Супергетеродинный радиоприемник – definition of Супергетеродинный радиоприёмник and synonyms of Супергетеродинный радиоприёмник (Russian)

Содержание

Супергетеродинный радиоприёмник — Википедия

Супергетеродинный радиоприёмник (супергетеродин) — один из типов радиоприёмников, основанный на принципе преобразования принимаемого сигнала в сигнал фиксированной промежуточной частоты (ПЧ) с последующим её усилением. Основное преимущество супергетеродина перед радиоприёмником прямого усиления в том, что наиболее критичные для качества приёма части приёмного тракта (узкополосный фильтр, усилитель ПЧ и демодулятор) не должны перестраиваться под разные частоты, что позволяет выполнить их со значительно лучшими характеристиками.

Супергетеродинный приёмник изобрели почти одновременно немец Вальтер Шоттки и американец Эдвин Армстронг в 1918 году, основываясь на идее француза Л. Леви[fr].

Упрощённая структурная схема супергетеродина с однократным преобразованием частоты показана на рисунке. Радиосигнал из антенны подаётся на вход усилителя высокой частоты (в упрощённом варианте он может и отсутствовать), а затем на вход смесителя — специального элемента с двумя входами и одним выходом, осуществляющего операцию преобразования сигнала по частоте. На второй вход смесителя подаётся сигнал с локального маломощного генератора высокой частоты — гетеродина. Колебательный контур гетеродина перестраивается одновременно с входным контуром смесителя (и контурами усилителя ВЧ) — обычно конденсатором переменной ёмкости (КПЕ), реже катушкой переменной индуктивности (вариометром, ферровариометром). Таким образом, на выходе смесителя образуются сигналы с частотой, равной сумме и разности частот гетеродина и принимаемой радиостанции. Разностный сигнал постоянной промежуточной частоты (ПЧ) выделяется с помощью полосового фильтра и усиливается в усилителе ПЧ, после чего поступает на демодулятор, восстанавливающий сигнал низкой (звуковой) частоты.

В современных приёмниках в качестве гетеродина используется цифровой синтезатор частот с кварцевой стабилизацией.

В обычных вещательных приёмниках длинных, средних и коротких волн промежуточная частота, как правило, равна 465 или 455 кГц, в бытовых ультракоротковолновых — 6,5 или 10,7 МГц. В телевизорах используется промежуточная частота 38 МГц.

В связных и высококлассных вещательных приёмниках применяют двойное (редко — тройное) преобразование частоты. О преимуществах такого решения и критериях выбора первой и второй ПЧ сказано ниже.

  • Высокая чувствительность. Супергетеродин позволяет получить большее усиление по сравнению с приёмником прямого усиления. В супергетеродинах основное усиление осуществляется на промежуточной частоте, которая, как правило, ниже частоты приёма; чем ниже частота сигнала, тем проще построить для него устойчивый усилитель с большим коэффициентом усиления.
  • Высокая избирательность, обусловленная фильтрацией сигнала в канале ПЧ. Фильтр ПЧ можно изготовить со значительно более высокими параметрами, так как его не нужно перестраивать по частоте. Например, широко используют кварцевые, пьезокерамические и электромеханические фильтры сосредоточенной селекции, а также фильтры на поверхностных акустических волнах. Они позволяют получить сколь угодно узкую полосу пропускания с очень большим подавлением сигналов за её пределами.
  • Возможность принимать сигналы с модуляцией любого вида, в том числе с амплитудной манипуляцией (радиотелеграф) и однополосной модуляцией.

Наиболее значительным недостатком является наличие так называемого зеркального канала приёма — второй входной частоты, дающей такую же разность с частотой гетеродина, что и рабочая частота. Сигнал, передаваемый на этой частоте, может проходить через фильтры ПЧ вместе с рабочим сигналом.

Например, пусть приёмник с ПЧ 6,5 Мгц настроен на радиостанцию, передающую на частоте 70 МГц, и частота гетеродина равна 76,5 МГц. На выходе фильтра ПЧ будет выделяться сигнал с частотой 76,5 — 70 = 6,5 МГц. Однако, если на частоте 83 МГц работает другая мощная радиостанция, и её сигнал сможет просочиться на вход смесителя, то разностный сигнал с частотой 83 − 76,5 = 6,5 МГц не будет подавлен, попадёт в усилитель ПЧ и создаст помеху. Величина подавления такой помехи (избирательность по зеркальному каналу) зависит от эффективности входного фильтра и является одной из основных характеристик супергетеродина.

Помехи от зеркального канала уменьшают двумя путями. Во-первых, применяют более сложные и эффективные входные полосовые фильтры, состоящие из нескольких колебательных контуров. Это усложняет и удорожает конструкцию, так как входной фильтр нужно ещё и перестраивать по частоте, притом согласованно с перестройкой гетеродина. Во-вторых, промежуточную частоту выбирают достаточно высокой по сравнению с частотой приёма. В этом случае зеркальный канал приёма оказывается относительно далеко по частоте от основного, и входной фильтр приёмника может более эффективно его подавить. Иногда ПЧ даже делают намного выше частот приёма (так называемое «преобразование вверх»), и при этом ради упрощения приёмника вообще отказываются от входного полосового фильтра, заменяя его неперестраиваемым фильтром нижних частот. В высококачественных приёмниках часто применяют метод двойного (иногда и тройного) преобразования частоты, причём, если первую ПЧ выбирают высокой по описанным выше соображениям, то вторую делают низкой (сотни, иногда даже десятки килогерц[1]), что позволяет более эффективно подавлять помехи от близких по частоте станций, то есть повысить избирательность приёмника по соседнему каналу. Подобные приёмники, несмотря на достаточно высокую сложность построения и наладки, широко применяются в профессиональной и любительской радиосвязи (см. Р-250, Трансивер UW3DI).

Кроме того, в супергетеродине возможен паразитный приём станций, работающих на промежуточной частоте[2]. Его предотвращают экранированием отдельных узлов и приёмника в целом, а также применением на входе фильтра-пробки, настроенного на промежуточную частоту.

Второй недостаток супергетеродина — паразитное излучение, которое может создавать помехи другим приёмным устройствам или демаскировать приёмник. Этот недостаток стал одной из причин одной из крупнейших авиакатастроф в истории человечества, когда в аэропорту Лос-Родеос на ВПП столкнулись два Боинга-747. Достаточно сильное паразитное излучение гетеродинов, работающих на самолётах радиостанций связи, создавало в эфире достаточно сильные комбинационные колебания (биения), которые, в свою очередь, проявлялись как свист в наушниках у пилотов и диспетчера, что затрудняло и без того сложную коммуникацию. После катастрофы электрическая схема радиостанций Боингов-747 была доработана с целью снижения паразитного излучения гетеродинов. По причине паразитного излучения гетеродина существует риск случайного или целенаправленного обнаружения работающего приёмника (вещательного, связного), что широко используется в военном деле (радиоэлектронной разведкой), спецслужбами при поиске агентуры, полицией для выявления радар-детекторов в странах, где их применение запрещено, а также для оценки популярности телевизионной или радиопередачи по суммарной мощности паразитного излучения приёмников в интересующем районе. Задача подавления паразитного излучения сводится к снижению мощности гетеродина (в 1940—1960 годах она достигала 300 мВт, в 1970-х годах с переходом на транзисторные схемы была снижена до 20—30 мВт, с переходом на интегральные микросхемы в 1980-х годах — снижена до единиц милливатт, а в современных цифровых тюнерах не превышает десятков микроватт), сокращению размеров и надёжному экранированию смесительно-гетеродинного узла и усилителя промежуточной частоты (что решается интегральным исполнением приёмника), применению широкополосных заградительных высокоселективных фильтров на антенном входе приёмника.[источник?]

В целом супергетеродин требует гораздо большей тщательности в проектировании и наладке, чем приёмник прямого усиления. Приходится применять довольно сложные меры, чтобы обеспечить стабильность частоты гетеродинов, так как от неё сильно зависит качество приёма. Сигнал гетеродина не должен просачиваться в антенну, чтобы приёмник сам не становился источником помех. Если в приёмнике больше одного гетеродина, существует опасность, что биения между какими-то из их гармоник окажутся в полосе звуковых частот и дадут помеху в виде свиста на выходе приёмника. С этим явлением борются, рационально выбирая частоты гетеродинов и тщательно экранируя узлы приёмника друг от друга.

Использовать в приёмнике вспомогательный генератор колебаний впервые предложил американец Фессенден в 1901 г. Он же создал термин «гетеродин». В приёмнике Фессендена гетеродин работал на частоте, очень близкой к частоте принимаемого сигнала, и возникающие при этом биения звуковой частоты позволяли принимать телеграфный сигнал (принцип, на котором работает приёмник прямого преобразования). Гетеродинные приёмники быстро усовершенствовались с изобретением в 1913 г. лампового генератора высокой частоты (до этого применялись электромашинные генераторы).

В 1917 г. французский инженер Л. Леви (англ.) запатентовал принцип супергетеродинного приёма. В его приёмнике частота сигнала преобразовывалась не непосредственно в звуковую, а в промежуточную, которая выделялась на колебательном контуре и уже после него поступала на детектор. В 1918 г. В. Шоттки дополнил схему Леви усилителем промежуточной частоты. Схема супергетеродина была выгодна в то время ещё и тем, что лампы того времени не обеспечивали нужного усиления на частотах выше нескольких сот килогерц. Сдвинув спектр сигнала в область более низких частот, можно было повысить чувствительность приёмника.

Независимо от Шоттки к аналогичной схеме пришел Э. Армстронг (его патент получен в декабре 1918 г, патентная заявка Шоттки сделана в июне). Армстронг впервые построил и испытал супергетеродин на практике. Он же указал на возможность многократного преобразования частоты.

В декабре 1921 г. английский радиолюбитель на супергетеродин с пятикаскадным УПЧ принял сигналы станций из США. С этого момента к супергетеродинам появляется практический интерес. Первые супергетеродины были громоздки, дороги и неэкономичны из-за большого числа ламп. Приём сопровождался интерференционными свистами, проникающий в антенну сигнал гетеродина создавал помехи другим приёмникам. Некоторое время стояла дилемма — что лучше: более простой и надёжный приёмник прямого усиления, или сложный, капризный, но высокочувствительный супергетеродин, который может работать с небольшой комнатной антенной? Супергетеродин даже на некоторое время сдал позиции на рынке, когда применение тетрода заметно улучшило характеристики приёмников прямого усиления.[3] Но дальнейшее совершенствование ламп позволило сильно упростить и удешевить супергетеродинный приёмник: появились многосеточные лампы с большим усилением на высокой частоте, специализированные лампы для преобразователей частоты, служившие одновременно смесителем и гетеродином, а также комбинированные лампы, заключающие в одном баллоне два-три электронных прибора. Простой супергетеродин стало возможно построить на трёх-четырёх лампах, не считая выпрямителя [4][5]. Благодаря этому и другим усовершенствованиям с 1930-х годов супергетеродинная схема постепенно становится доминирующей для связных и радиовещательных приёмников. Кроме того, в 1930 г. истёк срок патента на принцип супергетеродинного приёма.

