Дискретный переменный резистор – Переменный резистор, дискретный

Содержание

ДИСКРЕТНЫЙ РЕГУЛЯТОР ГРОМКОСТИ

   Традиционно для регулировки уровня звука используют переменный резистор — потенциометр, где изменение сопротивления реализуется с помощью электрического контакта, что скользит по резистивному слою. Примером хорошо известных регуляторов аудио-класса являются японские ALPS. Однако мало кто знает, что ими выпускаются и дискретные ступенчатые регуляторы, которые ставят в том числе в high-end аппаратуру. Это устройство состоит из серии постоянных резисторов, которые переключаются по очереди.

 

   Несмотря на более сложное устройство и конструкцию, они имеют определённые преимущества по сравнению с плавно крутящимся потенциометром, это улучшение качества электрического контакта, в сравнении с ползунком. Улучшенная согласованность между отдельными аудиоканалами и они менее чувствительны к пыли и потертостям. В таком РГ практически исключается треск и шорох. Дискретный регулятор уровня звука практически не изменяет частотную характеристику при регулировании громкости, что положительно сказывается на линейности всего усилительного тракта, на всех уровнях громкости. Цена на них, естественно, гораздо выше, чем на обычные, но мы и не собираемся их покупать, а попробуем сделать сами.

Схема дискретного регулятора громкости

Три варианта схем ДРГ

   Выше показаны три практические схемы такого регулятора, которую можно собрать самому. Сколько выбрать ступеней переключения — решайте сами. На практике достаточно 5-10. Резисторы желательно брать качественные, на мощность 0,125-0,25 ватт.

   Естественно нужен сдвоенный переключатель, чтоб одновременно регулировалась громкость на обеих каналах стереоусилителя. Сам дискретный переключатель рекомендуется экранировать, чтоб свести уровень электромагнитных помех к нулю. Если вы взяли переключатель со слишком тугим ходом (чем грешат многие советские), разберите его и ослабьте пружину. Заодно почистите контакты мягкой ученической резинкой.

   Форум по аудиотехнике

   Схемы усилителей

elwo.ru

Переменный резистор: характеристики, виды, проверка мультиметром

В аппаратуре часто присутствуют подстраиваемые параметры. Для реализации используют переменный резистор. В зависимости от подключения они позволяют менять ток или напряжение в цепи. 

Содержание статьи

Что такое резистор с изменяемым (переменным) сопротивлением

Среди радиоэлементов существуют детали, которые могут изменять свой основной параметр. Именно такими являются переменные или регулируемые резисторы. Они отличаются от постоянных тем, что их сопротивление можно плавно менять практически от нуля до определенного значения. Изменение происходит путем механического перемещения ползунка.

Регулируемые или переменные резисторы — виды и размеры разные

Есть у переменных резисторов разновидности — подстроечные и регулировочные. Чем отличаются переменные резисторы от подстроечных? Тем что подстроечные рассчитаны на небольшое количество регулировок. У некоторых моделей их количество может исчисляться сотнями или десятками (например, у НР1-9А перемещать ползунок можно не более 100 раз). Если посмотреть на таблицу ниже, можно увидеть что у некоторых подстроечных SMD резисторов циклов регулировки всего 10.

Пример характеристик подстроечных резисторов SMD

У переменных резисторов этот показатель значительно выше. Количество перемещений регулятора может исчисляться десятками и даже сотнями тысяч. Так что использовать подстроечные резисторы вместо переменных явно не стоит.

Основной недостаток переменных резисторов — их недолговечность. Контакт между резистивным слоем и щеткой постепенно ухудшается. Для акустической аппаратуры это может выражаться во все усиливающихся шумах, при подстройке частоты в радиоприемниках все тяжелее «поймать»  нужную длину волны и т.д.

