Задающий генератор на транзисторе – Генератор на транзисторе. Автоколебания. | Социальная сеть работников образования

Содержание

Схемы генераторов высокой частоты (ВЧ)

Итак, самый главный блок любого передатчика – это генератор. От того, насколько стабильно и точно работает генератор, зависит, сможет ли кто-то поймать переданный сигнал и нормально его принимать. В интернете валяется просто уйма различных схем жучков, в которых используются различные генераторы. Сейчас мы немного классифицируем все это.

Номиналы деталей всех приведенных схем рассчитаны с учетом того, что рабочая частота схемы составляет 60…110 МГц (то есть, перекрывает наш любимый УКВ-диапазон).

Классика жанра — генератор ВЧ

Транзистор включен по схеме с общей базой. Резисторный делитель напряжения R1- R2 создает на базе смещение рабочей точки. Конденсатор C3 шунтирует R2 по высокой частоте.

R3 включен в эмиттерную цепь для ограничения тока протекающего через транзистор.

Конденсатор C1 и катушка L1 образуют частотозадающий колебательный контур.

Кондер C2 обеспечивает положительную обратную связь (ПОС), необходимую для генерации.

Механизм генерации

Упрощенно схему можно представить так:

Вместо транзистора мы ставим некий «элемент с отрицательным сопротивлением». По сути – усилительный элемент. То есть, ток на его выходе больше, чем ток на входе (так вот хитро).

К входу этого элемента подключен колебательный контур. С выхода элемента на этот же колебательный контур подана обратная связь (через кондер C2). Таким образом, когда на входе элемента ток увеличивается (происходит перезарядка контурного конденсатора), увеличивается ток и на выходе. Через обратную связь, он подается обратно на колебательный контур – происходит «подпитка». В результате, в контуре устаканиваются незатухающие колебания.

Все оказалось проще пареной репы (как всегда).

Разновидности

В безбрежном инете можно еще встретить такую реализацию этого же генератора:

Схема называется «емкостная трехточка». Принцип работы – тот же.

Во всех этих схемах сгенерированный сигнал можно снимать либо непосредственно с коллектора VT 1, либо использовать для этого катушку связи, связанную с контурной катушкой.

Индуктивная трехточка

Эту схему выбираю я, и советую вам.

R1 – ограничивает ток генератора
R2 – задает смещение базы
C1, L1 – колебательный контур
C2 – конденсатор ПОС

Катушка L1 имеет отвод, к которому подключен эмиттер транзистора. Этот отвод должен быть расположен не ровно посередине, а ближе к «холодному» концу катушки (то есть тому, который соединен с проводом питания). Кроме того, можно вообще не делать отвод, а намотать дополнительную катушку, то есть – сделать трансформатор:

Эти схемы идентичны.

Механизм генерации:

Для понимания того, как работает такой генератор, давайте рассмотрим именно вторую схему. При этом, левая (по схеме) обмотка будет вторичной, правая – первичной.

Когда на верхней обкладке C1 увеличивается напряжение (то есть, ток во вторичной обмотке течет «вверх»), то на базу транзистора через конденсатор обратной связи C2 подается открывающий импульс. Это приводит к тому, что транзистор подает на первичную обмотку ток, этот ток вызывает увеличение тока во вторичной обмотке. Происходит подпитка энергией. В-общем – то, все тоже довольно просто.

Разновидности

Мое небольшое ноу-хау: можно поставить между общим и базой диод:

Этот диод ускоряет перезаряд C2, что приводит к увеличению мощности генерируемого сигнала. Однако, вместе с тем, это вносит в сигнал нелинейные искажения, так что на выходе придется ставить фильтры НЧ для подавления паразитных гармоник.

Сигнал во всех этих схемах снимаем с эмиттера транзистора либо через дополнительную катушку связи непосредственно с контура.

Двухтактный генератор для ленивых

Самая простая схема генератора, какую только мне приходилось когда-либо видеть:

В этой схеме легко улавливается схожесть с мультивибратором. Я вам скажу больше – это и есть мультивибратор. Только вместо цепочек задержки на конденсаторе и резисторе (RC-цепи), здесь используются катушки индуктивности. Резистор R1 устанавливает ток через транзисторы. Кроме того, без него генерация просто-напросто, не пойдет.

Механизм генерации:

Допустим, VT1 открывается, через L1 течет коллекторный ток VT1. Соответственно, VT2 закрыт, через L2 течет открывающий базовый ток VT1. Но поскольку сопротивление катушек раз в 100…1000 меньше сопротивления резистора R1, то к моменту полного открытия транзистора, напряжение на них падает до очень маленького значения, и транзистор закрывается. Но! Поскольку до закрытия транзистора, через L1 тек большой коллекторный ток, то в момент закрытия происходит выброс напряжения (ЭДС самоиндукции), который подается на базу VT2 открывает его. Все начинается по новой, только с другим плечом генератора. И так далее…

Этот генератор имеет только один плюс – простота изготовления. Остальные – минусы.

Поскольку в нем отсутствует четкое времязадающее звено (колебательный контур или RC-цепь), то частоту такого генератора рассчитать весьма сложно. Она будет зависеть от свойств применяемых транзисторов, от напряжения питания, от температуры и т.д. Во-общем, в серьезных вещах этот генератор лучше не использовать. Однако, в диапазоне СВЧ его применяют довольно часто.

Двухтактный генератор для трудолюбивых

Другой генератор, который мы рассмотрим – тоже двухтактный. Однако, он содержит колебательный контур, что делает его параметры более стабильными и прогнозируемыми. Хотя, по сути, он тоже довольно прост.

Вот он

Что мы здесь видим?

Видим колебательный контур L1 C1,
А дальше видим каждой твари по паре:
Два транзистора: VT1, VT2
Два конденсатора обратной связи: С2, С3
Два резистора смещения: R1, R2

Опытный глаз (да и не сильно опытный), обнаружит и в этой схеме схожесть с мультивибратором. Ну что же – оно так и есть!

Чем примечательна данная схема? Да тем, что ввиду использования двухтактного включения, она позволяет развивать двойную мощность, по сравнению со схемами 1-тактных генераторов, при том же напряжении питания и при условии применения тех же транзисторов. Во как! Ну, в общем, у нее почти нет недостатков 🙂

Механизм генерации

При перезаряде конденсатора в одну или другую сторону, через один из конденсаторов обратной связи поступает ток на соответствующий транзистор. Транзистор открывается, и добавляет энергию в «нужном» направлении. Вот и вся премудрость.

Особо изощренных вариантов исполнения этой схемы я не встречал…

Теперь немного креатива.

Генератор на логических элементах

Если использование транзисторов в генераторе кажется вам несовременным или громоздким или недопустимым по религиозным соображениям – выход есть! Можно использовать вместо транзисторов микросхемы. Обычно используется логика: элементы НЕ, И-НЕ, ИЛИ-НЕ, реже – Исключающее ИЛИ. Вообще говоря, нужны только элементы НЕ, остальное – излишества, только лишь ухудшающие скоростные параметры генератора.

Смотрим:

Видим страшную схему.

Квадратики с дырочкой в правом боку – это инвертеры. Ну или – «элементы НЕ». Дырочка как раз указывает на то, что сигнал инвертируется.

Что такое элемент НЕ с точки зрения банальной эрудиции? Ну, то есть, с точки зрения аналоговой техники? Правильно, это усилитель с обратным выходом. То есть, при увеличении напряжения на входе усилителя, напряжение на выходе пропорционально уменьшается . Схему инвертера можно изобразить примерно так (упрощенно):

Это конечно, слишком просто. Но доля правды в этом есть.
Впрочем, нам пока что это не столь важно.

Итак, смотрим схему генератора. Имеем:

Два инвертера ( DD1.1, DD1.2)

Резистор R1

Колебательный контур L1 C1

Заметьте, что колебательный контур в этой схеме – последовательный. То есть, конденсатор и катушка стоят друг за другом. Но это – все равно колебательный контур, он рассчитывается по тем же формулам, и ничуть ни хуже (и не лучше) своего параллельного собрата.

Начнем сначала. Зачем нам нужен резистор?

Резистор создает отрицательную обратную связь (ООС) между выходом и входом элемента DD1.1. Это надо для того, чтобы держать под контролем коэффициент усиления – это раз, а также – чтоб создать на входе элемента начальное смещение – это два. Как это работает, подробно мы рассмотрим где-нибудь в обучалке по аналоговой технике. Пока что уясним, что благодаря этому резистору, на выходе и входе элемента, в отсутствие входного сигнала, устаканивается напряжение, равное половине напряжения питания. Точнее – среднему арифметическому напряжений логических «нуля» и «единицы». Не будем пока на этом заморачиваться, у нас еще много дел…

Итак, на одном элементе мы получили инвертирующий усилитель. То есть, усилитель, который «переворачивает» сигнал вверх ногами: если на входе много – на выходе мало, и наоборот. Второй элемент служит для того, чтобы сделать этот усилитель неинвертирующим. То есть, он переворачивает сигнал еще раз. И в таком виде, усиленный сигнал подается на выход, на колебательный контур.