В России и СССР первым серийным супергетеродином был, по одним источникам, приёмник танковой радиостанции 71-ТК разработки 1932 г.[6] (завод № 203 в Москве), по другим — вещательный СГ-6 (не позже 1931 г., завод им. Козицкого в Ленинграде),[7], по третьим — радиоприёмник «Дозор», разработанный в конце 20-х годов в «Остехбюро» и переданный в серийное производство на тот же завод им. Козицкого.[8] Первым бытовым супергетеродином, выпускавшимся в больших количествах, стал СВД 1936 года. Примерно с конца 1950-х бытовые радиовещательные и телевизионные приёмники в СССР строились почти исключительно по супергетеродинной схеме (кроме некоторых сувенирных приёмников, радиоконструкторов для начинающих и отдельных специальных приёмников).

  1. ↑ National NC-300
  2. ↑ Это в большей степени относится к возможному приёму помех на промежуточной частоте. Стандартные промежуточные частоты как правило не используются для вещания и связи.
  3. ↑ П. Н. К. Два метода приёма.//«Радиофронт», 1936, № 1, с. 51
  4. Лаборатория РФ. Супер на новых лампах.//«Радиофронт», 1936, № 1, с. 27
  5. Куксенко П. Н. Трёхламповые суперы.//«Радиофронт», 1936, № 1, с. 59
  6. ↑ Радиомузей РКК. Архивные и справочные материалы
  7. Нелепец В. С. СГ-6, фабричный супергетеродин.//«Радиофронт», 1931, № 11-12, с. 651—654
  8. ↑ ВНИИРТ. Страницы истории. — М.:»Оружие и технологии», 2006

ru.wikiyy.com

Супергетеродинный радиоприемник. Большая энциклопедия техники

Супергетеродинный радиоприемник

Супергетеродинный радиоприемник – это тип радиоприемника, который основан на принципе генерирования принимаемого сигнала в сигнал промежуточной фиксированной частоты. Название «супергетеродина» происходит от греческого слова dynamis, что в переводе означает «сила».

Способ приема и конструкцию первого супергетеродинного радиоприемника предложили в 1918 г. одновременно американский ученый Э. Армстронг и французский изобретатель Л. Леви.

Механизм действия основывается на преобразовании выходного радиочастотного сигнала в частоту, которая постоянна для данного приемника. После этого на промежуточной частоте основной сигнал усиливается, а мешающие сигналы ослабляются. Основным достоинством супергетеродинного радиоприемника является тот факт, что он достаточно прост при настройке, его усилитель промежуточной частоты не требуется перестраивать, усиление сигнала производится легко. Одним из недостатков считается возникновение зеркальных каналов приема, которые образуются при генерировании частоты.

Радиосигнал из антенны супергетеродинного приемника подается на вход усилителя с высокой частотой. После этого радиосигнал поступает на один вход специального элемента с двумя входами, коим является смеситель. Смеситель проводит операцию генерирования сигнала по частоте. На другой вход с локального генератора малой мощности подается сигнал. Генератором высокой частоты выступает гетеродин. Параллельно с входным контуром смесителя, контурами усилителя высокой частоты перестраивается колебательный контур гетеродина. В результате этого на выходе смесителя образуются сигналы, которые равны разности и сумме принимаемой радиостанции с гетеродином. Фильтр выделяет и усиливает разностный сигнал промежуточной частоты, который поступает на демодулятор. Последний восстанавливает сигнал низкой звуковой частоты. В обычных супергетеродинных радиоприемниках, которые работают в диапазонах коротких, средних и длинных волн, промежуточная частота равняется 455—465 кГц, а в диапазонах ультракоротковолновых – 6,5—10,7 МГц.

Чтобы устранить мешающий входной сигнал, который не подавляется промежуточной частотой и носит название зеркального канала приема, существуют специальные методы. Чтобы уменьшить помехи, используются методы двойного или тройного преобразования частоты. Симметричный зеркальный канал немного отстоит по своей частоте от канала принимаемого сигнала, он располагается симметрично принимаемому радиосигналу. Помехи проходят по побочным каналам и вызывают интерференционные искажения радиосигнала, при слуховом радиоприеме они проявляются как свисты и шумы. Для уменьшения помех от зеркального канала часто применяют метод двойного (или даже тройного) преобразования частоты. Подобные радиоприемники, несмотря на достаточно высокую сложность построения и наладки, стали фактически стандартом в профессиональной и любительской радиосвязи.

В супергетеродинном приемнике применяется гетеродин, который представляет собой ламповый или полупроводниковый генератор электрических колебаний малой мощности. В радиоприемнике, волномере он используется для преобразования частот. Гетеродин образует колебания вспомогательной частоты, смешивающиеся с колебаниями высокой частоты, которые поступают извне.

В результате смешения колебаний получается постоянная промежуточная частота. Гетеродин обязательно должен иметь стабильную частоту и незначительные гармонические колебания.

В супергетеродинных радиоприемниках с однократным преобразованием частоты, после того как был принят сигнал с определенной частотой, он проходит через водную цепь и усилитель частоты. После этого сигнал проходит на смеситель преобразования частоты, где смешивается и преобразуется с колебаниями гетеродина. В супергетеродинных радиоприемниках с многократным преобразованием частоты механизм работы схож с приемником с однократным преобразованием.

Супергетеродинный радиоприемник с однократным преобразованием состоит из усилителя радиочастоты, входной цепи, гетеродина, усилителя промежуточной частоты, смесителя, усилителя низкой звуковой частоты, детектора, антенны. Кроме этого, в состав радиоприемника может входить оконечное устройство, такое как громкоговоритель и т. д.

Для настройки супергетеродинного радиоприемника необходимо лишь установить контуры входной цепи, гетеродина и усилителя радиочастоты.

Супергетеродинные радиоприемники, несмотря на сложность конструкции и настройки, стали общепризнанным стандартом в любительской и профессиональной радиосвязи.

Поделитесь на страничке

Следующая глава >

info.wikireading.ru

Супергетеродинный радиоприёмник — Википедия (с комментариями)


Ты — не раб!
Закрытый образовательный курс для детей элиты: «Истинное обустройство мира».

http://noslave.org

Материал из Википедии — свободной энциклопедии

Супергетеродинный радиоприёмник (супергетеродин) — один из типов радиоприёмников, основанный на принципе преобразования принимаемого сигнала в сигнал фиксированной промежуточной частоты (ПЧ) с последующим её усилением. Основное преимущество супергетеродина перед радиоприёмником прямого усиления в том, что наиболее критичные для качества приёма части приёмного тракта (узкополосный фильтр, усилитель ПЧ и демодулятор) не должны перестраиваться под разные частоты, что позволяет выполнить их со значительно лучшими характеристиками.

Супергетеродинный приёмник изобрели почти одновременно немец Вальтер Шоттки и американец Эдвин Армстронг в 1918 году, основываясь на идее француза Л. Леви.

Устройство

Упрощённая структурная схема супергетеродина с однократным преобразованием частоты показана на рисунке. Радиосигнал из антенны подаётся на вход усилителя высокой частоты (в упрощённом варианте он может и отсутствовать), а затем на вход смесителя — специального элемента с двумя входами и одним выходом, осуществляющего операцию преобразования сигнала по частоте. На второй вход смесителя подаётся сигнал с локального маломощного генератора высокой частоты — гетеродина. Колебательный контур гетеродина перестраивается одновременно с входным контуром смесителя (и контурами усилителя ВЧ) — обычно конденсатором переменной ёмкости (КПЕ), реже катушкой переменной индуктивности (вариометром, ферровариометром). Таким образом, на выходе смесителя образуются сигналы с частотой, равной сумме и разности частот гетеродина и принимаемой радиостанции. Разностный сигнал постоянной промежуточной частоты (ПЧ) выделяется с помощью полосового фильтра и усиливается в усилителе ПЧ, после чего поступает на демодулятор, восстанавливающий сигнал низкой (звуковой) частоты.

В современных приёмниках в качестве гетеродина используется цифровой синтезатор частот с кварцевой стабилизацией.

В обычных вещательных приёмниках длинных, средних и коротких волн промежуточная частота, как правило, равна 465 или 455 кГц, в бытовых ультракоротковолновых — 6,5 или 10,7 МГц. В телевизорах используется промежуточная частота 38 МГц.

В связных и высококлассных вещательных приёмниках применяют двойное (редко — тройное) преобразование частоты. О преимуществах такого решения и критериях выбора первой и второй ПЧ сказано ниже.

Преимущества

  • Высокая чувствительность. Супергетеродин позволяет получить большее усиление по сравнению с приёмником прямого усиления. В супергетеродинах основное усиление осуществляется на промежуточной частоте, которая, как правило, ниже частоты приема; чем ниже частота сигнала, тем проще построить для него устойчивый усилитель с большим коэффициентом усиления.
  • Высокая избирательность, обусловленная фильтрацией сигнала в канале ПЧ. Фильтр ПЧ можно изготовить со значительно более высокими параметрами, так как его не нужно перестраивать по частоте. Например, широко используют кварцевые, пьезокерамические и электромеханические фильтры сосредоточенной селекции, а также фильтры на поверхностных акустических волнах. Они позволяют получить сколь угодно узкую полосу пропускания с очень большим подавлением сигналов за её пределами.
  • Возможность принимать сигналы с модуляцией любого вида, в том числе с амплитудной манипуляцией (радиотелеграф) и однополосной модуляцией.

Недостатки

Наиболее значительным недостатком является наличие так называемого зеркального канала приёма — второй входной частоты, дающей такую же разность с частотой гетеродина, что и рабочая частота. Сигнал, передаваемый на этой частоте, может проходить через фильтры ПЧ вместе с рабочим сигналом.

Например, пусть приёмник с ПЧ 6,5 Мгц настроен на радиостанцию, передающую на частоте 70 МГц, и частота гетеродина равна 76,5 МГц. На выходе фильтра ПЧ будет выделяться сигнал с частотой 76,5 — 70 = 6,5 МГц. Однако, если на частоте 83 МГц работает другая мощная радиостанция, и её сигнал сможет просочиться на вход смесителя, то разностный сигнал с частотой 83 − 76,5 = 6,5 МГц не будет подавлен, попадёт в усилитель ПЧ и создаст помеху. Величина подавления такой помехи (избирательность по зеркальному каналу) зависит от эффективности входного фильтра и является одной из основных характеристик супергетеродина.