Анимация дает понять, как работает переменный резистор и почему выходит из строя

Способы производства

Переменный резистор может быть двух типов: проволочным и пленочным. У проволочных на диэлектрическую трубку намотана проволока, вдоль нее перемещается металлический передвижной контакт — ползунок. Его местоположение и определяет сопротивление элемента. Витки проволоки уложены вплотную друг к другу, но они разделены слоем лака с высокими диэлектрическими свойствами.

Ползунковые переменные резисторы проволочного типа

Переменные проволочные резисторы — это необязательно трубка с намотанной на нее проволокой как на фото выше. Такие элементы выпускались в основном несколько десятков лет назад. Современные мало чем отличаются от пленочных, разве что корпус чуть выше, так как проволока все-таки занимает больше места, чем пленка.

Со снятой крышкой видна проволочная спираль и бегунок

У пленочных переменных резисторов на диэлектрическую пластину (обычно выполнена в виде подковы) нанесен слой токопроводящего углерода. В этом случае контакт тоже подвижный, но он закреплен на стержне в центре подковы и чтобы изменить сопротивление, надо повернуть стержень.

Пленочный регулируемый резистор

Регулировочное переменное сопротивление может быть и проволочным, и пленочным, а подстроечные, в основном, делают пленочными. Есть у них внешнее отличие: нет стержня с ручкой, а есть плоский диск с отверстием под отвертку. Сопротивления этого типа используются только для наладки параметров при пуске или техническом обслуживании аппаратуры.

Переменные резисторы SMD

Кроме способа производства есть еще две формы выпуска: для обычного навесного монтажа и SMD-элементы для поверхностного монтажа. SMD резисторы отличаются миниатюрными размерами, выполнены по пленочной технологии.

Схематическое обозначение  и цоколевка

В отличие от постоянных резисторов, у регулируемых не два вывода, а как минимум три.  Почему как минимум? Потому что есть модели с дополнительными выводами — их может быть несколько. На электрических схемах  переменные и подстроечные резисторы обозначаются прямоугольниками как постоянные, но имеют дополнительный вывод, который схематически представлен как ломанная линия, упирающаяся в середину изображения. Чтобы можно было отличить переменный от подстроечного, у переменного на конце третьего ввода рисуют стрелку, подстроечный изображается более длинной перпендикулярной линией без стрелки.

Обозначение на схемах переменных и подстроечных резисторов

Если говорить о расположении выводов, то средний вывод подключен к ползунку, крайние — к началу и концу резистивного элемента.

Цоколевка переменного резистора

Виды и особенности применения

Переменных резисторов существует немалое количество, с их помощью регулируют звук, громкость, подстраивают частоту, регулируют яркость света. В общем, практически везде, где происходят изменения настроек при помощи бегунков или вращением рукояток стоят эти элементы. Но для разных задач нужны резисторы с различным характером изменений или с разным числом выводов. Вот о разных видах регулируемых сопротивлений и поговорим.

Переменные резисторы бывают разных видов

Характер изменения сопротивления

Не стоит думать, что при перемещении подвижного контакта сопротивление изменяется линейно. Такие модели есть, но они используются в основном для регулировки или настройки, в делителях частоты. Гораздо чаще требуется нелинейная зависимость. Переменные резисторы с нелинейной характеристикой бывают двух типов:

  • сопротивление изменяется по логарифмическому закону;
  • по показательному типу (обратному логарифмическому).

    Характер изменения сопротивления в переменных резисторах

В акустике используют нелинейные элементы с сопротивлением, которое имеет потенциальную зависимость, в измерительной аппаратуре — по логарифмическому.

Сдвоенные, тройные, счетверенные

В плеерах, радиоприемниках и некоторых других видах бытовой аппаратуры часто применяются сдвоенные (двойные) переменные резисторы. В корпусе элемента скрыты две резистивные пластины. Внешне от обычных они отличаются наличием двух рядов выводов. Бывают двух типов:

  • С одновременным изменением параметров. Обычно применяются в стереоаппаратуре для одновременного изменения параметров двух каналов. Такие резисторы имеют запараллеленные бегунки. Поворачивая или сдвигая рукоятку, меняем сопротивление сразу двух резисторов.
  • С раздельным изменением параметров. Называются еще соосными,  так как ось одного находится внутри оси другого. Если надо одной ручкой изменять различные параметры (громкость и баланс) подойдет этот тип резисторов. Механическая связь бегунков отсутствует, что позволяет менять сопротивление независимо друг от друга.