А ну-ка, смотрим внимательно на колебательный контур? Как он включен? Правильно! Он включен между выходом и входом усилителя. То есть, он создает положительную обратную связь (ПОС). Как мы уже знаем из рассмотрения предыдущих генераторов, ПОС нужна для генератора, как валерьянка для кота. Без ПОС ни один генератор не сможет что? Правильно – возбудиться. И начать генерацию…

Все наверно знают такую вещь: если к входу усилителя подключить микрофон, к выходу – динамик, то при поднесении микрофона к динамику, начинается противный «свист». Это – ни что иное как генерация. Мы же подаем сигнал с выхода усилителя на вход. Возникает ПОС. Как следствие, усилитель начинает генерить.

Ну, короче, посредством LC -цепочки в нашем генераторе создается ПОС, приводящая к возбуждению генератора на резонансной частоте колебательного контура.

Ну что, сложно?
Если (сложно)
{
чешем (репу) ;
читаем еще раз;
}

Теперь поговорим о разновидностях подобных генераторов.

Во-первых, вместо колебательного контура, можно включить кварц. Получится стабилизированный генератор, работающий на частоте кварца:

Если в цепь ОС элемента DD1.1 включить вместо резистора колебательный контур – можно завести генератор на гармониках кварца. Для получения какой-либо гармоники, нужно, чтобы резонансная частота контура была близка к частоте этой гармоники:

Если генератор делается из элементов И-НЕ или ИЛИ-НЕ, то входы этих элементов нужно запараллелить, и включать как обычный инвертор. Если используем Исключающее ИЛИ, то один из входов каждого элемента сажается на + питания.

Пара слов о микросхемах.
Предпочтительнее использовать логику ТТЛШ или быстродействующий КМОП.

Серии ТТЛШ: К555, К531, КР1533
Например, микросхема К1533ЛН1 – 6 инверторов.
Серии КМОП: КР1554, КР1564 (74 AC , 74 HC ), например – КР1554ЛН1
На крайний случай – старая добрая серия К155 (ТТЛ). Но ее частотные параметры оставляют желать лучшего, так что – я бы не стал использовать эту логику.

Рассмотренные здесь генераторы – далеко не все, что могут повстречаться вам в этой нелегкой жизни. Но зная основные принципы работы этих генераторов, будет уже намного проще понять работу других, укротить их и заставить работать на себя 🙂

Источник: radiokot.ru

Поделиться в соц сетях

sciencestory.ru

Генератор на транзисторе. Автоколебания — Класс!ная физика

Генератор на транзисторе. Автоколебания

«Физика — 11 класс»

Вынужденные колебания возникают под действием переменного напряжения, вырабатываемого генераторами на электростанциях.

Такие генераторы не могут создавать колебания высокой частоты, необходимые для радиосвязи? т.к. для этого потребовалась бы очень большая скорость вращения ротора.

Колебания высокой частоты получают, например, с помощью генератора на транзисторе.

Автоколебательные системы

Обычно незатухающие вынужденные колебания поддерживаются в цепи действием внешнего периодического напряжения.

Но возможны и другие способы получения незатухающих колебаний.

Например, есть система, в которой могут существовать свободные электромагнитные колебания, с источником энергии.

Если сама система будет регулировать поступление энергии в колебательный контур для компенсации потерь энергии на резисторе, то в ней могут возникнуть незатухающие колебания.

Системы, в которых генерируются незатухающие колебания за счет поступления энергии от источника внутри самой системы, называются автоколебательными. Незатухающие колебания, существующие в системе без воздействия на нее внешних периодических сил, называются автоколебаниями.

Генератор на транзисторе — пример автоколебательной системы.

Он состоит из колебательного контура с конденсатором емкостью С и катушкой индуктивностью L, источника энергии и транзистора.

Как создать незатухающие колебания в контуре?

Чтобы электромагнитные колебания в контуре не затухали, нужно компенсировать потери энергии за каждый период.

Пополнять энергию в контуре можно, подзаряжая конденсатор.

Для этого надо периодически подключать контур к источнику постоянного напряжения.

Конденсатор должен подключаться к источнику только в те интервалы времени, когда присоединенная к положительному полюсу источника пластина заряжена положительно, а присоединенная к отрицательному полюсу — отрицательно.

Только в этом случае источник будет подзаряжать конденсатор, пополняя его энергию.

Если же ключ замкнуть в момент, когда присоединенная к положительному полюсу источника пластина имеет отрицательный заряд, а присоединенная к отрицательному полюсу — положительный, то конденсатор будет разряжаться через источник. Энергия конденсатора при этом будет убывать.

Источник постоянного напряжения, постоянно подключенный к конденсатору контура, не может поддерживать в нем незатухающие колебания, так же как постоянная сила не может поддерживать механические колебания.

В течение половины периода энергия поступает в контур, а в течение следующей половины периода возвращается в источник.

В контуре незатухающие колебания установятся лишь при условии, что источник будет подключаться к контуру в те интервалы времени, когда возможна передача энергии конденсатору.

Для этого необходимо обеспечить автоматическую работу ключа.

При высокой частоте колебаний ключ должен обладать надежным быстродействием. В качестве такого практически безынерционного ключа и используется транзистор.

Транзистор состоит из эмиттера, базы и коллектора.

Эмиттер и коллектор имеют одинаковые основные носители заряда, например дырки (полупроводник p-типа).

База имеет основные носители противоположного знака, например электроны (полупроводник n-типа).

Работа генератора на транзисторе

Колебательный контур соединен последовательно с источником напряжения и транзистором так, что на эмиттер подается положительный потенциал, а на коллектор — отрицательный.

При этом переход эмиттер — база (эмиттерный переход) является прямым, а переход база — коллектор (коллекторный переход) оказывается обратным, и ток в цепи не идет.

Это соответствует разомкнутому ключу.

Чтобы в цепи контура возникал ток и подзаряжал конденсатор контура в ходе колебаний, нужно сообщать базе отрицательный относительно эмиттера потенциал, причем в те интервалы времени, когда верхняя пластина конденсатора заряжена положительно, а нижняя — отрицательно.

Это соответствует замкнутому ключу.

В интервалы времени, когда верхняя пластина конденсатора заряжена отрицательно, а нижняя — положительно, ток в цепи контура должен отсутствовать. Для этого база должна иметь положительный потенциал относительно эмиттера.

Таким образом, для компенсации потерь энергии колебаний в контуре напряжение на эмиттерном переходе должно периодически менять знак в строгом соответствии с колебаниями напряжения на контуре.

Необходима обратная связь.

Здесь обратная связь — индуктивная.

К эмиттерному переходу подключена катушка индуктивностью LCB, индуктивно связанная с катушкой индуктивностью L контура.

Колебания в контуре вследствие электромагнитной индукции возбуждают колебания напряжения на концах катушки, а тем самым и на эмиттерном переходе.

Если фаза колебаний напряжения на эмиттерном переходе подобрана правильно, то «толчки» тока в цепи контура действуют на контур в нужные интервалы времени, и колебания не затухают.

Напротив, амплитуда колебаний в контуре возрастает до тех пор, пока потери энергии в контуре не станут точно компенсироваться поступлением энергии от источника.

Эта амплитуда тем больше, чем больше напряжение источника.

Увеличение напряжения приводит к усилению «толчков» тока, подзаряжающего конденсатор.

Генераторы на транзисторах широко применяются не только во многих радиотехнических устройствах: радиоприемниках, передающих радиостанциях, усилителях, ЭВМ.

Основные элементы автоколебательной системы

На примере генератора на транзисторе можно выделить основные элементы, характерные для многих автоколебательных систем.

1. Источник энергии, за счет которого поддерживаются незатухающие колебания (в генераторе на транзисторе это источник постоянного напряжения).

2. Колебательная система — та часть автоколебательной системы, непосредственно в которой происходят колебания (в генераторе на транзисторе это колебательный контур).

3. Устройство, регулирующее поступление энергии от источника в колебательную систему — клапан (в рассмотренном генераторе — транзистор).

4. Устройство, обеспечивающее обратную связь, с помощью которой колебательная система управляет клапаном (в генераторе на транзисторе — индуктивная связь катушки контура с катушкой в цепи эмиттер — база).

Примеры автоколебательных систем

Автоколебания в механических системах: часы с маятником или балансиром (колесиком с пружинкой, совершающим крутильные колебания). Источником энергии в часах служит потенциальная энергия поднятой гири или сжатой пружины.

К автоколебательным системам относятся электрический звонок с прерывателем, свисток, органные трубы и многое другое. Наше сердце и легкие также можно рассматривать как автоколебательные системы.

Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин

Электромагнитные колебания. Физика, учебник для 11 класса — Класс!ная физика


Свободные и вынужденные электромагнитные колебания. Колебательный контур. Превращение энергии при электромагнитных колебаниях —
Аналогия между механическими и электромагнитными колебаниями —
Уравнение, описывающее процессы в колебательном контуре. Период свободных электрических колебаний —
Переменный электрический ток —
Активное сопротивление. Действующие значения силы тока и напряжения —
Конденсатор в цепи переменного тока —
Катушка индуктивности в цепи переменного тока —
Резонанс в электрической цепи —
Генератор на транзисторе. Автоколебания —
Краткие итоги главы

class-fizika.ru

Высокочастотный двухтактный LC генератор на биполярных транзисторах

Электрические генераторы высокочастотных колебаний применяются например для создания радиоволн. Радиоволны это электромагнитные волны и источником их являются электроны движущиеся с ускорением (положительным или отрицательным). Высокочастотные генераторы создают изменяющееся во времени ЭДС под воздействием которого электроны ускоряются и замедляются (ускоряются со знаком минус) в результате чего и создаются радиоволны. Чем с большей частотой работает генератор тем более высокочастотные радио волны создаются. Но для того чтобы создать радиоволны, мало одного генератора, для него нужна ещё и антенна. Для того чтобы антенна эффективно излучала радиоволны определенной частоты её размеры ограничены в меньшую сторону до половины длинны волны излучаемого ей излучения. Т.е. например если антенной является диполь (вибратор Герца) то его длина не должна быть меньше половины длины волны иначе излучать он будет плохо. Это ограничение можно обойти если использовать специальные согласующие устройства, но проще сделать антенну нужного размера. Связь частоты и длинны волны можно выразить формулой:

Рассчитать длину электромагнитной волны по частоте или частоту по длине электромагнитной волне можно в программе:

Немного поигравшись с данной программой можно понять что например для частоты 1 МГц (один мегагерц (единица с шестью нулями в герцах)) длина волны будет примерно 300 м следовательно диполь нужен длиной 150 м. Ну хорошо! Давайте тогда повысим частоту до 100 МГц, длина волны тогда будет 3 м а длина диполя 1.5 м что уже вполне приемлемо. А если частота будет 1ГГц (один гигагерц т.е. 1000 МГц) то длину можно сделать 0.15 м т.е 150 мм что вполне даже можно считать весьма компактным! Но не стоит забывать о том что такую частоту способен генерировать далеко не каждый транзистор, скорее даже редкий транзистор, и тем не менее они есть и продолжают появляться новые. У любого транзистора есть такой параметр как «граничная частота» эта частота должна быть больше той на которой будет работать данный транзистор, желательно с хорошим запасом. Высокочастотные генераторы бывают однотактные и двухтактные. Двухтактные, при прочих равных условиях, мощнее поэтому лучше использовать их. Главной составной частью генератора является усилитель (или усилители как например в случае двухтактного генератора). Для того чтобы «превратить» усилитель в генератор ему надо создать положительную обратную связь с LC контуром. Если в обратной связи не будет LC контура а будут только конденсаторы или только катушки то вероятно что генератор будет генерировать но создавать несинусоидальные колебания, например это происходит во всем известном мультивибраторе:

Рисунок 1 — Мультивибратор

Обратная связь в мультивибраторе осуществляется через конденсаторы C1 и C2. Транзистор VT1 включен по схеме с общим эмиттером т.е. на этом транзисторе сделан инвертирующий усилитель т.е. такой который инвертирует сигнал на выходе по сравнению с сигналов на входе или также можно сказать что он как бы усиливает сигнал потом смещает его по фазе на 180 градусов и выдает на выход:

Рисунок 2 — Инвертирующий усилитель

Вместо усилителя на биполярном транзисторе может быть усилитель на полевом MOSFETе в схеме с общем истоком:

Рисунок 3 — Усилитель на MOSFETе

Такой усилитель тоже будет инвертирующим. Через конденсатор C1 выход первого усилителя (назовём первым усилителем усилитель на транзисторе VT1) соединен со входом второго (на VT2), через конденсатор C2 выход второго транзистора соединен со входом первого т.о. получается как бы кольцо и в этом «кольце» из двух инвертирующих усилителей сигнал дважды сдвигается на 180 градусов что в целом даёт сдвиг на 360 что создаёт положительную обратную связь — т.е. одно из необходимых условий для возникновения генерации. Резисторы R2 и R3 задают рабочие точки транзисторов, R3 для транзистора VT1, R2 для транзистора VT2. Если в цепях обратных связей не будет ни конденсаторов ни катушек то получиться прото бистабильная ячейка которая имеет два состояния как RS триггер:

Рисунок 4 — Бистабильная ячейка

Такая ячейка или триггер не будет сама по себе генерировать. Если вместо биполярных транзисторов использовать MOSFETы и немного изменить схему то получиться, так называемый, ZVS генератор который часто используют самодельщики для создания индукционных нагревателей, повышающих преобразователей для получения красивой дуги или электрошокеров и ещё много других интересных вещей.

Рисунок 5 — ZVS генератор

Этот генератор работает по такому же принципу, у него есть два инвертирующих усилителя, обратные связи и LC контур для генерации синусоидальных колебаний. Схема для генерации синусоидальных колебаний высокой частоты на биполярных транзисторах будет выглядеть примерно так:

Рисунок 6 — Двухтактный LC генератор на биполярных транзисторах

Для того чтобы такой генератор был высокочастотным ему нужны высокочастотные транзисторы, например КТ904А. КТ904А — это не самые высокочастотные и не самые мощные транзисторы но и они кое что могут.

Рисунок 7 — Транзистор КТ904А

Этот транзистор с виду напоминает странный наполовину золотой болт, но на самом деле он просто немного позолочен для лучшего отвода тепла т.к. золото очень слабо окисляется.
Со схемой на рисунке 6 можно даже немного аккуратно поэксперементировать. Желательно чтобы у источника питания было ограничение по току. Если его нет и например используются батарейки то можно использовать резистор по питанию например на 10 Ом  или больше. Проверена на практике например такая схема:

Рисунок 8 — Двухтактный ВЧ генератор с номиналами

Катушки L1 и L2 — это, на самом деле, одна катушка с отводом от середины который подключен к «+» питания (с учётом резистора для ограничения тока). Эта катушка например может иметь 4 витка диаметром 3.5 См и некоторой длинной которую можно изменять в широких пределах для подстройки частоты. В более удобном, для начинающих, виде схему можно представить так:

Рисунок 9 — Удобная схема

Схему можно запитать от 4х пальчиковых батареек с напряжением каждой 1.5В. Можно подать и большее напряжение но не слишком чтобы транзисторы не сгорели и при этом желательно следить за током потребляемым данным генератором.
Видео по данной теме или видеовариант данной статьи с тестами собранной схемы:

Проверка с индуктивными антеннами:

 О том как рассчитать резонансную частоту LC контура можно прочитать в статье http://electe.blogspot.ru/2011/02/blog-post_13.html. Для рассчёта этой частоты надо знать ёмкость конденсатора C2 и индуктивность самодельной катушки. С ёмкостью всё просто т.к. она обычно пишется на корпусе конденсатора или же приобретается конденсатор с заранее известной емкостью а вот определить индуктивность самодельной катушки не так просто. Но всё таки существуют эмпирические формулы для примерного расчёта емкости однослойной катушки без сердечника. Для примерного расчёта резонансной частоты LC контура, а следовательно и частоты основной гармоники генерации данного генератора, можно воспользоваться программой ниже:

Рисунок 10 — Вспомогательная картинка для использования программы ниже

КАРТА БЛОГА (содержание)

electe.blogspot.com

Применение метода аналогий при изучении темы «Генератор на транзисторе»

Разделы:
Физика


Генератор на транзисторе является автогенератором электромагнитных колебаний.

Автоколебательные электромагнитные системы по описывающим их законам, аналогичны механическим автоколебательным системам. Под автоколебательной системой понимают такую систему, в которой при отсутствии внешнего периодического воздействия возникают и существуют сколь угодно долго периодические колебания.

Рационально начать изучение темы с повторения механических автоколебательных систем, так как физические основы механических и электромагнитных автоколебаний едины.

Примером механической автоколебательной системы являются маятниковые часы, модель которых изображена на рисунке 1а. В 1657 году голландский физик Христиан Гюйгенс предложил использовать изохронность колебаний маятника для создания равномерного движения стрелки на часах. Устройство, предложенное Гюйгенсом, в его главных чертах сохранилось до настоящего времени: маятник, поднятый груз, анкер и ходовое колесо (рисунок 1б). Обращаю внимание учащихся на то, что в основном маятник движется свободно, получая за период два толчка. Колебания возникают и поддерживаются самой колебательной системой, то есть являются автоколебаниями.