Помехи от зеркального канала уменьшают двумя путями. Во-первых, применяют более сложные и эффективные входные полосовые фильтры, состоящие из нескольких колебательных контуров. Это усложняет и удорожает конструкцию, так как входной фильтр нужно ещё и перестраивать по частоте, притом согласованно с перестройкой гетеродина. Во-вторых, промежуточную частоту выбирают достаточно высокой по сравнению с частотой приёма. В этом случае зеркальный канал приёма оказывается относительно далеко по частоте от основного, и входной фильтр приёмника может более эффективно его подавить. Иногда ПЧ даже делают намного выше частот приёма (так называемое «преобразование вверх»), и при этом ради упрощения приёмника вообще отказываются от входного полосового фильтра, заменяя его неперестраиваемым фильтром нижних частот. В высококачественных приёмниках часто применяют метод двойного (иногда и тройного) преобразования частоты, причём, если первую ПЧ выбирают высокой по описанным выше соображениям, то вторую делают низкой (сотни, иногда даже десятки килогерц[1]), что позволяет более эффективно подавлять помехи от близких по частоте станций, то есть повысить избирательность приёмника по соседнему каналу. Подобные приёмники, несмотря на достаточно высокую сложность построения и наладки, широко применяются в профессиональной и любительской радиосвязи (см. Р-250, Трансивер UW3DI).

Кроме того, в супергетеродине возможен паразитный приём станций, работающих на промежуточной частоте[2]. Его предотвращают экранированием отдельных узлов и приёмника в целом, а также применением на входе фильтра-пробки, настроенного на промежуточную частоту.

Второй недостаток супергетеродина — паразитное излучение, которое может создавать помехи другим приемным устройствам или демаскировать приемник. Этот недостаток стал одной из причин одной из крупнейших авиакатастроф в истории человечества когда в аэропорту Лос-Родеос на ВПП столкнулись два Боинга-747. Достаточно сильное паразитное излучение гетеродинов, работающих на самолетах радиостанций связи, создавало в эфире достаточно сильные комбинационные колебания (биения), которые в свою очередь проявлялись в как свист в наушниках у пилотов и диспетчера, что затрудняло и без того сложную коммуникацию. После катастрофы электрическая схема радиостанций Боингов-747 была доработана с целью снижения паразитного излучения гетеродинов. По причине паразитного излучения гетеродина существует риск случайного или целенаправленного обнаружения работающего приемника (вещательного, связного), что широко используется в военном деле (радиоэлектронной разведкой), спецслужбами при поиске агентуры, полицией для выявления радар-детекторов в странах, где их применение запрещено, а также для оценки популярности телевизионной или радиопередачи по суммарной мощности паразитного излучения приемников в интересующем районе. Задача подавления паразитного излучения сводится к снижению мощности гетеродина (в 1940-1960 годах она достигала 300 мВт, в 1970-х годах с переходом на транзисторные схемы была снижена до 20-30 мВт, с переходом на интегральные микросхемы в 1980-х годах — снижена до единиц милливатт, а в современных цифровых тюнерах не превышает десятков микроватт), сокращению размеров и надежному экранированию смесительно-гетеродинного узла и усилителя промежуточной частоты (что решается интегральным исполнением приемника), применению широкополосных заградительных высокоселективных фильтров на антенном входе приемника.

В целом супергетеродин требует гораздо большей тщательности в проектировании и наладке, чем приёмник прямого усиления. Приходится применять довольно сложные меры, чтобы обеспечить стабильность частоты гетеродинов, так как от неё сильно зависит качество приёма. Сигнал гетеродина не должен просачиваться в антенну, чтобы приемник сам не становился источником помех. Если в приёмнике больше одного гетеродина, существует опасность, что биения между какими-то из их гармоник окажутся в полосе звуковых частот и дадут помеху в виде свиста на выходе приёмника. С этим явлением борются, рационально выбирая частоты гетеродинов и тщательно экранируя узлы приёмника друг от друга.

История

Использовать в приёмнике вспомогательный генератор колебаний впервые предложил американец Фессенден в 1901 г. Он же создал термин «гетеродин». В приёмнике Фессендена гетеродин работал на частоте, очень близкой к частоте принимаемого сигнала, и возникающие при этом биения звуковой частоты позволяли принимать телеграфный сигнал (принцип, на котором работает приёмник прямого преобразования). Гетеродинные приёмники быстро усовершенствовались с изобретением в 1913 г. лампового генератора высокой частоты (до этого применялись электромашинные генераторы).

В 1917 г. французский инженер Л. Леви запатентовал принцип супергетеродинного приёма. В его приёмнике частота сигнала преобразовывалась не непосредственно в звуковую, а в промежуточную, которая выделялась на колебательном контуре и уже после него поступала на детектор. В 1918 г. В. Шоттки дополнил схему Леви усилителем промежуточной частоты. Схема супергетеродина была выгодна в то время ещё и тем, что лампы того времени не обеспечивали нужного усиления на частотах выше нескольких сот килогерц. Сдвинув спектр сигнала в область более низких частот, можно было повысить чувствительность приёмника.
Независимо от Шоттки к аналогичной схеме пришел Э. Армстронг (его патент получен в декабре 1918 г, патентная заявка Шоттки сделана в июне). Армстронг впервые построил и испытал супергетеродин на практике. Он же указал на возможность многократного преобразования частоты.

В декабре 1921 г. английский радиолюбитель на супергетеродин с пятикаскадным УПЧ принял сигналы станций из США. С этого момента к супергетеродинам появляется практический интерес. Первые супергетеродины были громоздки, дороги и неэкономичны из-за большого числа ламп. Приём сопровождался интерференционными свистами, проникающий в антенну сигнал гетеродина создавал помехи другим приёмникам. Некоторое время стояла дилемма — что лучше: более простой и надежный приемник прямого усиления, или сложный, капризный, но высокочувствительный супергетеродин, который может работать с небольшой комнатной антенной? Супергетеродин даже на некоторое время сдал позиции на рынке, когда применение тетрода заметно улучшило характеристики приемников прямого усиления.[3] Но дальнейшее совершенствование ламп позволило сильно упростить и удешевить супергетеродинный приёмник: появились многосеточные лампы с большим усилением на высокой частоте, специализированные лампы для преобразователей частоты, служившие одновременно смесителем и гетеродином, а также комбинированные лампы, заключающие в одном баллоне два-три электронных прибора. Простой супергетеродин стало возможно построить на трёх-четырёх лампах, не считая выпрямителя[4][5]. Благодаря этому и другим усовершенствованиям с 1930-х годов супергетеродинная схема постепенно становится доминирующей для связных и радиовещательных приёмников. Кроме того, в 1930 г. истёк срок патента на принцип супергетеродинного приёма.

В России и СССР первым серийным супергетеродином был, по одним источникам, приёмник танковой радиостанции 71-ТК разработки 1932 г.[6] (завод № 203 в Москве), по другим — вещательный СГ-6 (не позже 1931 г., завод им. Козицкого в Ленинграде),[7], по третьим — радиоприёмник «Дозор», разработанный в конце 20-х годов в «Остехбюро» и переданный в серийное производство на тот же завод им. Козицкого.[8] Первым бытовым супергетеродином, выпускавшимся в больших количествах, стал СВД 1936 года. Примерно с конца 1950-х бытовые радиовещательные и телевизионные приёмники в СССР строились почти исключительно по супергетеродинной схеме (кроме некоторых сувенирных приёмников, радиоконструкторов для начинающих и отдельных специальных приемников).

См. также

Напишите отзыв о статье «Супергетеродинный радиоприёмник»

Примечания

  1. [www.io.com/~nielw/nat_list/nc300.htm National NC-300]
  2. Это в большей степени относится к возможному приёму помех на промежуточной частоте. Стандартные промежуточные частоты как правило не используются для вещания и связи.
  3. П. Н. К. Два метода приема.//«Радиофронт», 1936, № 1, с. 51
  4. Лаборатория РФ. Супер на новых лампах.//«Радиофронт», 1936, № 1, с. 27
  5. Куксенко П. Н. Трёхламповые суперы.//«Радиофронт», 1936, № 1, с. 59
  6. [www.rkk-museum.ru/documents/archives/archives.shtml Радиомузей РКК. Архивные и справочные материалы]
  7. Нелепец В. С. СГ-6, фабричный супергетеродин.//[retrolib.net/magazin/rf31/rf31_11-12.djvu «Радиофронт», 1931, № 11-12], с. 651—654
  8. ВНИИРТ. Страницы истории. — М.:»Оружие и технологии», 2006

Литература

  • [www.radiolamp.ru/library/mrb/files/mrb0921.djvu Бобров Н. В. Радиоприёмные устройства. Изд. 2-е, доп. — М.:Энергия, 1976]
  • А. Г. Соболевский. Я строю супергетеродин. — М.:Энергия, 1971
  • А. К. История супера.//[www.rw6ase2.narod.ru/rf/rf41_10/directory.djvu Радиофронт, 1941 № 10], с. 12-15
  • Г. Г. Современные супергетеродины.//Радиофронт, 1932, № 9, с. 43-45

Ссылки

  • [www.rfdesign.ru/components/mixers/mix-fet.htm Смесители и преобразователи сигналов для устройств подвижной связи. Смесители на полевых транзисторах]

Отрывок, характеризующий Супергетеродинный радиоприёмник

– Знаешь, Мари, – вдруг сказала Наташа с шаловливой улыбкой, которой давно не видала княжна Марья на ее лице. – Он сделался какой то чистый, гладкий, свежий; точно из бани, ты понимаешь? – морально из бани. Правда?
– Да, – сказала княжна Марья, – он много выиграл.
– И сюртучок коротенький, и стриженые волосы; точно, ну точно из бани… папа, бывало…
– Я понимаю, что он (князь Андрей) никого так не любил, как его, – сказала княжна Марья.
– Да, и он особенный от него. Говорят, что дружны мужчины, когда совсем особенные. Должно быть, это правда. Правда, он совсем на него не похож ничем?
– Да, и чудесный.
– Ну, прощай, – отвечала Наташа. И та же шаловливая улыбка, как бы забывшись, долго оставалась на ее лице.

Пьер долго не мог заснуть в этот день; он взад и вперед ходил по комнате, то нахмурившись, вдумываясь во что то трудное, вдруг пожимая плечами и вздрагивая, то счастливо улыбаясь.

Он думал о князе Андрее, о Наташе, об их любви, и то ревновал ее к прошедшему, то упрекал, то прощал себя за это. Было уже шесть часов утра, а он все ходил по комнате.

«Ну что ж делать. Уж если нельзя без этого! Что ж делать! Значит, так надо», – сказал он себе и, поспешно раздевшись, лег в постель, счастливый и взволнованный, но без сомнений и нерешительностей.

«Надо, как ни странно, как ни невозможно это счастье, – надо сделать все для того, чтобы быть с ней мужем и женой», – сказал он себе.

Пьер еще за несколько дней перед этим назначил в пятницу день своего отъезда в Петербург. Когда он проснулся, в четверг, Савельич пришел к нему за приказаниями об укладке вещей в дорогу.

«Как в Петербург? Что такое Петербург? Кто в Петербурге? – невольно, хотя и про себя, спросил он. – Да, что то такое давно, давно, еще прежде, чем это случилось, я зачем то собирался ехать в Петербург, – вспомнил он. – Отчего же? я и поеду, может быть. Какой он добрый, внимательный, как все помнит! – подумал он, глядя на старое лицо Савельича. – И какая улыбка приятная!» – подумал он.