    Сдвоенный регулируемый резистор и его обозначение

Обозначаются разные типы сдвоенных переменных резисторов на схемах по-разному. С наличием механической связи бегунков при близком расположении изображений резисторов на схеме, ставят связанные между собой стрелочки (на рисунке выше слева). Принадлежность к одному резистору указывается через нумерацию: две части обозначаются как R1.1 и R 1.2. Если обозначение частей спаренного переменного резистора находятся на схеме далеко друг от друга, связь указывается при помощи пунктирных линий (на рисунке выше справа). Буквенное обозначение такое же.

Так выглядят сдвоенные и тройные переменные сопротивления

Двойной регулируемый резистор без физической связи между бегунками на схемах ничем не отличается от обычного регулируемого. Отличают их по буквенному обозначению с двумя цифрами, разделенными точкой через — как у спаренного —  R15.1 и R15.2.

Частный случай сдвоенного переменного резистора — строенный, счетверенный и т.д. Они встречаются не так часто, все больше в акустической аппаратуре.

Дискретный переменный резистор

Чаще всего, изменение сопротивления при повороте ручки или передвижении ползунка происходит плавно. Но для некоторых параметров необходимо ступенчатое изменение параметров. Такие переменные сопротивления называют дискретными. Используют их для ступенчатого изменения частоты, громкости, некоторых других параметров.

Дискретный переменный резистор (со ступенчатой регулировкой) и его обозначение на схеме

Устройство этого типа резисторов отличается. По сути, внутри находится набор из постоянных резисторов, подключенных к каждому из выходов. При переключении подвижный контакт перескакивает с выхода на выход, подключая к цепи нужный в данный момент резистор. Принцип действия можно сравнить с многопозиционным переключателем.

С выключателем

Такие резисторы мы встречаем часто — в радио и других устройствах. Это с их помощью поворотом ручки включается питание, а затем регулируется громкость. Внешне их отличить невозможно, только по описанию.

Переменный резистор с выключателем в одном корпусе: внешний вид и обозначение на схемах

На схемах переменные резисторы с выключателем отображаются рядом с контактной группой, то что это единое устройство, отображается при помощи пунктирной линии, которая соединяет контактную группу с корпусом переменного резистора. С одной стороны — возле изображения сопротивления — пунктир заканчивается точкой. Она показывает, возле какого из выводов происходит разрыв цепи. При повороте руки регулятора в эту сторону питание отключается.

Способы подключения: реостат и потенциометр

Любое регулируемое сопротивление может подключаться как реостат или потенциометр. Реостат изменяет силу тока в цепи, для этого подключается подвижный контакт и один из крайних выводов.

Переменный резистор может использоваться как реостат или потенциометр

Потенциометр изменяет напряжение, при подключении задействуют все контакты, получая таким образом делитель напряжения.

Основные параметры

Выбирать переменный резистор необходимо не только по стандартным параметрам — сопротивлению, рассеиваемой мощности и допустимой погрешности. Как вы уже, наверное, поняли, придется еще и другие принять во внимание:

  • Диапазон изменения сопротивлений. Стоит обычно две цифры — минимальная и максимальная.
  • Рабочая температура.
  • Тепловое сопротивление. Показывает насколько увеличивается сопротивление при нагреве.
  • Эффективный угол поворота регулятора.

Параметры мощных переменных резисторов

Конечно, основные параметр важны и именно они являются определяющими. Но стоит обращать внимание и на температурный режим. Если оборудование будет работать в помещении, важно, чтобы резистор не перегревался. Для техники, которая будет эксплуатироваться на открытом воздухе, важен нижний диапазон — если предусматривается работа в зимнее время, они должны переносить минусовые температуры.