Рисунок 1

Анализируя работу данного механизма, выделяем основные элементы, характерные для многих автоколебательных систем и объединяем их в блок-схему (рисунок 2)

Рисунок 2

Используя метод аналогий, переходим от механической автоколебательной системы к электромагнитной автоколебательной системе. Анализируем, что можно использовать в качестве источника энергии, клапана, колебательной системы в электрической цепи и как можно осуществить обратную связь между клапаном и колебательной системой. Одновременно на доске и в тетрадях заполняем таблицу 1.

Таблица 1.

Элементы автоколебательной системы

Механическая автоколебательная система (маятниковые часы)

Электромагнитная

автоколебательная система (генератор на транзисторе)

1

источник энергии

поднятый груз

батарея гальванических элементов

2

клапан

анкер

транзистор

3

колебательная система

маятник

колебательный контур

4

Обратная связь

через ходовое колесо

индуктивная – через катушки

Вспоминаем обозначения составляющих частей автогенератора (рисунок 3 а) и рисуем его схему (рисунок 3 б)

Рисунок 3

По данной схеме объясняем принцип работы генератора на транзисторе, подчеркнув в очередной раз, что это автоколебательная система. В момент подключения источника постоянного тока через коллекторную цепь транзистора проходит ток, заряжающий конденсатор колебательного контура. В контуре возникнут свободные электромагнитные колебания. Так как катушка колебательного контура индуктивно связана с катушкой обратной связи, то ее изменяющееся магнитное поле вызовет в катушке обратной связи переменную ЭДС такой же частоты, как и колебания в контуре. Эта ЭДС, будучи приложена к участку база – эмиттер, вызовет пульсацию тока в цепи коллектора. Так как частота этих пульсаций равна частоте электромагнитных колебаний в контуре, то они подзаряжают конденсатор контура и тем самым поддерживают постоянной амплитуду колебаний в контуре.

Собрав установку, изображенную на рисунке 4б можно продемонстрировать, что в автогенераторе без внешнего воздействия возникли электромагнитные колебания синусоидальной формы. Таким образом, в автогенераторе происходит преобразование энергии источника постоянного тока в энергию электромагнитных колебаний.

Поскольку в контуре существуют свободные колебания, то для них контур представляет только активное сопротивление, а потому напряжение на участке эмиттер – коллектор и на участке база – эмиттер должны быть сдвинуты на 180°. Чтобы продемонстрировать это учащимся, необходимо поменять местами провода, подходящие к катушке обратной связи. В этом случае колебания в генераторе не возникнут.

Второе условие работы генератора заключается в следующем: Энергия, поступающая в контур из коллекторной цепи, должна полностью восполнить необратимые преобразования в нем энергии. Это условие обеспечивается обратной связью. Чтобы убедить в этом учащихся, надо приподнять и медленно удалить катушку обратной связи от катушки контура. На экране осциллографа видно, как постепенно уменьшается амплитуда колебаний в контуре и наконец колебания исчезают.

Рисунок 4

На основании проделанных опытов сформулируем вывод, что обратная связь в генераторе автоколебаний должна удовлетворять двум условиям:

а) энергия от источника должна поступать в такт с колебаниями в контуре;

б) поступающая от источника энергия должна быть равна ее потерям в контуре.

Завершаем изучение темы рассмотрением вопроса о применении электромагнитных автоколебательных систем

Метод аналогий при изучении данной темы позволяет не только лучше усвоить суть вопроса, но и, подчеркнуть единство физических закономерностей механических и электромагнитных колебаний.

Поделиться страницей:

xn--i1abbnckbmcl9fb.xn--p1ai

Высокостабильный генератор сигнала на транзисторе

Предлагаю схему высокостабильного генератора сигнала на 465 кГц (500 кГц), построенного на последовательном резонансном LC-контуре. Суточная (24 часа) нестабильность генератора не превышает 0,3 кГц. Это составляет меньше 0,1 %.

В одно время я изучал свойства параллельного и последовательного резонансных контуров. Подавая сигнал от генератора на контур с помощью осциллографа, я наблюдал сигнал на вторичной катушке индуктивности, входящей в контур. Так, на параллельном контуре присутствует как сигнал собственных колебаний контура, так и сигнал генератора. Это показывает, что параллельный контур удобно использовать в фильтрах сосредоточенной селекции, в нагрузках смесителей (преобразователей) частоты, в умножителях частоты. В то время как на катушке последовательного контура выделяется гармонический или близкий к нему сигнал резонансной частоты контура, это не смотря на то, что на контур подавался сигнал разной формы и частоты. Поэтому я утверждаю, что последовательный контур выгодно использовать в генераторах частоты сигнала При этом частота генерации будет в большей степени зависеть от, параметров контура, и в меньшей — от характеристик транзистора.

Схема электрическая принципиальная генератора приведена на рис. 1.

Основу генератора составляет биполярный транзистор типа КТ209И (М, Б, Д).

Конденсатор С2 — типа КТ, С1, С4 — типа КМ.

Катушка индуктивности L9, L10 — это трансформатор промежуточной частоты от радиоприемника «Селга-404». у Схема выводов катушек указана на рис. 2. L9 намотана проводом ПЭВ-2 диаметром 0,10 мм и содержит 24 витка, L10 состоит из 81 витка высокочастотного провода 3×0,08 мм. Индуктивность L10 составляет 117 мкГн. Добротность катушки на частоте 465 кГц равна 90.

Настройка генератора происходит следующим образом. При отключенном резисторе R4 на транзистор подается напряжение -1,50 В и с помощью R1 на коллекторе VT1 устанавливается напряжение -0,95 В. Это напряжение устанавливается из расчета: напряжение питания -1,50 В минус напряжение насыщения Ura нас, равное у КТ209 0,4 V В, и деленное на 2. Затем к коллектору VT1 подключаем частотомер. Я использовал частотомер с чувствительностью 0,5 В амплитудного напряжения сигнала. Вместо R4 подключается потенциометр на 2,2 кОм и, постепенно уменьшая его сопротивления, добиваются появления устойчивой генерации частоты. Затем измеряют сопротивление R4 и заменяют его на постоянный резистор. После этого подключают частотомер к С5, подобрав R3. Частоту генерации сигнала 465,0 кГц подстраивают с помощью изменения индуктивности, катушки L10 и емкости конденсатоpa СЗ. Снимать сигнал следует с катушки L9, так как из-за нелинейности входных и выходных характеристик транзистора при малом напряжении на коллекторе Ura, на R2 выделяется сигнал искаженной синусоиды. А напряжение на L9 является синусоидальным, так как ток в L10 протекает по гармоническому закону.

Величина сопротивления R2 влияет на добротность LC-контура и его сопротивление можно уменьшить, увеличив добротность, однако при этом возрастает энергия, рассеиваемая на L и С контура и на коллекторе VT1. Если кого не устраивает полярность напряжения питания -1,50 В, то можно использовать транзистор КТ630Б (Д, Е) с проводимостью п-р-п.

Источник питания на 1,50 В должен быть высокостабильным для получения высокбстабильной частоты сигнала. Так, уменьшение и увеличение напряжение питания от -1,30 В и до -1,70 В приводит к изменению частоты генерации от -0,4 кГц и до +0,4 кГц от среднего значения 465,0 кГц. Напряжение питания можно выбрать 2,0 В для данной схемы (или любое в этом диапазоне напряжений). Нестабильность частоты генератора составила за 12 часов непрерывной работы с 465,0 кГц до 465,1 кГц (+0,1 кГц). А за 24 часа непрерывной работы до 465,3 кГц, т.е. +0,3 кГц. При включении и выключении генератора нестабильность составила 465,7 кГц, но через 1 минуту уменьшилась до 465,3 кГц. (При настройке генератора на частоту 450 кГц, при этой же емкости С2 нестабильность за сутки составила 1 кГц).

Настроить генератор на частоту 500,0 кГц можно, изменив номинал С2 до 860 пФ. Предполагаю, что увеличить стабильность последовательного контура можно, подобрав С2 по температурному коэффициенту емкости. Этот генератор частоты сигнала может работать и от электрической батарейки на 1,5 В типа («R14»), но при этом высокая Стабильность частоты сигнала не гарантируется.

Этот схемой я показал принцип построения высокостабильного LC-генератора на последовательном контуре. А опытный радиолюбитель сам додумает практическую схему генератора на свою, нужную ему частоту. С катушки L9 снимается сигнал -0,70 В действующего переменного напряжения, а с R2 -0,25 В. За счет резонанса, напряжение на С2 и L10 в 10 раз превышает напряжения на контуре.


Еще интересно почитать:




samorobodel.ru

Простые УКВ и FM передатчики на транзисторах (КТ3102, КТ315, КП305)

Схемы ЧМ радиопередатчиков на УКВ и FM диапазоны частот, выполненные на транзисторах и микросхемах. Конструкции простейших маломощных и мощных FM передатчиков для использования в связной аппаратуре.