– Что ж, все не хочешь на волю, Савельич? – спросил Пьер.

– Зачем мне, ваше сиятельство, воля? При покойном графе, царство небесное, жили и при вас обиды не видим.

– Ну, а дети?

– И дети проживут, ваше сиятельство: за такими господами жить можно.

– Ну, а наследники мои? – сказал Пьер. – Вдруг я женюсь… Ведь может случиться, – прибавил он с невольной улыбкой.

– И осмеливаюсь доложить: хорошее дело, ваше сиятельство.

«Как он думает это легко, – подумал Пьер. – Он не знает, как это страшно, как опасно. Слишком рано или слишком поздно… Страшно!»

– Как же изволите приказать? Завтра изволите ехать? – спросил Савельич.

– Нет; я немножко отложу. Я тогда скажу. Ты меня извини за хлопоты, – сказал Пьер и, глядя на улыбку Савельича, подумал: «Как странно, однако, что он не знает, что теперь нет никакого Петербурга и что прежде всего надо, чтоб решилось то. Впрочем, он, верно, знает, но только притворяется. Поговорить с ним? Как он думает? – подумал Пьер. – Нет, после когда нибудь».

За завтраком Пьер сообщил княжне, что он был вчера у княжны Марьи и застал там, – можете себе представить кого? – Натали Ростову.

Княжна сделала вид, что она в этом известии не видит ничего более необыкновенного, как в том, что Пьер видел Анну Семеновну.

– Вы ее знаете? – спросил Пьер.

– Я видела княжну, – отвечала она. – Я слышала, что ее сватали за молодого Ростова. Это было бы очень хорошо для Ростовых; говорят, они совсем разорились.

– Нет, Ростову вы знаете?

– Слышала тогда только про эту историю. Очень жалко.

«Нет, она не понимает или притворяется, – подумал Пьер. – Лучше тоже не говорить ей».

Княжна также приготавливала провизию на дорогу Пьеру.

«Как они добры все, – думал Пьер, – что они теперь, когда уж наверное им это не может быть более интересно, занимаются всем этим. И все для меня; вот что удивительно».

В этот же день к Пьеру приехал полицеймейстер с предложением прислать доверенного в Грановитую палату для приема вещей, раздаваемых нынче владельцам.

«Вот и этот тоже, – думал Пьер, глядя в лицо полицеймейстера, – какой славный, красивый офицер и как добр! Теперь занимается такими пустяками. А еще говорят, что он не честен и пользуется. Какой вздор! А впрочем, отчего же ему и не пользоваться? Он так и воспитан. И все так делают. А такое приятное, доброе лицо, и улыбается, глядя на меня».

Пьер поехал обедать к княжне Марье.

Проезжая по улицам между пожарищами домов, он удивлялся красоте этих развалин. Печные трубы домов, отвалившиеся стены, живописно напоминая Рейн и Колизей, тянулись, скрывая друг друга, по обгорелым кварталам. Встречавшиеся извозчики и ездоки, плотники, рубившие срубы, торговки и лавочники, все с веселыми, сияющими лицами, взглядывали на Пьера и говорили как будто: «А, вот он! Посмотрим, что выйдет из этого».

При входе в дом княжны Марьи на Пьера нашло сомнение в справедливости того, что он был здесь вчера, виделся с Наташей и говорил с ней. «Может быть, это я выдумал. Может быть, я войду и никого не увижу». Но не успел он вступить в комнату, как уже во всем существе своем, по мгновенному лишению своей свободы, он почувствовал ее присутствие. Она была в том же черном платье с мягкими складками и так же причесана, как и вчера, но она была совсем другая. Если б она была такою вчера, когда он вошел в комнату, он бы не мог ни на мгновение не узнать ее.

Она была такою же, какою он знал ее почти ребенком и потом невестой князя Андрея. Веселый вопросительный блеск светился в ее глазах; на лице было ласковое и странно шаловливое выражение.

Пьер обедал и просидел бы весь вечер; но княжна Марья ехала ко всенощной, и Пьер уехал с ними вместе.

На другой день Пьер приехал рано, обедал и просидел весь вечер. Несмотря на то, что княжна Марья и Наташа были очевидно рады гостю; несмотря на то, что весь интерес жизни Пьера сосредоточивался теперь в этом доме, к вечеру они всё переговорили, и разговор переходил беспрестанно с одного ничтожного предмета на другой и часто прерывался. Пьер засиделся в этот вечер так поздно, что княжна Марья и Наташа переглядывались между собою, очевидно ожидая, скоро ли он уйдет. Пьер видел это и не мог уйти. Ему становилось тяжело, неловко, но он все сидел, потому что не мог подняться и уйти.

Княжна Марья, не предвидя этому конца, первая встала и, жалуясь на мигрень, стала прощаться.

– Так вы завтра едете в Петербург? – сказала ока.

– Нет, я не еду, – с удивлением и как будто обидясь, поспешно сказал Пьер. – Да нет, в Петербург? Завтра; только я не прощаюсь. Я заеду за комиссиями, – сказал он, стоя перед княжной Марьей, краснея и не уходя.

Наташа подала ему руку и вышла. Княжна Марья, напротив, вместо того чтобы уйти, опустилась в кресло и своим лучистым, глубоким взглядом строго и внимательно посмотрела на Пьера. Усталость, которую она очевидно выказывала перед этим, теперь совсем прошла. Она тяжело и продолжительно вздохнула, как будто приготавливаясь к длинному разговору.

Все смущение и неловкость Пьера, при удалении Наташи, мгновенно исчезли и заменились взволнованным оживлением. Он быстро придвинул кресло совсем близко к княжне Марье.

– Да, я и хотел сказать вам, – сказал он, отвечая, как на слова, на ее взгляд. – Княжна, помогите мне. Что мне делать? Могу я надеяться? Княжна, друг мой, выслушайте меня. Я все знаю. Я знаю, что я не стою ее; я знаю, что теперь невозможно говорить об этом. Но я хочу быть братом ей. Нет, я не хочу.. я не могу…

Он остановился и потер себе лицо и глаза руками.

– Ну, вот, – продолжал он, видимо сделав усилие над собой, чтобы говорить связно. – Я не знаю, с каких пор я люблю ее. Но я одну только ее, одну любил во всю мою жизнь и люблю так, что без нее не могу себе представить жизни. Просить руки ее теперь я не решаюсь; но мысль о том, что, может быть, она могла бы быть моею и что я упущу эту возможность… возможность… ужасна. Скажите, могу я надеяться? Скажите, что мне делать? Милая княжна, – сказал он, помолчав немного и тронув ее за руку, так как она не отвечала.

– Я думаю о том, что вы мне сказали, – отвечала княжна Марья. – Вот что я скажу вам. Вы правы, что теперь говорить ей об любви… – Княжна остановилась. Она хотела сказать: говорить ей о любви теперь невозможно; но она остановилась, потому что она третий день видела по вдруг переменившейся Наташе, что не только Наташа не оскорбилась бы, если б ей Пьер высказал свою любовь, но что она одного только этого и желала.

– Говорить ей теперь… нельзя, – все таки сказала княжна Марья.

– Но что же мне делать?

– Поручите это мне, – сказала княжна Марья. – Я знаю…

Пьер смотрел в глаза княжне Марье.

– Ну, ну… – говорил он.

– Я знаю, что она любит… полюбит вас, – поправилась княжна Марья.

Не успела она сказать эти слова, как Пьер вскочил и с испуганным лицом схватил за руку княжну Марью.

– Отчего вы думаете? Вы думаете, что я могу надеяться? Вы думаете?!

– Да, думаю, – улыбаясь, сказала княжна Марья. – Напишите родителям. И поручите мне. Я скажу ей, когда будет можно. Я желаю этого. И сердце мое чувствует, что это будет.

– Нет, это не может быть! Как я счастлив! Но это не может быть… Как я счастлив! Нет, не может быть! – говорил Пьер, целуя руки княжны Марьи.

– Вы поезжайте в Петербург; это лучше. А я напишу вам, – сказала она.

– В Петербург? Ехать? Хорошо, да, ехать. Но завтра я могу приехать к вам?

На другой день Пьер приехал проститься. Наташа была менее оживлена, чем в прежние дни; но в этот день, иногда взглянув ей в глаза, Пьер чувствовал, что он исчезает, что ни его, ни ее нет больше, а есть одно чувство счастья. «Неужели? Нет, не может быть», – говорил он себе при каждом ее взгляде, жесте, слове, наполнявших его душу радостью.

Когда он, прощаясь с нею, взял ее тонкую, худую руку, он невольно несколько дольше удержал ее в своей.

«Неужели эта рука, это лицо, эти глаза, все это чуждое мне сокровище женской прелести, неужели это все будет вечно мое, привычное, такое же, каким я сам для себя? Нет, это невозможно!..»

– Прощайте, граф, – сказала она ему громко. – Я очень буду ждать вас, – прибавила она шепотом.

И эти простые слова, взгляд и выражение лица, сопровождавшие их, в продолжение двух месяцев составляли предмет неистощимых воспоминаний, объяснений и счастливых мечтаний Пьера. «Я очень буду ждать вас… Да, да, как она сказала? Да, я очень буду ждать вас. Ах, как я счастлив! Что ж это такое, как я счастлив!» – говорил себе Пьер.

В душе Пьера теперь не происходило ничего подобного тому, что происходило в ней в подобных же обстоятельствах во время его сватовства с Элен.

Он не повторял, как тогда, с болезненным стыдом слов, сказанных им, не говорил себе: «Ах, зачем я не сказал этого, и зачем, зачем я сказал тогда „je vous aime“?» [я люблю вас] Теперь, напротив, каждое слово ее, свое он повторял в своем воображении со всеми подробностями лица, улыбки и ничего не хотел ни убавить, ни прибавить: хотел только повторять. Сомнений в том, хорошо ли, или дурно то, что он предпринял, – теперь не было и тени. Одно только страшное сомнение иногда приходило ему в голову. Не во сне ли все это? Не ошиблась ли княжна Марья? Не слишком ли я горд и самонадеян? Я верю; а вдруг, что и должно случиться, княжна Марья скажет ей, а она улыбнется и ответит: «Как странно! Он, верно, ошибся. Разве он не знает, что он человек, просто человек, а я?.. Я совсем другое, высшее».

Только это сомнение часто приходило Пьеру. Планов он тоже не делал теперь никаких. Ему казалось так невероятно предстоящее счастье, что стоило этому совершиться, и уж дальше ничего не могло быть. Все кончалось.

Радостное, неожиданное сумасшествие, к которому Пьер считал себя неспособным, овладело им. Весь смысл жизни, не для него одного, но для всего мира, казался ему заключающимся только в его любви и в возможности ее любви к нему. Иногда все люди казались ему занятыми только одним – его будущим счастьем. Ему казалось иногда, что все они радуются так же, как и он сам, и только стараются скрыть эту радость, притворяясь занятыми другими интересами. В каждом слове и движении он видел намеки на свое счастие. Он часто удивлял людей, встречавшихся с ним, своими значительными, выражавшими тайное согласие, счастливыми взглядами и улыбками. Но когда он понимал, что люди могли не знать про его счастье, он от всей души жалел их и испытывал желание как нибудь объяснить им, что все то, чем они заняты, есть совершенный вздор и пустяки, не стоящие внимания.