Как проверить переменный резистор при помощи тестера

Проверка переменных резисторов не слишком отличается от тестирования обычных. Нужен будет мультиметр с функцией омметра. Положение щупов стандартное, диапазон измерений выбираем в зависимости от измеряемого параметра. Если меряем минимальное сопротивление, имеет смысл поставить самый малый диапазон. Для измерения максимального сопротивления, подбираем в зависимости от заявленной характеристики. При измерениях положение щупов произвольное, так как полярность подаваемого тестового напряжения неважна.

Как проверить переменное сопротивление тестером

Провести надо будет несколько несложных замеров:

  • Максимальное сопротивление измеряется между крайними выводами.
  • Чтобы измерить минимальное сопротивление, бегунок переводят в крайнее левое положение. Измерения проводят между крайним левым и средним (первым и вторым выводами). Полученные измерения сравнивают с заявленным диапазоном. Обычно бывают отклонения в ту или другую сторону. Это не страшно, если величина отклонений находится в рамках допуска (зависит от точности).
  • Главная проблема переменных резисторов — ухудшение контакта между щеткой и токопроводящим элементом. Подключаем мультиметр в режиме омметра к одному из крайних выводов и центральному, затем медленно вращаем ось резистора и наблюдаем за показаниями мультиметра. Если резистор исправен, но показания должны изменяться плавно. Проверку рекомендуется повторить переключив мультиметр ко второму крайнему выводу резистора (см. видео ниже).

elektroznatok.ru

Вызов традициям Hi-Fi. Цифровые потенциометры в деталях. Часть вторая / Habr

Для меня стало неожиданностью, что наиболее горячие споры при обсуждении моей предыдущей статьи касались в первую очередь возможности применения цифровых сопротивлений в качестве регулятора громкости аудиосигнала в HiFi аппаратуре. Для того чтобы внести в этот вопрос ясность я решил посвятить отдельную статью детальному разбору схемотехники высококачественного регулятора громкости с цепями подавления импульсных помех переключения на основе VDAC AD9252. Кроме схемотехники вы также сможете под катом познакомиться с достигнутыми характеристиками.

Тем, кто не читал мою вчерашнюю статью, в которой разбирались общие вопросы, касающихся цифровых сопротивлений настоятельно рекомендую предварительно с ней ознакомиться тут. Во первых, лучше поймёте о чём собственно идёт речь ниже, а во вторых если вас заинтересовала сегодняшняя тема, то и в ней найдёте интересный для себя материал.

Для того чтобы привести обещанные примеры реальных схем программно управляемых преобразователей величин, перестраиваемых фильтров и других электронных узлов параметры которых можно менять с помощью цифрового сопротивления придётся писать третью статью. Постараюсь сделать это в ближайшем будущем, а пока предлагаю исследовать тянет ли регулятор громкости собранный на основе топового прибора от ADI на применения в HiFi аппаратуре ну хотя бы низшего ценового сегмента.

Представляю попытку создать регулятор громкости на основе одной их топовых микросхем цифровых регуляторов производства ADI, претендующий на звание Hi-Fi.

Для начала приведу общие характеристики, которые удалось выжать. Низкие гармонические искажения. Нормализованная передаточная характеристка. Динамический диапазон регулировки уровня громкости составляет 46 dB. Кроме этого, существует возможность функции MUTE с ослаблением сигнала на 130 dB. В данный режим регулятор входит после перехода регулятора AD5292 в shutdown режим, путём подачи специальной команды. Ну и конечно имеется специальная схема для уменьшения влияния эффекта возникновения режущих слух импульсных помех в момент переключения уровня громкости. Данный эффект наибольшим образом даёт о себе знать именно в логарифмических усилителях потому, что их громкость может меняться скачком в очень широком диапазоне. Для сведения помехи при переключении уровня громкости к минимуму, это переключение необходимо производить при переходе сигнала через ноль.