Приведенные схемы и параметры ряда элементов можно рассматривать только как примеры, иллюстрирующие некоторые варианты построения подобных устройств. Например, для настройки УКВ-приемников, как составные части измерительной и связной аппаратуры в широком спектре частот. Известны примеры и нетрадиционного применении подобных схем.

Используя схемы автогенераторов на биполярных и полевых транзисторах с изолированными затворами(МОП-транзисторах) можно построить простые, миниатюрные, и надежные ЧМ-радиопередатчики (ЧМ-передатчики), обладающие сравнительно высокими параметрами.

Задающие генераторы для передатчиков

В качестве основы для построения схем ЧМ-передатчиков можно применить схемы задающих генераторов, которые представлены на рисунке 1 (а) и рисунке 1 (б). Первая схема создана на основе биполярного ВЧ-транзистора и вторая — схема на основе полевого транзистора с изолированным затвором.

Для высоких частот — десятки мегагерц провод для катушки колебательного контура задающего генератора желательно использовать посеребренный. Это повысит добротность катушки колебательного контура генератора. Это позволит упростить запуск генератора, повысить стабильность частоты, уменьшить размеры кату шки и всего устройства.

При соответствующим выборе высокочастотного транзистора, тщательного и продуманного монтажа генератора, схема на рисунке 1 (а) обеспечивает генерацию на сравнительно высоких частотах — до сотен мегагерц.

Схема генератора, построенного на основе полевого транзистора с изолированным затвором (МОП-транзистора), представленная на рис.5.1.в, в ходе экспериментов показала устойчивую работу на частоте 150 МГц (задача генерации более высоких частот не ставилась). Здесь и далее в приведенных схемах задающих генераторов на МОП-транзисторах можно использовать транзисторы, у которых при нулевом напряжении на затворе ток стока составляет несколько миллиампер, например, транзисторы КП305Ж, КП305Е и т.д. При незначительном усложнении схем можно применять МОП-транзисторы и с другими характеристиками (ток стока от напряжения на затворе).

Следует обратить внимание на то, что транзисторы с изолированными затворами (МОП-транзисторы) могут быть выведены из строя статическими зарядами. Поэтому при выполнении конструкций, имеющих в своем составе подобные радиоэлементы, необходимо принимать все досту пные меры защиты этих элементов от статического электричества: использовать паяльник с заземленным жалом, применять браслеты, соединенные с заземляющей шиной, перед установкой МОП-транзисторов в конструкцию следует временно соединить вместе все его выводы и т.д.

В домашних условиях заземлять жало паяльника и браслет на кисти руки можно только при использовании трансформатора, обеспечивающего надежную гальваническую развязку с электрической сетью 220 В, иначе возможно поражение электрическим током.

Ниже даны значения радиоэлементов для задающих генераторов для частот 65-108 МГц.

Рис.5.1. Примеры схем задающих генераторов для радиопередатчиков: а,в — без цепей модуляции, б,г — с цепями ЧМ-модуляции.

Элементы для схемы на рисунка 1 (а):

  • R1=6.2к, R2=20к, R3=510;
  • С1=20-30, С2=10-50, С3=1н-3н, С4=1н-10н, С5=10;
  • Т1 — КТ368, КТ315 или любой другой ВЧ-транзистор;
  • катушка L1 — бескаркасная, внутренний диаметр — 6 мм, диаметр провода — 0.8 мм и содержит 3+1 витка.

Настройка генератора для рисунка 1 (а):: при отсутствии генерации подстроить (подобрать) С2, а частота устанавливается конденсатором С1 и подстройкой индуктивности катушки колебательного контура. Как правило, эта операция выполняется с помощью подстроечного сердечника. Для сравнительно высоких частот, например 65-108 МГц, катушки обычно содержат несколько витков.

Поэтому изменение их параметров возможно сжатием и/или растягиванием витков катушки, например, в данном случае — катушки L1.

Элементы для рисунка 1 (в):

  • R1=360;
  • С1=20-30, С2=1н-3н, С3=10, С4=1н-10н;
  • Т1 — КП305Ж,Е; катушка L1 — бескаркасная, внутренний диаметр — 6 мм, диаметр провода — 0.8 мм. L1 — 3+1 витка.

Настройка схемы генератора для рисунка 1 (в): при отсутствии генерации подстроить (подобрать) R1. Чем меньше резистор, тем легче осуществляется генерация, но ток стока не должен превышать максимально допустимого значения для этих транзисторов. При токе стока менее 5 мА генерация иногда не осуществляется (не для всех вариантов контура L1С1 задающего генератора).

Частота устанавливается конденсатором С1 и сжатием и/или растягиванием катушки L1. Оптимальный ток стока — 10-14 мА. Необходимо помнить, что для данных транзисторов ток стока не должен превышать предельно допустимого значения для тока стока — более 15 мА.

Для обеспечения возможности ЧМ-модуляции схемы автогенераторов должны быть дополнены соответствующими электронными цепями, которые обычно создают на основе варикапов — диодов обладающих емкостью, изменяемой в соответствии с поданным напряжением. И так, под действием модулирующего сигнала, подаваемого на цепь ЧМ-модуляции с предыдущих каскадов усилителя низкой частоты, варикап меняет свою емкость. Поскольку он входит в состав контура задающего генератора, в соответствии с изменением модулирующего сигнала происходит изменение частоты генератора, т.е. производится ЧМ-модуляция основной частоты.

На рисунке 1 (6) и (г) представлены примеры схем задающих автогенераторов с цепями ЧМ-модуляции на варикапах. На рисунке 1 (6) — вариант схемы на биполярном транзисторе, на рисунке 1 (г) — вариант схем на полевом транзисторе с изолированным затвором — МОП-транзисторе.

Элементы для рисунке 1 (б):

  • R1=6.2к, R2=20к, R3=510;
  • С1=20-30, С2= 10-50, С3=1н-3н, С4=1н-10н, С5=10, С6=10;
  • Т1 — КТ368, КТ315 или любой другой ВЧ-транзистор;
  • D1 — варикап Д901 А,В, КВ102 и аналогичные;

Катушки:

  • L2 — ВЧ-дроссель, например, Д0.1 40-100 мкН, в качестве ВЧ-дросселя можно использовать катушку с числом витков несколько десятков, например, намотать ее на резисторе с сопротивлением более 100 к;
  • L1 — бескаркасная, внутренний диаметр — 6 мм, диаметр провода — 0.8 мм — 3+1 витка.

Настройка схемы на рисунке 1 (б): при отсутствии генерации подстроить (подобрать) С2 и R2. Частота устанавливается конденсатором С1 и сжатием и/или растягиванием катушки L1. Не рекомендуется с целью увеличения глубины модуляции значительно увеличивать емкость конденсаторов связи (С6) варикапов с контурами.

Это связано с тем, что добротность варикапов низкая, и увеличение емкости связи приведет к уменьшению добротности контуров и уменьшению выходного ВЧ-сигнала.

Элементы для рисунка 1 (г):

  • R1=360;
  • С1=20-30, С2=1н-3н, С3=10, С4=1н-10н, С6=10;
  • Т1 — КП305Ж,Е;
  • D1 — варикап Д901А,В, КВ102 и аналогичные;

Катушки для генератора:

  • L2 — ВЧ-дроссель, например, Д0.1 40-100 мкН, в качестве ВЧ-дросселя можно использовать катушку с числом витков несколько десятков, например, намотать ее на резисторе с сопротивлением более 10 к;
  • L1 — бескаркасная, внутренний диаметр — 6 мм, диаметр провода -0.8 мм. L1 — 3+1 витка;

Настройка генератора на рисунке 1 (г): при отсутствии генерации подстроить (подобрать) R1, не превышая допустимого предела максимального тока транзистора — 15 мА. Частота устанавливается конденсатором С1 и сжатием и/или растягиванием катушки L1. Для этой схемы также не рекомендуется увеличивать емкость конденсатора С6.

Если дополнить предыдущие схемы генераторов с цепями ЧМ-модулиции соответствующими усилителями низкой частоты, то можно построить малогабаритные ЧМ-передатчики. Такие устройства вместе с микрофонами и источниками питания можно уместить в нескольких кубических сантиметрах. При антенне длиной в несколько сантиметров данные устройства обеспечивают устойчивую связь на расстоянии и несколько десятков метров при чувствительности УКВ-приемника 10 мкВ. При длине антенны равной четверти длины волны, напряжении питания 9В и чувствительности УКВ-приемника 10 мкВ дальность может составить 100 м и даже более 100 м.

УКВ (FM) передатчики на транзисторах

На рисунках 2 и 3 приведены схемы ЧМ-передатчиков с задающими генераторами на биполярном транзисторе и на транзисторе с изолированным затвором (МОП-транзисторе).