Когда ему предлагали служить или когда обсуждали какие нибудь общие, государственные дела и войну, предполагая, что от такого или такого исхода такого то события зависит счастие всех людей, он слушал с кроткой соболезнующею улыбкой и удивлял говоривших с ним людей своими странными замечаниями. Но как те люди, которые казались Пьеру понимающими настоящий смысл жизни, то есть его чувство, так и те несчастные, которые, очевидно, не понимали этого, – все люди в этот период времени представлялись ему в таком ярком свете сиявшего в нем чувства, что без малейшего усилия, он сразу, встречаясь с каким бы то ни было человеком, видел в нем все, что было хорошего и достойного любви.

Рассматривая дела и бумаги своей покойной жены, он к ее памяти не испытывал никакого чувства, кроме жалости в том, что она не знала того счастья, которое он знал теперь. Князь Василий, особенно гордый теперь получением нового места и звезды, представлялся ему трогательным, добрым и жалким стариком.

Пьер часто потом вспоминал это время счастливого безумия. Все суждения, которые он составил себе о людях и обстоятельствах за этот период времени, остались для него навсегда верными. Он не только не отрекался впоследствии от этих взглядов на людей и вещи, но, напротив, в внутренних сомнениях и противуречиях прибегал к тому взгляду, который он имел в это время безумия, и взгляд этот всегда оказывался верен.

«Может быть, – думал он, – я и казался тогда странен и смешон; но я тогда не был так безумен, как казалось. Напротив, я был тогда умнее и проницательнее, чем когда либо, и понимал все, что стоит понимать в жизни, потому что… я был счастлив».

wiki-org.ru

Супергетеродинный радиоприёмник — Википедия

Супергетеродинный радиоприёмник (супергетеродин) — один из типов радиоприёмников, основанный на принципе преобразования принимаемого сигнала в сигнал фиксированной промежуточной частоты (ПЧ) с последующим её усилением. Основное преимущество супергетеродина перед радиоприёмником прямого усиления в том, что наиболее критичные для качества приёма части приёмного тракта (узкополосный фильтр, усилитель ПЧ и демодулятор) не должны перестраиваться под разные частоты, что позволяет выполнить их со значительно лучшими характеристиками.

Супергетеродинный приёмник изобрели почти одновременно немец Вальтер Шоттки и американец Эдвин Армстронг в 1918 году, основываясь на идее француза Л. Леви[fr].

Устройство

Упрощённая структурная схема супергетеродина с однократным преобразованием частоты показана на рисунке. Радиосигнал из антенны подаётся на вход усилителя высокой частоты (в упрощённом варианте он может и отсутствовать), а затем на вход смесителя — специального элемента с двумя входами и одним выходом, осуществляющего операцию преобразования сигнала по частоте. На второй вход смесителя подаётся сигнал с локального маломощного генератора высокой частоты — гетеродина. Колебательный контур гетеродина перестраивается одновременно с входным контуром смесителя (и контурами усилителя ВЧ) — обычно конденсатором переменной ёмкости (КПЕ), реже катушкой переменной индуктивности (вариометром, ферровариометром). Таким образом, на выходе смесителя образуются сигналы с частотой, равной сумме и разности частот гетеродина и принимаемой радиостанции. Разностный сигнал постоянной промежуточной частоты (ПЧ) выделяется с помощью полосового фильтра и усиливается в усилителе ПЧ, после чего поступает на демодулятор, восстанавливающий сигнал низкой (звуковой) частоты.

В современных приёмниках в качестве гетеродина используется цифровой синтезатор частот с кварцевой стабилизацией.

В обычных вещательных приёмниках длинных, средних и коротких волн промежуточная частота, как правило, равна 465 или 455 кГц, в бытовых ультракоротковолновых — 6,5 или 10,7 МГц. В телевизорах используется промежуточная частота 38 МГц.

В связных и высококлассных вещательных приёмниках применяют двойное (редко — тройное) преобразование частоты. О преимуществах такого решения и критериях выбора первой и второй ПЧ сказано ниже.

Видео по теме

Преимущества

  • Высокая чувствительность. Супергетеродин позволяет получить большее усиление по сравнению с приёмником прямого усиления. В супергетеродинах основное усиление осуществляется на промежуточной частоте, которая, как правило, ниже частоты приёма; чем ниже частота сигнала, тем проще построить для него устойчивый усилитель с большим коэффициентом усиления.
  • Высокая избирательность, обусловленная фильтрацией сигнала в канале ПЧ. Фильтр ПЧ можно изготовить со значительно более высокими параметрами, так как его не нужно перестраивать по частоте. Например, широко используют кварцевые, пьезокерамические и электромеханические фильтры сосредоточенной селекции, а также фильтры на поверхностных акустических волнах. Они позволяют получить сколь угодно узкую полосу пропускания с очень большим подавлением сигналов за её пределами.
  • Возможность принимать сигналы с модуляцией любого вида, в том числе с амплитудной манипуляцией (радиотелеграф) и однополосной модуляцией.

Недостатки

Наиболее значительным недостатком является наличие так называемого зеркального канала приёма — второй входной частоты, дающей такую же разность с частотой гетеродина, что и рабочая частота. Сигнал, передаваемый на этой частоте, может проходить через фильтры ПЧ вместе с рабочим сигналом.

Например, пусть приёмник с ПЧ 6,5 Мгц настроен на радиостанцию, передающую на частоте 70 МГц, и частота гетеродина равна 76,5 МГц. На выходе фильтра ПЧ будет выделяться сигнал с частотой 76,5 — 70 = 6,5 МГц. Однако, если на частоте 83 МГц работает другая мощная радиостанция, и её сигнал сможет просочиться на вход смесителя, то разностный сигнал с частотой 83 − 76,5 = 6,5 МГц не будет подавлен, попадёт в усилитель ПЧ и создаст помеху. Величина подавления такой помехи (избирательность по зеркальному каналу) зависит от эффективности входного фильтра и является одной из основных характеристик супергетеродина.

Помехи от зеркального канала уменьшают двумя путями. Во-первых, применяют более сложные и эффективные входные полосовые фильтры, состоящие из нескольких колебательных контуров. Это усложняет и удорожает конструкцию, так как входной фильтр нужно ещё и перестраивать по частоте, притом согласованно с перестройкой гетеродина. Во-вторых, промежуточную частоту выбирают достаточно высокой по сравнению с частотой приёма. В этом случае зеркальный канал приёма оказывается относительно далеко по частоте от основного, и входной фильтр приёмника может более эффективно его подавить. Иногда ПЧ даже делают намного выше частот приёма (так называемое «преобразование вверх»), и при этом ради упрощения приёмника вообще отказываются от входного полосового фильтра, заменяя его неперестраиваемым фильтром нижних частот. В высококачественных приёмниках часто применяют метод двойного (иногда и тройного) преобразования частоты, причём, если первую ПЧ выбирают высокой по описанным выше соображениям, то вторую делают низкой (сотни, иногда даже десятки килогерц[1]), что позволяет более эффективно подавлять помехи от близких по частоте станций, то есть повысить избирательность приёмника по соседнему каналу. Подобные приёмники, несмотря на достаточно высокую сложность построения и наладки, широко применяются в профессиональной и любительской радиосвязи (см. Р-250, Трансивер UW3DI).

Кроме того, в супергетеродине возможен паразитный приём станций, работающих на промежуточной частоте[2]. Его предотвращают экранированием отдельных узлов и приёмника в целом, а также применением на входе фильтра-пробки, настроенного на промежуточную частоту.

Второй недостаток супергетеродина — паразитное излучение, которое может создавать помехи другим приёмным устройствам или демаскировать приёмник. Этот недостаток стал одной из причин одной из крупнейших авиакатастроф в истории человечества, когда в аэропорту Лос-Родеос на ВПП столкнулись два Боинга-747. Достаточно сильное паразитное излучение гетеродинов, работающих на самолётах радиостанций связи, создавало в эфире достаточно сильные комбинационные колебания (биения), которые в свою очередь проявлялись в как свист в наушниках у пилотов и диспетчера, что затрудняло и без того сложную коммуникацию. После катастрофы электрическая схема радиостанций Боингов-747 была доработана с целью снижения паразитного излучения гетеродинов. По причине паразитного излучения гетеродина существует риск случайного или целенаправленного обнаружения работающего приёмника (вещательного, связного), что широко используется в военном деле (радиоэлектронной разведкой), спецслужбами при поиске агентуры, полицией для выявления радар-детекторов в странах, где их применение запрещено, а также для оценки популярности телевизионной или радиопередачи по суммарной мощности паразитного излучения приёмников в интересующем районе. Задача подавления паразитного излучения сводится к снижению мощности гетеродина (в 1940—1960 годах она достигала 300 мВт, в 1970-х годах с переходом на транзисторные схемы была снижена до 20-30 мВт, с переходом на интегральные микросхемы в 1980-х годах — снижена до единиц милливатт, а в современных цифровых тюнерах не превышает десятков микроватт), сокращению размеров и надёжному экранированию смесительно-гетеродинного узла и усилителя промежуточной частоты (что решается интегральным исполнением приёмника), применению широкополосных заградительных высокоселективных фильтров на антенном входе приёмника.

В целом супергетеродин требует гораздо большей тщательности в проектировании и наладке, чем приёмник прямого усиления. Приходится применять довольно сложные меры, чтобы обеспечить стабильность частоты гетеродинов, так как от неё сильно зависит качество приёма. Сигнал гетеродина не должен просачиваться в антенну, чтобы приёмник сам не становился источником помех. Если в приёмнике больше одного гетеродина, существует опасность, что биения между какими-то из их гармоник окажутся в полосе звуковых частот и дадут помеху в виде свиста на выходе приёмника. С этим явлением борются, рационально выбирая частоты гетеродинов и тщательно экранируя узлы приёмника друг от друга.

История

Использовать в приёмнике вспомогательный генератор колебаний впервые предложил американец Фессенден в 1901 г. Он же создал термин «гетеродин». В приёмнике Фессендена гетеродин работал на частоте, очень близкой к частоте принимаемого сигнала, и возникающие при этом биения звуковой частоты позволяли принимать телеграфный сигнал (принцип, на котором работает приёмник прямого преобразования). Гетеродинные приёмники быстро усовершенствовались с изобретением в 1913 г. лампового генератора высокой частоты (до этого применялись электромашинные генераторы).

В 1917 г. французский инженер Л. Леви (англ.) запатентовал принцип супергетеродинного приёма. В его приёмнике частота сигнала преобразовывалась не непосредственно в звуковую, а в промежуточную, которая выделялась на колебательном контуре и уже после него поступала на детектор. В 1918 г. В. Шоттки дополнил схему Леви усилителем промежуточной частоты. Схема супергетеродина была выгодна в то время ещё и тем, что лампы того времени не обеспечивали нужного усиления на частотах выше нескольких сот килогерц. Сдвинув спектр сигнала в область более низких частот, можно было повысить чувствительность приёмника.