Регулятор может работать с входным сигналом уровнем вплоть до ±14 вольт (10 V RMS), что обеспечивает хорошие шумовые характеристики. Максимальный ток нагрузки по выходу 20 мА. Управление по SPI интерфейсу. Интерфейс подсоединения микросхемы к управляющему микроконтроллеру не показан, так как является стандартным.

Схема и принцип её работы

Сигнал с входного повторителя поступает на регулятор уровня AD5292 c логарифмической характеристикой. Часть сигнала ответвляется от основного с помощью делителя напряжения на резисторах R4 и R5, нагруженного на ОУ AD8541, который выступает в роли динамической нагрузки формирующей искусственную землю на уровне 1.81 В. Далее сигнал поступает на компараторы U3 и U4, которые формируют “окно” шириной всего в 13 милливольт в районе перехода сигнала через ноль. В момент прохода сигнала через ноль логическим элементом U5A формируется низкий уровень.

Для того, чтобы переключить уровень громкости необходимо записать новые данные в буферный регистр и подать отрицательный фронт на вход SYNC U6. Когда после записи кода мы подаём низкий уровень на нижний вход U5B, он транслируется в уровень переключения значения цифрового сопротивления только в момент прохождения аудиосигнала через “окно ” компараторов. Обратите внимание, что для повышения точности работы вся схема работает только по постоянному току.

Для получения максимально комфортной для уха характеристики регулировки громкости средний вывод цифрового сопротивления шунтируется резистором R8. В результате получаем нормализованную характеристику передачи сигнала, изображённую на рисунке ниже.

Иллюстрация работы схемы уменьшения импульсных помех

Давайте для начала посмотрим что происходит при переключении уровня сопротивления в отключенной схемой подавления импульсных помех.

Вот так выглядит переходной процесс в момент включения звука, который произошёл во время, помеченное нулём.

Для случая переключения звука с одного значения на другое всё может выглядеть ещё хуже.

На следующей картинке изображён результат работы нашей помехогасящей схемы при переходе от большей громкости к меньшей.

Характеристики регулятора

Теперь давайте посмотрим на другие характеристики, которых удалось достичь в нашем регуляторе.

Как справедливо указал уважаемый Alex013 в комментариях к моей предыдущей статье качество звука достаточно сильно зависит от уровня нечётных гармоник сигнала в усилительном тракте. Для того чтобы показать как на них влияет наш цифровой регулятор давайте рассмотрим результат FFT преобразований сигнала частотой 1 КГц проходящего через схему при “движке потенциометра” установленным в крайнее вернее положение — т. е. коэффициент передачи равен единице.

На мой взгляд характеристики весьма достойные, уровень третьей гармоники ушёл ниже-100 дб, пятой вообще не видно невооружённым глазом. Интересно что скажут наши эксперты по звуку.

Следующий график я привожу специально для хаброюзера barabanus извиняюсь за выражение проевшего мне мозг в комментариях к прошлой статье. Надеюсь теперь мы согласитесь со мной, уважаемый, что сопротивление не только 10, но даже 20 килоомного резистора не изменяется на величины порядка десяти процентов на частотах от нуля до 20 КГц при любом выставленном сопротивлении! Фаза сигнала меняется, но на мой взгляд весьма незначительно.

На частоте 1 КГц наша схема обеспечивает общий уровень искажения сигнала на уровне -93 дБ. Зависимость собственного уровня шумов схемы и нелинейных искажений от частоты сигнала при коэффициенте передачи усилителя равном единице изображена на графике ниже.

Вариант схемы для любителей компромиссов.

На этом закончим исследование нашей схемы, а в качестве бонуса предлагаю её упрощённый вариант, с несколько худшими характеристиками, зато с более доступной элементной базой.

А вот осциллограмма процесса переключения уровня громкости на весьма высокой частоте. Как видите без нелинейных искажений в момент переключения не обошлось, но никаких режущих ухо выбросов нет и в помине!