Рис.2. Схемы УКВ ЧМ-передатчиков на биполярных транзисторах, УНЧ на 1 транзисторе (б).

При использовании источника питания 9 В данные схемы обеспечивают дальность передачи на частоте 74 МГц (верхняя граница отечественного диапазона) 150-200 м на открытом пространстве при токе потребления 12-14 мА, длине передающей антенны 1 м и чувствительности УКВ-приемника 10-15 мкВ.

В схемах на рис.2 (а) и рис.3 (а) для их упрощения каскады УНЧ отсутствует.

Элементы для схемы ЧМ-передатчика на рисунка 2 (а):

  • R1= R2=1к-10к, R3=1к-2к, R4=510, R5=6.2к, R6=20к;
  • С1=0.1-1.0мкФ, С2=4.7мкФ-20мкФ, С3=10, С4=1н-10н, С5=10-50, С6=20-30, С7=1н-10н, С8=10-15;
  • Т1 — КТ368, КТЗ107, КТ361 или любой другой ВЧ-транзистор с граничной частотой не менее 300 МГц;
  • D1 — варикап Д901А,В, КВ 102 или аналогичные;
  • D2 — стабилитрон на 1-2 В, например, 2С113А, 2С119А или светодиод: используемый здесь как стабилитрон;
  • М1 — микрофон МКЭ-3 или аналогичный;
  • L1 — дроссель, например, Д0.1 40-100 мкН; катушка L2 — бескаркасная, внутренний диаметр — 6 мм, диаметр провода — 0.8 мм, желательно посеребренный, L2 — 3+1 витка.

Рис. 3. Схемы УКВ ЧМ-передатчиков на полевых транзисторах с изолированными затворами, УНЧ на 1 транзисторе (б).

Элементы для схемы ЧМ-передатчика на рисунка 3 (а):

  • R1= R2=1к-10к, R3=3к-10к, R4=360;
  • С1=0.1-1.0мкФ, С2=4.7мкФ-20мкФ, С3=10, С4=20-30, С5=1н-10н, С6= 10-15;
  • Т1 — КП305Ж,Е;
  • D1 — варикап Д901А.В, КВ102 или аналогичные;
  • D2 — стабилитрон на 1-2 В, например, 2С113А, 2С119А или светодиод;
  • М1 — микрофон МКЭ-3 или аналогичный;
  • L1 — дроссель, например, Д0.1 40-100 мкН; катушка L2 — бескаркасная, внутренний диаметр — 6 мм, диаметр провода — 0.8 мм, желательно посеребренный, L2 — 3+1 витка.

В схемах ЧМ-передатчиков на рисунке 2 (б) и 3 (6) УНЧ представлен каскадом на одном транзисторе. R1 — регулятор громкости, регу лирующий уровень входного сигнала с малогабаритного динамического или, например, конденсаторного или электретного микрофона.

В качестве динамического микрофона можно использовать, например, микрофон от портативного магнитофона, громкоговоритель или капсуль от миниатюрных наушников. Усиленный сигнал с коллектора транзистора Т1 через развязывающий дроссель L1 подается на варикап для обеспечения ЧМ-модуляции основной частоты задающего генератора.

Элементы и их параметры даны для частот 65-108 МГц.

Элементы для схемы ЧМ-передатчика на рисунка 2 (б):

  • R1=1к-10к, R2=500к-1.0 (требует подстройки), R3=3к-10к, R4=510, R5=6.2к, R6=20к;
  • С1=4.7мкФ-20мкФ, С2=4.7мкФ-20мкФ, С3= 10, С4=1н-10н, С5=10-50, С6=20-30, С7=1н-10н, С8=10-15;
  • Т1 — КТ3102, КТ315 или любой другой НЧ- или ВЧ-транзистор с коэффициентом усиления более 100, Т2 — КТ368, КТ361 или любой другой ВЧ-транзистор с граничной частотой не менее 300 МГц;
  • D1 — варикап Д901А,В, КВ102 или аналогичные;
  • L1 — дроссель, например, Д0.1 40-100 мкН; катушка L2 — бескаркасная, внутренний диаметр — 6 мм, диаметр провода — 0.8 мм. желательно посеребренный, L2 — 3+1 витка.

Настройка схем передатчиков. Изменением величины резистора R2 установить напряжение на коллекторе транзистора Т1 равным примерно половине напряжения питания, при 9В — это ЗВ-6В. Увеличение сопротивления в коллекторе транзистора Т1 ведет к увеличению коэффициента усиления каскада.

Однако не рекомендуется уменьшать коллекторный ток менее 0.5 мА, т е. устанавливать RЗ более 10к-15к. При отсутствии генерации подстроить (подобрать) С5 и R6. Частота устанавливается конденсатором С6 и сжатием и/или растягиванием катушки L2.

Не рекомендуется с целью увеличения глубины модуляции увеличивать емкость конденсатора С3.

Монтаж передатчиков. Монтаж выполняется на 2-стороннем фольгированном стеклотекстолите. Одна сторона (со стороны деталей) используется как общий провод и экран, другая — для печатных проводников схемы.

Проводники, соединяющие детали, должны иметь минимальную длину. Для повышения стабильности частоты целесообразно поместить задающий генератор или все устройство в экран. При этом частота генератора, возможно, несколько изменится (увеличится).

Других особенностей в монтаже и настройке данная схема малогабаритного ЧМ-передатчика не имеет.

Элементы для схемы ЧМ-передатчика на рисунке 3 (б):

  • R1=1к-10к, R2=500к-1.0 (требует подстройки), R3=3к-10к, R4=360;
  • С1=4.7мкФ-20мкФ, С2=4.7мкФ-20мкФ, С3=10, С4=20-30, С5=1н-10н, С6=10-15;
  • Т1 — КТ3102, КТ315 или любой другой НЧ- или ВЧ-транзистор с коэффициентом усиления более 100, Т2 — КП305Ж,Е;
  • D1 — варикап Д901А,В, КВ102 или аналогичные;
  • L1 — дроссель, например, Д0.1 40-100 мкН; катушка L2 — бескаркасная, внутренний диаметр — 6 мм, диаметр провода — 0.8 мм, желательно посеребренный, L2 — 3+1 витка.

Настройка для рисунка 3 (б). Изменением величины резистора R2 установить напряжение на коллекторе транзистора Т1 равным половине напряжения питания, при 9В — это ЗВ-6В. Увеличение сопротивления в коллекторе транзистора Т1 ведет к увеличению коэффициента усиления каскада.

Однако не рекомендуется уменьшать коллекторный ток менее 0.5 мА, т.е. устанавливать RЗ более 10к-15к. При отсутствии генерации подстроить (подобрать) R4, не превышая допустимого предела максимального тока транзистора — 15 мА, оптимальный ток стока должен составлять 12-14 мА.

При этом токе обеспечивается максимальная мощность излучения, дальность передачи, стабильность частоты, минимальное влияние антенны. При уменьшении тока стока МОП-транзистора повышается экономичность, но ухудшаются перечисленные параметры. Не рекомендуется уменьшать ток стока менее 5 мА, иначе при подключении передающей антенны возможен не только значительный уход частоты, но даже срыв генерации.

Возможно использование антенна укороченной длины, но при этом уменьшается мощность и дальность. Частота генерации устанавливается конденсатором С4 и сжатием и/или растягиванием катушки L2. Для этой схемы также не рекомендуется увеличивать емкость конденсатора СЗ.

Монтаж выполняется на 2-стороннем фольгированном стеклотекстолите. Одна сторона (со стороны деталей) используется как общий провод и экран, другая — для печатных проводников схемы. Проводники, соединяющие детали, должны иметь минимальную длину.

Для повышения стабильности частоты целесообразно поместить задающий генератор или все устройство в экран. При этом частота генератора,

возможно, несколько изменится (увеличится). Для обеспечения максимальной дальности длина антенны должна соответствовав» четверти длины волны.

Других особенностей в монтаже и настройке данная схема УКВ ЧМ-псрсдатчика не имеет.

Как видно из приведенных схем УКВ ЧМ-передатчиков на МОП-транзисторах они чрезвычайно просты, особенно схема на рисунке 3 (а). Использование малогабаритных деталей: светодиод вместо стабилитрона, катушка L2 меньших размеров, малогабаритный ВЧ-дроссель L2 или катушка в 30-100 витков ПЭВ 0.07 мм на резисторе 0.125 или 0.25, отсутствие С2 при свежих элементах и т.д. позволяют уместить собственно сам передатчик в объеме 2-3 кубических сантиметров вместе с малогабаритным микрофоном.