Независимо от Шоттки к аналогичной схеме пришел Э. Армстронг (его патент получен в декабре 1918 г, патентная заявка Шоттки сделана в июне). Армстронг впервые построил и испытал супергетеродин на практике. Он же указал на возможность многократного преобразования частоты.

В декабре 1921 г. английский радиолюбитель на супергетеродин с пятикаскадным УПЧ принял сигналы станций из США. С этого момента к супергетеродинам появляется практический интерес. Первые супергетеродины были громоздки, дороги и неэкономичны из-за большого числа ламп. Приём сопровождался интерференционными свистами, проникающий в антенну сигнал гетеродина создавал помехи другим приёмникам. Некоторое время стояла дилемма — что лучше: более простой и надёжный приёмник прямого усиления, или сложный, капризный, но высокочувствительный супергетеродин, который может работать с небольшой комнатной антенной? Супергетеродин даже на некоторое время сдал позиции на рынке, когда применение тетрода заметно улучшило характеристики приёмников прямого усиления.[3] Но дальнейшее совершенствование ламп позволило сильно упростить и удешевить супергетеродинный приёмник: появились многосеточные лампы с большим усилением на высокой частоте, специализированные лампы для преобразователей частоты, служившие одновременно смесителем и гетеродином, а также комбинированные лампы, заключающие в одном баллоне два-три электронных прибора. Простой супергетеродин стало возможно построить на трёх-четырёх лампах, не считая выпрямителя [4][5]. Благодаря этому и другим усовершенствованиям с 1930-х годов супергетеродинная схема постепенно становится доминирующей для связных и радиовещательных приёмников. Кроме того, в 1930 г. истёк срок патента на принцип супергетеродинного приёма.

В России и СССР первым серийным супергетеродином был, по одним источникам, приёмник танковой радиостанции 71-ТК разработки 1932 г.[6] (завод № 203 в Москве), по другим — вещательный СГ-6 (не позже 1931 г., завод им. Козицкого в Ленинграде),[7], по третьим — радиоприёмник «Дозор», разработанный в конце 20-х годов в «Остехбюро» и переданный в серийное производство на тот же завод им. Козицкого.[8] Первым бытовым супергетеродином, выпускавшимся в больших количествах, стал СВД 1936 года. Примерно с конца 1950-х бытовые радиовещательные и телевизионные приёмники в СССР строились почти исключительно по супергетеродинной схеме (кроме некоторых сувенирных приёмников, радиоконструкторов для начинающих и отдельных специальных приёмников).

См. также

Примечания

  1. ↑ National NC-300
  2. ↑ Это в большей степени относится к возможному приёму помех на промежуточной частоте. Стандартные промежуточные частоты как правило не используются для вещания и связи.
  3. ↑ П. Н. К. Два метода приёма.//«Радиофронт», 1936, № 1, с. 51
  4. Лаборатория РФ. Супер на новых лампах.//«Радиофронт», 1936, № 1, с. 27
  5. Куксенко П. Н. Трёхламповые суперы.//«Радиофронт», 1936, № 1, с. 59
  6. ↑ Радиомузей РКК. Архивные и справочные материалы
  7. Нелепец В. С. СГ-6, фабричный супергетеродин.//«Радиофронт», 1931, № 11-12, с. 651—654
  8. ↑ ВНИИРТ. Страницы истории. — М.:»Оружие и технологии», 2006

Литература

Ссылки

wiki2.red

Супергетеродинный радиоприёмник

Супергетеродинный радиоприёмник (супергетеродин) — один из типов радиоприёмников, основанный на принципе преобразования принимаемого сигнала в сигнал фиксированной промежуточной частоты (ПЧ) с последующим её усилением. Основное преимущество супергетеродина перед радиоприёмником прямого усиления в том, что наиболее критичные для качества приёма части приёмного тракта (узкополосный фильтр, усилитель ПЧ и демодулятор) не должны перестраиваться под разные частоты, что позволяет выполнить их со значительно лучшими характеристиками.

Супергетеродинный приёмник изобрели почти одновременно немец Вальтер Шоттки и американец Эдвин Армстронг в 1918 году, основываясь на идее француза Л. Леви.

Содержание

  • 1 Устройство
  • 2 Преимущества
  • 3 Недостатки
  • 4 История
  • 5 См. также
  • 6 Примечания
  • 7 Литература
  • 8 Ссылки

Устройство

Антенна
Усилитель
радиочастоты
Смеситель
Фильтр
промежуточной
частоты
Усилитель
ПЧ
Детектор
Усилитель
звуковой
частоты
Гетеродин

Упрощённая структурная схема супергетеродина с однократным преобразованием частоты показана на рисунке. Радиосигнал из антенны подаётся на вход усилителя высокой частоты (в упрощённом варианте он может и отсутствовать), а затем на вход смесителя — специального элемента с двумя входами и одним выходом, осуществляющего операцию преобразования сигнала по частоте. На второй вход смесителя подаётся сигнал с локального маломощного генератора высокой частоты — гетеродина. Колебательный контур гетеродина перестраивается одновременно с входным контуром смесителя (и контурами усилителя ВЧ) — обычно конденсатором переменной ёмкости (КПЕ), реже катушкой переменной индуктивности (вариометром, ферровариометром). Таким образом, на выходе смесителя образуются сигналы с частотой, равной сумме и разности частот гетеродина и принимаемой радиостанции. Разностный сигнал постоянной промежуточной частоты (ПЧ) выделяется с помощью полосового фильтра и усиливается в усилителе ПЧ, после чего поступает на демодулятор, восстанавливающий сигнал низкой (звуковой) частоты.

В современных приёмниках в качестве гетеродина используется цифровой синтезатор частот с кварцевой стабилизацией.

В обычных вещательных приёмниках длинных, средних и коротких волн промежуточная частота, как правило, равна 465 или 455 кГц, в бытовых ультракоротковолновых — 6,5 или 10,7 МГц. В телевизорах используется промежуточная частота 38 МГц.

В связных и высококлассных вещательных приёмниках применяют двойное (редко — тройное) преобразование частоты. О преимуществах такого решения и критериях выбора первой и второй ПЧ сказано ниже.

Преимущества

  • Высокая чувствительность. Супергетеродин позволяет получить большее усиление по сравнению с приёмником прямого усиления. В супергетеродинах основное усиление осуществляется на промежуточной частоте, которая, как правило, ниже частоты приема; чем ниже частота сигнала, тем проще построить для него устойчивый усилитель с большим коэффициентом усиления.
  • Высокая избирательность, обусловленная фильтрацией сигнала в канале ПЧ. Фильтр ПЧ можно изготовить со значительно более высокими параметрами, так как его не нужно перестраивать по частоте. Например, широко используют кварцевые, пьезокерамические и электромеханические фильтры сосредоточенной селекции, а также фильтры на поверхностных акустических волнах. Они позволяют получить сколь угодно узкую полосу пропускания с очень большим подавлением сигналов за ее пределами.
  • Возможность принимать сигналы с модуляцией любого вида, в том числе с амплитудной манипуляцией (радиотелеграф) и однополосной модуляцией.

Недостатки

Наиболее значительным недостатком является наличие так называемого зеркального канала приёма — второй входной частоты, дающей такую же разность с частотой гетеродина, что и рабочая частота. Сигнал, передаваемый на этой частоте, может проходить через фильтры ПЧ вместе с рабочим сигналом.

Например, пусть приёмник с ПЧ 6,5 Мгц настроен на радиостанцию, передающую на частоте 70 МГц, и частота гетеродина равна 76,5 МГц. На выходе фильтра ПЧ будет выделяться сигнал с частотой 76,5 — 70 = 6,5 МГц. Однако, если на частоте 83 МГц работает другая мощная радиостанция, и её сигнал сможет просочиться на вход смесителя, то разностный сигнал с частотой 83 − 76,5 = 6,5 МГц не будет подавлен, попадёт в усилитель ПЧ и создаст помеху. Величина подавления такой помехи (избирательность по зеркальному каналу) зависит от эффективности входного фильтра и является одной из основных характеристик супергетеродина.

Помехи от зеркального канала уменьшают двумя путями. Во-первых, применяют более сложные и эффективные входные полосовые фильтры, состоящие из нескольких колебательных контуров. Это усложняет и удорожает конструкцию, так как входной фильтр нужно ещё и перестраивать по частоте, притом согласованно с перестройкой гетеродина. Во-вторых, промежуточную частоту выбирают достаточно высокой по сравнению с частотой приёма. В этом случае зеркальный канал приёма оказывается относительно далеко по частоте от основного, и входной фильтр приёмника может более эффективно его подавить. Иногда ПЧ даже делают намного выше частот приёма (так называемое «преобразование вверх»), и при этом ради упрощения приёмника вообще отказываются от входного полосового фильтра, заменяя его неперестраиваемым фильтром нижних частот. В высококачественных приёмниках часто применяют метод двойного (иногда и тройного) преобразования частоты, причём, если первую ПЧ выбирают высокой по описанным выше соображениям, то вторую делают низкой (сотни, иногда даже десятки килогерц), что позволяет более эффективно подавлять помехи от близких по частоте станций, то есть повысить избирательность приёмника по соседнему каналу. Подобные приёмники, несмотря на достаточно высокую сложность построения и наладки, широко применяются в профессиональной и любительской радиосвязи (см. Р-250 (радиоприёмник), Трансивер UW3DI).

Кроме того, в супергетеродине возможен паразитный приём станций, работающих на промежуточной частоте. Его предотвращают экранированием отдельных узлов и приёмника в целом, а также применением на входе фильтра-пробки, настроенного на промежуточную частоту.

В целом супергетеродин требует гораздо большей тщательности в проектировании и наладке, чем приёмник прямого усиления. Приходится применять довольно сложные меры, чтобы обеспечить стабильность частоты гетеродинов, так как от неё сильно зависит качество приёма. Сигнал гетеродина не должен просачиваться в антенну, чтобы приемник сам не становился источником помех. Если в приёмнике больше одного гетеродина, существует опасность, что биения между какими-то из их гармоник окажутся в полосе звуковых частот и дадут помеху в виде свиста на выходе приёмника. С этим явлением борются, рационально выбирая частоты гетеродинов и тщательно экранируя узлы приёмника друг от друга.

История

Использовать в приёмнике вспомогательный генератор колебаний впервые предложил американец Фессенден в 1901 г. Он же создал термин «гетеродин». В приёмнике Фессендена гетеродин работал на частоте, очень близкой к частоте принимаемого сигнала, и возникающие при этом биения звуковой частоты позволяли принимать телеграфный сигнал (принцип, на котором работает приёмник прямого преобразования). Гетеродинные приёмники быстро усовершенствовались с изобретением в 1913 г. лампового генератора высокой частоты (до этого применялись электромашинные генераторы).