Спасибо дочитавшим до конца. Попробую испытать Ваше терпение чуть дольше. Поскольку я не являюсь специалистом в области «чистого прозрачного звука» и мне трудно оценить качество описанного дивайса, прошу высказать своё мнение в виде ответа на вопрос или в комментариях.

Ссылка на предыдущую статью серии: «Когда не помогает ЦАП. Цифровые потенциометры в деталях. Часть первая»

В статье использован фрагмент фотографии лампового усилителя пользователя eta4ever.

habr.com

Цифровой переменный резистор MCP41XXX/42XXX с интерфейсом SPI | hardware

Микросхемы MCP41XXX/MCP42XXX компании Microschip это электронный переменный резистор, управляемый последовательными данными через интерфейс SPI. У него может быть 1 или 2 канала и дополнительные входы для сброса, выключения, а также цифровой выход для каскадирования таких устройств в цепочку по данным управления (количество каналов и наличие дополнительных выводов зависит от типа корпуса устройства).

Примечание: здесь дан перевод даташита [1] с акцентом на программирование и применение. Таблицы с электрическими, предельно допустимыми параметрами и параметрами диаграмм времени см. в оригинальном даташите.

[Основные возможности цифрового потенциометра]

• У каждого канала потенциометра имеется 256 положений «движка».
• Значения сопротивления могут быть 10 kΩ, 50 kΩ и 100 kΩ.
• Есть одноканальные и двухканальные версии микросхемы.
• Последовательный интерфейс SPI (режимы 0,0 и 1,1).
• Интегральная нелинейность (INL) дифференциальная нелинейность (DNL) составляют ±1 вес младшего разряда (LSB).
• Применена технологий Low power CMOS, в статическом режиме ток потребления составляет максимум 1 μA.
• Несколько микросхем могут быть соединены в одну цепочку каскадирования по передаче данных.
• Одно напряжение питания (2.7 .. 5.5V).
• Индустриальное исполнение для диапазона температур: -40° .. +85°C.
• Расширенный температурный диапазон: -40° .. +125°C.
• Функция выключения открывают схемы для всех резисторов для максимальной экономии энергии питания.

Только для двухканальных версий MCP42XXX:

• Аппаратные выводы выключения ~SHDN, сброса ~RS и выхода данных SO.

Версии MCP41XXX являются одноканальными устройствами, поставляемыми в 8-выводных корпусах PDIP или SOIC. Версии MCP42XXX содержат 2 независимых канала в 14-выводных корпусах PDIP, SOIC или TSSOP. Позиция «движка» резисторов MCP41XXX/42XXX меняется по линейному закону и под управлением стандартного интерфейса SPI. Функция выключения (shutdown), активируемая программно, работает таким образом, что вывод A переменного резистора отключается, и одновременно «движок» W подсоединяется к выводу B. Дополнительно двухканальные версии электронного потенциометра MCP42XXX имеют вывод ~SHDN, который выполняет ту же функцию, но аппаратно. Во время режима shutdown содержимое регистра положения движка может быть изменено, и тогда потенциометр вернется из состояния shutdown в новое положение движка.

Движок сбрасывается в среднюю позицию 80h после включения питания. Вывод ~RS (reset, сброс, доступен только в двухканальных версиях MCP42XXX) реализует аппаратный сброс, возвращая движок резистора в среднее положение.

Интерфейс SPI микросхем версий MCP42XXX имеет 2 сигнала SI и SO (вход и выход), позволяя каскадировать последовательно несколько устройств.

Сопротивления каналов MCP42XXX отличаются не больше, чем на 1%.