Для схем с УНЧ с целью упрощения конструкции УКВ ЧМ-передатчиков, минимизации числа элементов и уменьшения габаритов переменный резистор R1 — регулятор громкости (чувствительности микрофона) может быть исключен из схем. Коэффициент усиления каскада (УНЧ) может быть в небольших пределах скорректирован изменением величины коллекторного резистора R1 и соответствующей подстройкой величины резистора R2 для установки необходимых режимов транзистора Т1.

Один из основных недостатков приведенных схем УКВ ЧМ-передатчиков заключается в невозможности перестройки основной частоты (65-108 МГц).

Этот недостаток преодолен в схемах ЧМ-передатчиков на рисунке 4 и 5. Данные схемы являются модернизацией схем рассмотренных выше ЧМ-передатчиков на биполярных и МОП-транзисторах (с изолированным затвором).

Перестраиваемые ЧМ передатчики

Представленные на рисунке 4 и 5 схемы отличаются наличием цепей подачи дополнительного напряжения смещения на варикапы, входящие в контуры задающих генераторов. Величины напряжений смещения могут быть изменены с помощью специальных переменных резисторов. В соответствии с изменениями величин напряжений смещения изменяются емкости варикапов и соответственно частоты задающих генераторов ЧМ-передатчиков.

Дальность работы каждого из приведенных ЧМ-передатчиков на Частоте 74 МГц с излучающей антенной 1 м и с УКВ-радиоприемником чувствительностью 10-15 мкВ составляет 150-200 м. С антеннами меньшей длины — дальность меньше. Поэтому при нежелательности излучения на столь значительное расстояние приведенное устройство должно быть соответствующим образом экранировано и снабжено короткой антенной.

Рис.4. Схема УКВ ЧМ-передатчика на биполярном транзисторе с электронной перестройкой частоты и с УНЧ на 1 транзисторе.

Элементы для схемы ЧМ-передатчика на рисунке 4:

  • R1=1к-10к, R2=500к-1.0 (требует подстройки), R3=3к-10к,
  • R4=20к, R5=50к-100к, R6=20к, R7=510, R8=6.2к, R9=20к;
  • С1=4.7мкФ-20мкФ, С2=0.2мкФ-1.0мкФ (неполярная емкость),
  • СЗ=4.7мкФ-20мкФ, С4=10, С5=1н-10н, С6=10-50, С7=20-30, С8=10-15, С9=1н-10н;
  • Т1 — КТ3102, КТ315 или любой другой НЧ- или ВЧ-транзистор с коэффициентом усиления более 100,
  • Т2 — КТ368, КТ361 или любой другой ВЧ-транзистор с граничной частотой не менее 300 МГц;
  • D1 — варикап Д901А,В, КВ102 или аналогичные;
  • L1 — дроссель, например, Д0.1 40-100 мкН; катушка L2 — бескаркасная, внутренний диаметр — 6 мм, диаметр провода — 0.8 мм, желательно посеребренный, L2 — 3+1 витка.

 

Рис.5. Схема УКВ ЧМ-передатчика на полевом транзисторе с изолированным затвором, с электронной перестройкой частоты и с УНЧ на 1 транзисторе.

Элементы для схемы ЧМ-передатчика на рисунке 5:

  • R1=1к-10к, R2=500к-1.0 (требует подстройки), R3=3к-10к, R7=360, R4=20к, R5=50к-100к, R6=20к;
  • С1=4.7мкФ-20мкФ, С2=0.2мкФ-1.0мкФ (неполярная емкость), С3=10, С4=20-30, С5=1н-10н, С6=1н-10н, С7=10-15;
  • Т1 — КТ3102, КТ315 или любой другой НЧ- или ВЧ-транзистор с коэффициентом усиления более 100, Т2 — КП305Ж,Е;
  • D1 — варикап Д901А,В, КВ 102 или аналогичные;
  • L1 — дроссель, например, Д0.1 40-100 мкН; катушка L2 — бескаркасная, внутренний диаметр — 6 мм, диаметр провода — 0.8 мм, желательно посеребренный, L2 — 3+1 витка.

Настройка (рисунок 5). Изменением величины резистора R2 установить напряжение на коллекторе транзистора Т1 равным половине напряжения питания, при 9В — это ЗВ-6В. Увеличение сопротивления в коллекторе транзистора Т1 ведет к увеличению коэффициента усиления каскада.

Однако не рекомендуется уменьшать коллекторный ток менее 0.5 мА, т.е. устанавливать R3 более 10к-15к.

При отсутствии генерации подстроить (подобрать) R7, не превышая допустимого предела максимального тока транзистора — 15 мА. Частота устанавливается конденсатором С4 и сжатием и/или растягиванием катушки L2. Для этой схемы также не рекомендуется увеличивать емкость конденсатора СЗ.

R4-R6 могут иметь другие номиналы, однако необходимо помнить, что уменьшение значений R4 н R6 без увеличения значения емкости С2 может привести к ослаблению низких частот, при 0.2мкФ и 20к нижняя частота передаваемого сигнала — не менее 40 Гц. Возможно использование в качестве С2 оксидного конденсатора, но при выборе деталей и настройке необходимо учитывать полярность напряжения на конденсаторе при крайних положениях переменного резистора R5.

Монтаж (рисунок 5). Монтаж выполняется на 2-стороннем фольгированном стеклотектолите. Одна сторона (со стороны деталей) используется как общий про-иод и экран, другая — для печатных проводников схемы. Проводники, соединяющие детали, должны иметь минимальную длину.

Использование I-стороннего фольгированного стеклотекстолита и выполнение монтажа без учета данных рекомендаций (традиционным способом) может привести к самовозбуждению схемы (например, на инфранизких частотах) и даже к срыву генерации. Для повышения стабильности частоты целесообразно поместить задающий генератор или все устройство и экран. При этом частота генератора, возможно, несколько изменится (увеличится).

Других особенностей в монтаже и настройке данная схема не имеет.

Мощные УКВ радиопередатчики

В случае необходимости мощность ЧМ-передатчика можно существенно увеличить добавив к предыдущей схеме дополнительный усилитель. высокой частоты (УВЧ) на одном транзисторе. Два варианта таких схем ЧМ-передатчиков представлены на рисунке 6.

В обоих представленных вариантах применены одинаковые схемы УВЧ.

Особенностью используемых однотранзисторных усилительных каскадов является то, что транзисторы, входящие в их состав, в приведенных схемах работают с нулевым смещением, т.е. с нулевым начальным током. Это увеличивает коэффициент полезного действия, что позволяет получать сравнительно большую мощность при использовании транзисторов относительно небольшой мощности.

ВНИМАНИЕ! Учитывая значительную мощность излучения и, как следствие, сравнительно большое расстояние, на котором возможен прием, необходимо напомнить о недопустимости экспериментов по радиопередаче (с передающей антенной) на Радиовещательных диапазонах. Это может создать нежелательные помехи.

Эксперименты такого рода могут быть проведены только в удаленных местностях: далеко за городом, в сельской местности, в горах и т.д.

Рис.6. Схемы УКВ ЧМ-передатчиков повышенной мощности с электронной перестройкой частоты и с УНЧ на 1 транзисторе.

Первый вариант ЧМ-передатчика с дополнительным усилительным каскадом представлен на рисунке 6 (а). В этой схеме антенна ЧМ-передат-чика подключена непосредственно (только через разделительный конденсатор) к выходу УВЧ — к коллектору транзистора. Такое решение отличается простотой, но отсутствие правильного согласования с антенной (нагрузка не является оптимальной для выходного транзистора) снижает излучаемую мощность, увеличивает ток выходного транзистора, приводит к появлению дополнительных гармоник в спектре излучаемого сигнала.

На рисунке 6 (б) представлен второй вариант подобного ЧМ-передатчика. В данной схеме между выходом однотранзисторного УВЧ и антенной включен специальный П-образный фильтр, обеспечивающий необходимое согласование с антенной. Это позволяет увеличить излучаемую мощность при уменьшении тока потребления от источника питания.

Настройку подобных фильтров осуществляют по известным методикам, подробно описанным в технической литературе. Настройка сводится к изменению величины емкостей и индуктивности, входящих в состав фильтра.

При настройке П-образного фильтра с целью оптимального согласования передающей антенны с выходным каскадом передатчика целесообразно воспользоваться описанными выше устройствами — схемами-индикаторами, облегчающими процесс настройки передатчиков.

Элементы для схем ЧМ-передатчиков на рисунка 6:

  • R1=1к-10к, R2=500к-1.0 (требует подстройки), R3=3к-10к,
  • R7=360, R4=20к, R5=50к-100к, R6=20к;
  • С1=4.7мкФ-20мкФ, С2=0.2мкФ-1.0мкФ (неполярная емкость),
  • С3=10, С4=20-30, С5=5.0-50.0, С6=1н-10н, С7=10-15, С8=10-15, С9=1н-10н;
  • Т1 — КТ3102, КТ315 или любой другой НЧ или ВЧ-транзистор с коэффициентом усиления более 100,
  • Т2 — КП305Ж,Е, Т3 -КТ603А,Б;
  • D1 — варикап Д901А,В, КВ102 или аналогичные;
  • L1, LЗ, L4 — дроссели, например, Д0.1 20-100 мкН; катушка (74МГц),
  • L2 — бескаркасная, внутренний диаметр — 6 мм, диаметр провода — 0.8 мм, желательно посеребренный, L2 — 3+1 витка.

