между ними. Каскады охвачены ООС через резисторы R12, R13, стаби­лизирующей их режим. По переменно­му току ООС ослаблена конденсатором С9. Резистор R14 позволяет регулиро­вать в некоторых пределах усиление каскадов.

Выходной каскад собран по схеме двухтактного эмиттерного повторителя на комплементарных германиевых транзисторах VT6, VT7. Они работают без смещения, но искажения типа «сту­пенька» отсутствуют, во-первых, из-за низкого порогового напряжения герма­ниевых полупроводниковых приборов (0,15 В вместо 0,5 В у кремниевых), а во-вторых, из-за того, что колебания с частотой суперизации все-таки не­много проникают через ФНЧ в УЗЧ и как бы «размывают» ступеньку, действуя подобно ВЧ подмагничиванию в магни­тофонах.

Достижение высокой экономичности приемника требует использования высокоомных головных телефонов сопро­тивлением не менее 1 кОм. Если же за­дачу получения предельной экономич­ности не ставить, целесообразно ис­пользовать более мощный оконечный УЗЧ.

Налаживание приемника начинают с УЗЧ. Подбором резистора R13 уста­навливают напряжение на базах тран­зисторов VT6, VT7 равным половине напряжения питания (1,5 В). Убежда­ются в отсутствии самовозбуждения при любом положении движка резис­тора R14 (желательно, с помощью ос­циллографа). Полезно подать на вход УЗЧ какой либо звуковой сигнал амп­литудой не более нескольких милли­вольт и убедиться в отсутствии иска­жений и симметричности ограничения при перегрузке.

Подключив сверхрегенеративный каскад, регулировкой резистора R4 до­биваются появления шума в телефонах (амплитуда шумового напряжения на выходе — около 0,3 В). Полезно ска­зать, что, кроме указанных на схеме, в УРЧ и сверхрегенеративном каскаде хорошо работают любые другие крем­ниевые высокочастотные транзисторы структуры р-n-р. Теперь можно уже по­пытаться принять радиостанции, свя­зав антенну с контуром через конденса­тор связи емкостью не более 1 пф или с помощью катушки связи. Далее подсоединяют УРЧ и подгоняют диапа­зон принимаемых частот, изменяя ин­дуктивность катушки L2 и емкость кон­денсатора С3.

В заключение надо заметить, что по­добный приемник, ввиду его высокой экономичности и чувствительности, мо­жет найти применение и в переговор­ных системах, и в устройствах охранной сигнализации. К сожалению, прием ЧМ на сверхрегенератор получается не са­мым оптимальным образом: работа на скате резонансной кривой уже гаранти­рует ухудшение отношения сигнал/шум на 6 дБ. Нелинейный режим сверхреге­нератора тоже не слишком способству­ет высококачественному приему, тем не менее качество звука получилось не­плохим.

ЛИТЕРАТУРА

1. Белкин М. К. Сверхрегенеративный радиоприем. — Киев: Техника, 1968.

2. Хевролин В. Сверхрегенеративный прием.- Радио,1953, № 8,с.37.

3. УКВ ЧМ приемник на одном транзисто­ре. — Радио,1970,№ 6,с.59.

4. «Последний из могикан…». — Радио, 1997, № 4,0.20,21

textarchive.ru