Цоколевка корпусов PDIP8, SOIC8:

Цоколевка корпусов PDIP14, SOIC14, TSSOP14:

[Описание выводов]

Имя Описание
PB0,
PB1
Вывод B потенциометра. Клемма переменного резистора, которая обычно при использовании подключается к земле.
PA0,
PA1
Вывод A потенциометра. Клемма переменного резистора, на которую обычно подается регулируемый сигнал.
PW0,
PW1
«Движок» потенциометра/переменного резистора.
~CS Это вывод входа для выборки порта SPI (chip select), который используется для загрузки команды и данных в регистр сдвига и копирования загруженных данных в из регистра сдвига в регистр (или регистры) потенциометра (потенциометров). Сигнал этого вывода проходит через триггер Шмитта.
SCK Это вывод входа тактов порта SPI, и он используется для последовательной загрузки в микросхему команды и данных. Данные вдвигаются в вывод SI по положительному перепаду SCK (0 -> 1), и выходят наружу через вывод SO по отрицательному перепаду SCK (1 -> 0). Этот вывод активизируется сигналов вывода ~CS (например, микросхема почти не потребляет ток, если вывод SCK переключается, когда на выводе ~CS уровень лог. 1). Сигнал с вывода SCK проходит через триггер Шмитта.
SI Это вход для поступления последовательных данных порта SPI. Байты команды и данных вдвигаются в регистр сдвига через этот вывод. Действие входа SI управляется сигналом вывода ~CS (микросхема не потребляет ток и не реагирует на входные данные, когда они меняются на выводе SI, если вывод ~CS находится в лог. 1). Сигнал на вывод SI проходит через триггер Шмитта.
SO Это выход последовательных данных порта SPI, предназначенный для соединения нескольких микросхем в цепочку. Данные выдвигаются наружу через вывод SO по спаду сигнала тактов SCK. Выход SO является двухтактным, и он не переходит в третье состояние, когда на входе ~CS лог. 1. Если на ~CS лог. 1, то на выходе SO будет лог. 0.
~RS Это вход сброса, который переводит состояние потенциометров в среднее положение (код 80h), если на этом выводе появился лог. 0 на время как минимум 150 нс. Этот вывод не переключается в лог. 0, когда ~CS переключается в лог. 0. Можно переключить вход сброса, когда ~SHDN находится в лог. 0. Чтобы снизить потребление тока, вход сброса должен быть подтянут к лог. 1 через резистор pull-up. Производительность этой схемы показана на рис. 2-12 даташита [1]. Этот вывод будет потреблять нежелательный ток, когда находится на уровне между лог. 0 и лог. 1, поэтому не оставляйте вход сброса в подвешенном состоянии.
~SHDN Это аппаратный вход выключения, снабженный триггером Шмитта. Если перевести этот вывод в лог. 0, то микросхема перейдет в энергосберегающий режим, в котором вывод A переменных резисторов отключается, а выводы B и W замыкаются друг на друга. Вход ~SHDN не должен переходить в лог. 0, когда вывод ~CS находится в лог. 0. Чтобы минимизировать потребление энергии, этот вывод должен иметь верхнюю подтяжку (резистор pull-up). Производительность этой схемы показана на рис. 2-12 даташита [1]. Этот вывод будет потреблять нежелательный ток, когда находится на уровне между лог. 0 и лог. 1, поэтому не оставляйте вход сброса в подвешенном состоянии.
VSS GND, земля, минус питания и общий провод для всех цифровых сигналов.
VDD + питания.

[4.0. Информация по применению]

Устройства MCP41XXX/MCP42XXX это одноканальные и двухканальные потенциометры с 256 положениями, которые можно использовать вместо обычных механических. Доступны номиналы 10 кОм, 50 кОм и 100 кОм. Как показано на рис. 4-1, каждый потенциометр построен из как массив переключаемых резисторов, управляемый 8-битным (отсюда 256 позиций) регистром данных, который определяет положение «движка». Номинальное сопротивление движка составляет 52 Ом для 10 кОм версии, 125 Ом для 50 кОм версии и 100 кОм версии. Для двухканальных устройств различия по сопротивлению между каналами составляет не более 1%. Сопротивление между движком и любым из крайних выводов резистора линейно меняется в зависимости от значения, сохраненное в регистре данных. Код 00h соединяет движок W с выводом B. После включения питания все регистры данных автоматически загружаются средним значением (80h). Последовательный интерфейс предоставляет способ загрузить данные в регистр сдвига, после чего переместить их в регистры данных. Последовательный интерфейс также позволяет перевести отдельные потенциометры в режим выключения (shutdown mode) для минимизации потребления энергии. Вывод ~SHDN может также может использоваться для перевода всех потенциометров в shutdown mode (программно можно задавать shutdown mode индивидуально для каждого из потенциометров), и предоставляется вывод ~RS для установки потенциометров в среднее положение mid-scale (80h).