Настройка и монтаж данных устройств аналогичны настройке и монтажу предыдущего ЧМ-передатчика — схема на рисунке 5.

Дальность данных устройств в экспериментах на открытой местности (в горах в пределах прямой видимости) при использовании УКВ-приемника с чувствительностью 5 мкВ составила более 3 км.

ЧМ-передатчик, схема которого представлена на рисунке 6, было использовано в качестве резервного (аварийного) средства связи альпинистов.

Чувствительность УНЧ по микрофонному входу у описанных ЧМ-передатчиков можно значительно повысить, если вместо используемого однотранзисторного усилителя применить УНЧ на базе специализированных интегральных схем или операционных усилителей.

УКВ передатчики с дополнительным УНЧ

На рисунке 7 представлена схема ЧМ-передатчика на полевом транзисторе с изолированным затвором с УНЧ на ИС 122УС1Д. Высокочастотная часть этого устройства аналогична схеме на рисунке 4, поэтому все основные параметры (излучаемая мощность, дальность и т.д.), настройка, особенности конструктивного исполнения для обеих схем являются аналогичными.

Однако схема на рисунке 7 за счет применения ИС не требует какой-либо настройки и обладает значительно лучшей чувствительностью по микрофонному входу. Так при использовании микрофона МД47, МД64 и аналогичных слышен шепот на расстоянии 5 м при отсутствии фона и шумов.

Рис. 7. Схема УКВ ЧМ-передатчика на полевом транзисторе с изолированным затвором, с электронной перестройкой частоты и с УНЧ на ИС 122УС1Д.

Элементы для схемы ЧМ-передатчика на рисунке 7:

  • R1=1к-10к, R2=50-100, R6=360, R3=20к, R4=50к-100к, R5=20к, С1=4.7мкФ-20мкФ, С2=4.7мкФ-20мкФ, СЗ=4.7мкФ-20мкФ, С4=0.2мкФ-1.0мкФ (неполярная емкость), С5=10мкФ-20мкФ, С6=10, С7=20-30, С8=1н-10н, С9=1н-10н, С10=10-15;
  • А1 — ИС 122УС1Д; Т2 — КП305Ж,Е;
  • D1 — варикап Д901А,В, КВ102 или аналогичные;
  • L1 — дроссель, например, Д0.1 40-100 мкН;
  • катушка (74МГц) L2 — бескаркасная, внутренний диаметр — 6 мм, диаметр провода — 0.8 мм, желательно посеребренный, L2 — 3+1 витка.

Настройка ВЧ-части и особенности монтажа ЧМ-передатчика аналогичны устройству на рисунке 5.

Мощные УКВ передатчики с дополнительным УНЧ

На рисунке 8 представлены схемы ЧМ-передатчиков на полевых транзисторах с изолированными затворами с однотранзисторными УВЧ и УНЧ на ИС 122УС1Д. Схемы высокочастотных частей данных устройств аналогичны схемам на рис.5.5, поэтому все основные параметры, настройка, особенности конструктивного исполнения и т.д. для обеих схем являются аналогичными.

Как и в случае предыдущего устройства (схема рис. 7) использование ИС упростило настройку УНЧ и повысило чувствительность по входу.

Рис. 8. Схемы УКВ ЧМ-передатчиков повышенной мощности на полевых транзисторах с изолированными затворами, с усилителями мощности, с электронной перестройкой частоты и с УНЧ на ИС 122УС1Д.

Элементы для схем ЧМ-передатчиков на рисунке 8:

  • R1=1к-10к, R2=50-100, R6=360, R3=20к, R4=50к-100к,
  • R5=20к, С1=4.7мкФ-20мкФ, С2=4.7мкФ-20мкФ,
  • СЗ=4.7мкФ-20мкФ, С4=0.2мкФ-1.0мкФ (неполярная емкость),
  • С5=10мкФ-20мкФ, С6=10, С7=20-30, С8= 10мкФ-50мкФ,
  • С9=1н-10н, С10=10-15, С11=10-15, С12=1н-10н;
  • А1 — ИС 122УС1Д;
  • Т1 — КП305Ж,Е, Т2 — КТ603А,Б;
  • D1 — варикап Д901А,В, КВ102 или аналогичные;
  • L1, LЗ, L4 — дроссели, например, Д0.1 20-100 мкН;
  • катушка (74МГц) L2 — бескаркасная, внутренний диаметр — 6 мм, диаметр провода — 0.8 мм, желательно посеребренный, L2 — 3+1 витка.

Настройка ВЧ-частей и особенности монтажа УКВ ЧМ-передатчиков аналогичны устройствам на рисунке 5.

FM передатчик (87-108 МГц) с плоской катушкой

Катушки колебательных контуров могут быть не только традиционными (объемными), но и выполнены печатным способом — вытравлены непосредственно на печатной плате (плоские катушки), на которой выполняется монтаж всего устройства. Подобное конструктивное решение может быть целесообразным при сравнительно высоких частотах, например, для УКВ ЧМ-передатчиков на частотах 65-108 МГц.

В качестве примера использования такого, плоского, конструктивного исполнения контурных катушек для УКВ ЧМ-передатчиков можно привести рисунок контурной катушки и две схемы на рисунок 9.

Рис.9. Схема УКВ ЧМ-передатчика с плоской катушкой ВЧ-генератора на биполярном транзисторе ; а — контурная катушка задающего ВЧ-генератора.

Элементы для схем УКВ ЧМ-передатчиков (87-108 МГц) на рисунке 9:

  • R1=500к-1м, R2=3.0к-4.7к, R3=20к, R4=75-120, R5=1к-10к, R6=10к-15к;
  • С1=1н-10н, С2=4.7мкФ-20мкФ, С3=5-30, С4=10-20, С5=5-15, С6=1н-10н, С7=4.7мкФ-20мкФ, С8=4.7мкФ-20мкФ;
  • Т1 — КТ3102, КТ315 или аналогичные ВЧ-транзисторы.

Настройка. Резисторами RЗ, R6 устанавливается ток транзистора генератора (Т2) — 3-5 мА, резистором R1 — напряжение на эмиттере (на R2) транзистора УНЧ (Т1) — 0.5-1 В (примерно 1/2 напряжения источника питания). Подбором величины емкости конденсатора С4 устанавливается устойчивая генерация, изменением величины С3 задается частота ВЧ-колебаний задающего генератора — частота передатчика.

Заключение

Представленные и описанные устройства ЧМ-передатчиков могут быть использованы в составе радиостанций (приемопередатчиков).

Не рекомендуется строить радиопередающие устройства без оформления соответствующего разрешения в инспекции радиосвязи, радиоклубах, радиоспортивных обществах, школах и т.д. Эксплуатировать данные средства на частотах, отведенных для радиовещания — НЕДОПУСТИМО. Для этих целей имеются специально отведенные диапазоны частот.

К нарушителям могут быть применены различные меры воздействия, предусмотренные Законом.

Литература: Рудомедов Е.А., Рудометов В.Е — Электроника и шпионские страсти-3.

www.qrz.ru

Кое-что из радиотехники » Простой LC-генератор на транзисторах

  Данный генератор можно использовать в измерительной аппаратуре. Преимуществом такого генератора ( на рис. ) является возможность использования контуров практически с любым отношением L/C. При L1 = 50 мкГн и С1 = 5 мкФ генерируемая частота равна 10 кГц. При работе на LC контуре имеется малое рабочее напряжение ( около 100 мВ ). Собственно генератор собран на транзисторах VT1, VT2, транзистор VT3 используется как предварительный усилитель, выходной усилитель собран на транзисторе VT6.

  Остальные активные элементы использованы в элементах АРУ. Этот узел состоит из выпрямителя на диодах VD1, VD2 по схеме удвоения, усилителя постоянного тока на транзисторе VT5, и регулирующего транзистора VT4, включённого в цепь питания задающего генератора. В такой системе АРУ выходное напряжение остаётся практически постоянным при изменении напряжения питания от 3,5 до 15 В. В генераторе можно применить любые кремниевые транзисторы, важно только, чтобы VT1-VT3 имели коэффициент передачи по току h21Э ≥ 150.

Э. П. Борноволоков, В. В. Фролов. «РАДИОЛЮБИТЕЛЬСКИЕ СХЕМЫ». Киев, «ТЕХНИКА» 1985г, стр. 210

 

Поделиться ссылкой:

Похожее

admarkelov.ru