В 1917 г. французский инженер Л. Леви запатентовал принцип супергетеродинного приёма. В его приёмнике частота сигнала преобразовывалась не непосредственно в звуковую, а в промежуточную, которая выделялась на колебательном контуре и уже после него поступала на детектор. В 1918 г. В. Шоттки дополнил схему Леви усилителем промежуточной частоты. Схема супергетеродина была выгодна в то время ещё и тем, что тогдашние лампы не обеспечивали нужного усиления на частотах выше нескольких сот килогерц. Сдвинув спектр сигнала в область более низких частот, можно было повысить чувствительность приёмника. Независимо от Шоттки к аналогичной схеме пришел Э. Армстронг (его патент получен в декабре 1918 г, патентная заявка Шоттки сделана в июне). Армстронг впервые построил и испытал супергетеродин на практике. Он же указал на возможность многократного преобразования частоты.

В декабре 1921 г. английский радиолюбитель на супергетеродин с пятикаскадным УПЧ принял сигналы станций из США. С этого момента к супергетеродинам появляется практический интерес. Первые супергетеродины были громоздки, дороги и неэкономичны из-за большого числа ламп. Приём сопровождался интерференционными свистами, проникающий в антенну сигнал гетеродина создавал помехи другим приёмникам. Некоторое время стояла дилемма — что лучше: более простой и надежный приемник прямого усиления, или сложный, капризный, но высокочувствительный супергетеродин, который может работать с небольшой комнатной антенной? Супергетеродин даже на некоторое время сдал позиции на рынке, когда применение тетрода заметно улучшило характеристики приемников прямого усиления. Но дальнейшее совершенствование ламп позволило сильно упростить и удешевить супергетеродинный приёмник: появились многосеточные лампы с большим усилением на высокой частоте, специализированные лампы для преобразователей частоты, служившие одновременно смесителем и гетеродином, а также комбинированные лампы, заключающие в одном баллоне два-три электронных прибора. Простой супергетеродин стало возможно построить на трёх-четырёх лампах, не считая выпрямителя. Благодаря этому и другим усовершенствованиям с 1930-х годов супергетеродинная схема постепенно становится доминирующей для связных и радиовещательных приёмников. Кроме того, в 1930 г. истёк срок патента на принцип супергетеродинного приёма.

В России и СССР первым серийным супергетеродином был, по одним источникам, приёмник танковой радиостанции 71-ТК разработки 1932 г. (завод № 203 в Москве), по другим — вещательный СГ-6 (не позже 1931 г., завод им. Козицкого в Ленинграде),, по третьим — радиоприёмник «Дозор», разработанный в конце 20-х годов в «Остехбюро» и переданный в серийное производство на тот же завод им. Козицкого. Первым бытовым супергетеродином, выпускавшимся в больших количествах, стал СВД 1936 года. Примерно с конца 1950-х гг. бытовые радиовещательные и телевизионные приёмники в СССР строились почти исключительно по супергетеродинной схеме (кроме некоторых сувенирных приёмников, радиоконструкторов для начинающих и отдельных специальных приемников).

См. также

  • Электронный усилитель
  • Гетеродинирование
  • Гептод

Примечания

  1. National NC-300
  2. П. Н. К. Два метода приема.//«Радиофронт», 1936, № 1, с. 51
  3. Лаборатория РФ. Супер на новых лампах.//«Радиофронт», 1936, № 1, с. 27
  4. Куксенко П. Н. Трёхламповые суперы.//«Радиофронт», 1936, № 1, с. 59
  5. Радиомузей РКК. Архивные и справочные материалы
  6. Нелепец В. С. СГ-6, фабричный супергетеродин.//«Радиофронт», 1931, № 11-12, с. 651—654
  7. ВНИИРТ. Страницы истории. — М.:»Оружие и технологии», 2006

Литература

  • Бобров Н. В. Радиоприёмные устройства. Изд. 2-е, доп. — М.:Энергия, 1976
  • А. Г. Соболевский. Я строю супергетеродин. — М.:Энергия, 1971
  • А. К. История супера.//Радиофронт, 1941 № 10, с. 12-15
  • Г. Г. Современные супергетеродины.//Радиофронт, 1932, № 9, с. 43-45

Ссылки

  • Смесители и преобразователи сигналов для устройств подвижной связи. Смесители на полевых транзисторах
  Радиоприёмник
Основные
части
Антенна • Фидер • Согласующее устройство • Усилитель • Фильтр • Смеситель • Гетеродин (синтезатор частот • фазовая автоподстройка частоты)  • Детектор • Стереодекодер • Автоматическая регулировка усиления
Разновидности

Детекторный • Прямого усиления (регенеративный • рефлексный • нейтродин • кристадин)  • Прямого преобразования • Супергетеродин • Автодин •

Цифровое радио (SDR • DRM • RDS) • трансивер • Измерительный приёмник


Супергетеродинный радиоприёмник Информацию О



Супергетеродинный радиоприёмник Комментарии

Супергетеродинный радиоприёмник
Супергетеродинный радиоприёмник

Супергетеродинный радиоприёмник Вы просматриваете субъект

Супергетеродинный радиоприёмник что, Супергетеродинный радиоприёмник кто, Супергетеродинный радиоприёмник описание

There are excerpts from wikipedia on this article and video

www.turkaramamotoru.com

Супергетеродинный радиоприемник — МегаЛекции


Принцип работы супергетеродинного радиоприемника был предложен Л.Леви в 1917г, а построил его Э.Армстронг в 1919г. Сущность супергетеродинного приема заключается в переносе спектра принимаемого сигнала с частоты его несущей на фиксированную, промежуточную частоту, на которой производится основное усиление сигнала и формируется необходимая, близкая к прямоугольной, форма АЧХ. Далее усиленный сигнал детектируется и усиливается до необходимого уровня выходной мощности.

Структурная схема супергетеродинного радиоприемника приведена на рис.10.6.

Рис.10.6. Структурная схема супергетеродинного радиоприемника

 

Входная цепь и УРЧ, аналогичные таким же цепям в приемнике прямого усиления, осуществляют предварительную селекцию (преселекцию) и усиление принимаемого сигнала. Колебательные контуры этих цепей перестраиваются по частоте и, при необходимости, переключаются на разные диапазоны. Затем сигнал поступает на вход смесителя, на второй вход которого подается напряжение со специального генератора гармонических сигналов, называемого гетеродином. Частота гетеродина также перестраивается, причем таким образом, что она все время отличается от частоты принимаемого сигнала на одну и ту же величину. На выходе смесителя, который является параметрической или нелинейной цепью, появляются напряжения с частотами, равными сумме и разности частот принимаемого сигнала и гетеродина. Каждая из этих частот модулирована передаваемым сигналом. Одна из них, обычно разностная, и является промежуточной частотой. Эта промежуточная частота далее усиливается усилителем промежуточной частоты – УПЧ. В УПЧ происходит основное усиление сигнала, одновременно формируется необходимая форма АЧХ, соответствующая спектру принимаемого сигнала. Затем производится детектирование и усиление звукового сигнала.

Так как промежуточная частота фиксирована и не меняется при приеме любой радиостанции в любом диапазоне, можно обеспечить высокое усиление, высокую избирательность, близкую к прямоугольной форму АЧХ и независимость этих параметров от частоты принимаемой радиостанции.


Недостатками супергетеродинных приемников являются наличие дополнительных частот приема, двойственность настройки и чувствительность к помехам с частотой, равной промежуточной.

Перестройка по частоте в супергетеродинном приемнике производится при помощи блока конденсаторов переменной емкости (КПЕ) с одной осью управления. Параметры конденсаторов одинаковы. Однако вследствие разности частот настройки преселектора и гетеродина требуются разные коэффициенты перестройки емкости этих конденсаторов, что достигается подключением дополнительных конденсаторов к КПЕ гетеродина. При этом законы изменения частоты настройки при вращении блока КПЕ для преселектора и гетеродина оказываются различными и точное сопряжение настроек может быть получено только в трех точках: в начале, середине и в конце диапазона. Поскольку настройка радиоприемника определяется частотой настройки гетеродина, АЧХ преселектора должна быть широкой. Но при этом приемник может одновременно принимать радиосигналы с двумя разными несущими частотами, расположенными симметрично по отношению к частоте гетеродина, как показано на рис.10.7.

Рис.10.7.Образованиезеркального канала приема

Такие радиосигналы после преобразования создают сигналы с одинаковыми промежуточными частотами и их частотное разделение в УПЧ невозможно. Один из этих сигналов является полезным, а другой, «зеркальный», мешает его приему.

Другим проявлением симметричного приема является двойственность настройки. При радиосигнале с частотой fс номинальную промежуточную частоту fпч можно получить при частотах гетеродина fг1 = fс — fпч и fг1 = fс + fпч .Таким образом, один и тот же сигнал с частотой fс может быть при двух разных частотах гетеродина, т.е. в двух разных точках шкалы настройки радиоприемника, причем эти частоты отстоят друг от друга на 2fпч.

Для уменьшения помехи с частотой, равной fпч применяется режекторный фильтр («фильтр–пробка»), включенный до смесителя.

Для ослабления приема на дополнительных частотах иногда применяют более сложные супергетеродинные схемы, в которых производится двукратное и даже трехкратное преобразование частоты.

 

28



Рекомендуемые страницы:

Воспользуйтесь поиском по сайту:

megalektsii.ru

Супергетеродинный радиоприемник Википедия

Супергетеродинный радиоприёмник (супергетеродин) — один из типов радиоприёмников, основанный на принципе преобразования принимаемого сигнала в сигнал фиксированной промежуточной частоты (ПЧ) с последующим её усилением. Основное преимущество супергетеродина перед радиоприёмником прямого усиления в том, что наиболее критичные для качества приёма части приёмного тракта (узкополосный фильтр, усилитель ПЧ и демодулятор) не должны перестраиваться под разные частоты, что позволяет выполнить их со значительно лучшими характеристиками.

Супергетеродинный приёмник изобрели почти одновременно немец Вальтер Шоттки и американец Эдвин Армстронг в 1918 году, основываясь на идее француза Л. Леви[fr].

Устройство

Упрощённая структурная схема супергетеродина с однократным преобразованием частоты показана на рисунке. Радиосигнал из антенны подаётся на вход усилителя высокой частоты (в упрощённом варианте он может и отсутствовать), а затем на вход смесителя — специального элемента с двумя входами и одним выходом, осуществляющего операцию преобразования сигнала по частоте. На второй вход смесителя подаётся сигнал с локального маломощного генератора высокой частоты — гетеродина. Колебательный контур гетеродина перестраивается одновременно с входным контуром смесителя (и контурами усилителя ВЧ) — обычно конденсатором переменной ёмкости (КПЕ), реже катушкой переменной индуктивности (вариометром, ферровариометром). Таким образом, на выходе смесителя образуются сигналы с частотой, равной сумме и разности частот гетеродина и принимаемой радиостанции. Разностный сигнал постоянной промежуточной частоты (ПЧ) выделяется с помощью полосового фильтра и усиливается в усилителе ПЧ, после чего поступает на демодулятор, восстанавливающий сигнал низкой (звуковой) частоты.

В современных приёмниках в качестве гетеродина используется цифровой синтезатор частот с кварцевой стабилизацией.

В обычных вещательных приёмниках длинных, средних и коротких волн промежуточная частота, как правило, равна 465 или 455 кГц, в бытовых ультракоротковолновых — 6,5 или 10,7 МГц. В телевизорах используется промежуточная частота 38 МГц.

В связных и высококлассных вещательных приёмниках применяют двойное (редко — тройное) преобразование частоты. О преимуществах такого решения и критериях выбора первой и второй ПЧ сказано ниже.

Преимущества

  • Высокая чувствительность. Супергетеродин позволяет получить большее усиление по сравнению с приёмником прямого усиления. В супергетеродинах основное усиление осуществляется на промежуточной частоте, которая, как правило, ниже частоты приёма; чем ниже частота сигнала, тем проще построить для него устойчивый усилитель с большим коэффициентом усиления.
  • Высокая избирательность, обусловленная фильтрацией сигнала в канале ПЧ. Фильтр ПЧ можно изготовить со значительно более высокими параметрами, так как его не нужно перестраивать по частоте. Например, широко используют кварцевые, пьезокерамические и электромеханические фильтры сосредоточенной селекции, а также фильтры на поверхностных акустических волнах. Они позволяют получить сколь угодно узкую полосу пропускания с очень большим подавлением сигналов за её пределами.
  • Возможность принимать сигналы с модуляцией любого вида, в том числе с амплитудной манипуляцией (радиотелеграф) и однополосной модуляцией.

Недостатки

Наиболее значительным недостатком является наличие так называемого зеркального канала приёма — второй входной частоты, дающей такую же разность с частотой гетеродина, что и рабочая частота. Сигнал, передаваемый на этой частоте, может проходить через фильтры ПЧ вместе с рабочим сигналом.

Например, пусть приёмник с ПЧ 6,5 Мгц настроен на радиостанцию, передающую на частоте 70 МГц, и частота гетеродина равна 76,5 МГц. На выходе фильтра ПЧ будет выделяться сигнал с частотой 76,5 — 70 = 6,5 МГц. Однако, если на частоте 83 МГц работает другая мощная радиостанция, и её сигнал сможет просочиться на вход смесителя, то разностный сигнал с частотой 83 − 76,5 = 6,5 МГц не будет подавлен, попадёт в усилитель ПЧ и создаст помеху. Величина подавления такой помехи (избирательность по зеркальному каналу) зависит от эффективности входного фильтра и является одной из основных характеристик супергетеродина.

Помехи от зеркального канала уменьшают двумя путями. Во-первых, применяют более сложные и эффективные входные полосовые фильтры, состоящие из нескольких колебательных контуров. Это усложняет и удорожает конструкцию, так как входной фильтр нужно ещё и перестраивать по частоте, притом согласованно с перестройкой гетеродина. Во-вторых, промежуточную частоту выбирают достаточно высокой по сравнению с частотой приёма. В этом случае зеркальный канал приёма оказывается относительно далеко по частоте от основного, и входной фильтр приёмника может более эффективно его подавить. Иногда ПЧ даже делают намного выше частот приёма (так называемое «преобразование вверх»), и при этом ради упрощения приёмника вообще отказываются от входного полосового фильтра, заменяя его неперестраиваемым фильтром нижних частот. В высококачественных приёмниках часто применяют метод двойного (иногда и тройного) преобразования частоты, причём, если первую ПЧ выбирают высокой по описанным выше соображениям, то вторую делают низкой (сотни, иногда даже десятки килогерц[1]), что позволяет более эффективно подавлять помехи от близких по частоте станций, то есть повысить избирательность приёмника по соседнему каналу. Подобные приёмники, несмотря на достаточно высокую сложность построения и наладки, широко применяются в профессиональной и любительской радиосвязи (см. Р-250, Трансивер UW3DI).

Кроме того, в супергетеродине возможен паразитный приём станций, работающих на промежуточной частоте[2]. Его предотвращают экранированием отдельных узлов и приёмника в целом, а также применением на входе фильтра-пробки, настроенного на промежуточную частоту.

Второй недостаток супергетеродина — паразитное излучение, которое может создавать помехи другим приёмным устройствам или демаскировать приёмник. Этот недостаток стал одной из причин одной из крупнейших авиакатастроф в истории человечества, когда в аэропорту Лос-Родеос на ВПП столкнулись два Боинга-747. Достаточно сильное паразитное излучение гетеродинов, работающих на самолётах радиостанций связи, создавало в эфире достаточно сильные комбинационные колебания (биения), которые, в свою очередь, проявлялись как свист в наушниках у пилотов и диспетчера, что затрудняло и без того сложную коммуникацию. После катастрофы электрическая схема радиостанций Боингов-747 была доработана с целью снижения паразитного излучения гетеродинов. По причине паразитного излучения гетеродина существует риск случайного или целенаправленного обнаружения работающего приёмника (вещательного, связного), что широко используется в военном деле (радиоэлектронной разведкой), спецслужбами при поиске агентуры, полицией для выявления радар-детекторов в странах, где их применение запрещено, а также для оценки популярности телевизионной или радиопередачи по суммарной мощности паразитного излучения приёмников в интересующем районе. Задача подавления паразитного излучения сводится к снижению мощности гетеродина (в 1940—1960 годах она достигала 300 мВт, в 1970-х годах с переходом на транзисторные схемы была снижена до 20—30 мВт, с переходом на интегральные микросхемы в 1980-х годах — снижена до единиц милливатт, а в современных цифровых тюнерах не превышает десятков микроватт), сокращению размеров и надёжному экранированию смесительно-гетеродинного узла и усилителя промежуточной частоты (что решается интегральным исполнением приёмника), применению широкополосных заградительных высокоселективных фильтров на антенном входе приёмника.[источник?]

В целом супергетеродин требует гораздо большей тщательности в проектировании и наладке, чем приёмник прямого усиления. Приходится применять довольно сложные меры, чтобы обеспечить стабильность частоты гетеродинов, так как от неё сильно зависит качество приёма. Сигнал гетеродина не должен просачиваться в антенну, чтобы приёмник сам не становился источником помех. Если в приёмнике больше одного гетеродина, существует опасность, что биения между какими-то из их гармоник окажутся в полосе звуковых частот и дадут помеху в виде свиста на выходе приёмника. С этим явлением борются, рационально выбирая частоты гетеродинов и тщательно экранируя узлы приёмника друг от друга.

История

Использовать в приёмнике вспомогательный генератор колебаний впервые предложил американец Фессенден в 1901 г. Он же создал термин «гетеродин». В приёмнике Фессендена гетеродин работал на частоте, очень близкой к частоте принимаемого сигнала, и возникающие при этом биения звуковой частоты позволяли принимать телеграфный сигнал (принцип, на котором работает приёмник прямого преобразования). Гетеродинные приёмники быстро усовершенствовались с изобретением в 1913 г. лампового генератора высокой частоты (до этого применялись электромашинные генераторы).

В 1917 г. французский инженер Л. Леви (англ.) запатентовал принцип супергетеродинного приёма. В его приёмнике частота сигнала преобразовывалась не непосредственно в звуковую, а в промежуточную, которая выделялась на колебательном контуре и уже после него поступала на детектор. В 1918 г. В. Шоттки дополнил схему Леви усилителем промежуточной частоты. Схема супергетеродина была выгодна в то время ещё и тем, что лампы того времени не обеспечивали нужного усиления на частотах выше нескольких сот килогерц. Сдвинув спектр сигнала в область более низких частот, можно было повысить чувствительность приёмника.

Независимо от Шоттки к аналогичной схеме пришел Э. Армстронг (его патент получен в декабре 1918 г, патентная заявка Шоттки сделана в июне). Армстронг впервые построил и испытал супергетеродин на практике. Он же указал на возможность многократного преобразования частоты.

В декабре 1921 г. английский радиолюбитель на супергетеродин с пятикаскадным УПЧ принял сигналы станций из США. С этого момента к супергетеродинам появляется практический интерес. Первые супергетеродины были громоздки, дороги и неэкономичны из-за большого числа ламп. Приём сопровождался интерференционными свистами, проникающий в антенну сигнал гетеродина создавал помехи другим приёмникам. Некоторое время стояла дилемма — что лучше: более простой и надёжный приёмник прямого усиления, или сложный, капризный, но высокочувствительный супергетеродин, который может работать с небольшой комнатной антенной? Супергетеродин даже на некоторое время сдал позиции на рынке, когда применение тетрода заметно улучшило характеристики приёмников прямого усиления.[3] Но дальнейшее совершенствование ламп позволило сильно упростить и удешевить супергетеродинный приёмник: появились многосеточные лампы с большим усилением на высокой частоте, специализированные лампы для преобразователей частоты, служившие одновременно смесителем и гетеродином, а также комбинированные лампы, заключающие в одном баллоне два-три электронных прибора. Простой супергетеродин стало возможно построить на трёх-четырёх лампах, не считая выпрямителя [4][5]. Благодаря этому и другим усовершенствованиям с 1930-х годов супергетеродинная схема постепенно становится доминирующей для связных и радиовещательных приёмников. Кроме того, в 1930 г. истёк срок патента на принцип супергетеродинного приёма.

В России и СССР первым серийным супергетеродином был, по одним источникам, приёмник танковой радиостанции 71-ТК разработки 1932 г.[6] (завод № 203 в Москве), по другим — вещательный СГ-6 (не позже 1931 г., завод им. Козицкого в Ленинграде),[7], по третьим — радиоприёмник «Дозор», разработанный в конце 20-х годов в «Остехбюро» и переданный в серийное производство на тот же завод им. Козицкого.[8] Первым бытовым супергетеродином, выпускавшимся в больших количествах, стал СВД 1936 года. Примерно с конца 1950-х бытовые радиовещательные и телевизионные приёмники в СССР строились почти исключительно по супергетеродинной схеме (кроме некоторых сувенирных приёмников, радиоконструкторов для начинающих и отдельных специальных приёмников).

См. также

Примечания

  1. ↑ National NC-300
  2. ↑ Это в большей степени относится к возможному приёму помех на промежуточной частоте. Стандартные промежуточные частоты как правило не используются для вещания и связи.
  3. ↑ П. Н. К. Два метода приёма.//«Радиофронт», 1936, № 1, с. 51
  4. Лаборатория РФ. Супер на новых лампах.//«Радиофронт», 1936, № 1, с. 27
  5. Куксенко П. Н. Трёхламповые суперы.//«Радиофронт», 1936, № 1, с. 59
  6. ↑ Радиомузей РКК. Архивные и справочные материалы
  7. Нелепец В. С. СГ-6, фабричный супергетеродин.//«Радиофронт», 1931, № 11-12, с. 651—654
  8. ↑ ВНИИРТ. Страницы истории. — М.:»Оружие и технологии», 2006

Литература

Ссылки

wikiredia.ru