Shutdown отключает вывод A и подключает движок W к выводу B, без изменения состояния регистров данных.

Когда разводится печатная плата с использованием цифровых потенциометров, должны использоваться блокирующие конденсаторы. Они должны быть подключены максимально близко к выводам питания микросхемы. Рекомендуется использовать конденсатор номиналом 0.1 мкФ. Цифровые и аналоговые проводники должны быть максимально удалены друг от друга на плате, желательно, чтобы не было проводников под корпусом микросхемы или под корпусом конденсатора. Особое внимание должно быть уделено проводникам с высокочастотными сигналами (такие как сигналы тактов), чтобы они как можно дальше проходили от проводников с аналоговыми сигналами. Использование аналоговой заливки рекомендуется, чтобы удерживать потенциал земли одинаковым для всех устройств на плате.

4.1. Режимы работы. Приложения с цифровым потенциометром можно поделить на 2 категории: режим реостата и потенциометра, или режим делителя напряжения.

4.1.1. Режим реостатата. В этом режиме потенциометр используется как двухвыводный резистивный элемент (переменный резистор). Не используемый вывод должен быть соединен с движком, как показано на рис. 4-2. Обратите внимание, что смена полярности выводов A и B не влияет на работу потенциометра в режиме реостата (смена полярности просто поменяет действие записываемых кодов).

Рис. 4-2. Конфигурация реостата с двумя выводами. Работает в схеме как переменный резистивный элемент, сопротивление которого меняется под управлением цифрового кода.

Использование устройства в этом режиме позволяет менять общее сопротивление между двумя узлами схемы. Общее измеренное сопротивление будет минимальным для кода 00h, когда движок W соединен с выводом A, и переместился к выводу B. Сопротивление при этом будет равно сопротивлению движка, что составит типично 52Ω для 10 kΩ устройств MCP4X010, 125Ω для 50 kΩ (MCP4X050) и 100 kΩ (MCP4X100) устройств. Для 10 kΩ устройства вес младшего разряда регулирования 39.0625Ω (если предположить общее сопротивление 10 kΩ). Сопротивление будет расти при увеличении кода, и будет максимальным 9985.94Ω для кода FFh. Движок никогда не будет соединен напрямую с точкой B стека резисторов.

В состоянии 00h общее сопротивление будет равно сопротивлению движка W. Чтобы избежать повреждения микросхемы следует ограничить ток через переменный цифровой резистор значением 1 mA.

Для двухканальных устройств разница сопротивления точек A и B между каналами составит меньше 1%. Однако между разными микросхемами несовпадение может составлять до 30%.

В режиме реостата сопротивление имеет положительный температурный коэффициент. Изменение сопротивление между движком и крайним выводом в зависимости от температуры показано на рис. 2-8 даташита [1]. Наибольшее изменение из-за температуры будут происходить для 6% кодов (в диапазоне 00h .. 0Fh) из-за того, что коэффициент сопротивления движка влияет на общее сопротивление. Для оставшихся кодов доминантным будет вклад температурного коэффициента массива резисторов RAB, который обычно составляет 800 ppm/°C.

4.1.2. Режим потенциометра. В режиме потенциометра все 3 вывода устройства подключаются к разным точкам схемы. Это позволяет менять напряжение на движке (выходе) пропорционально коду. Этот режим иногда называют режимом делителя напряжения. Потенциометр используется для предоставления настраиваемого напряжения между двумя точками, как показано на рис. 4-3. Обратите внимание, что изменение полярности выводов A и B не влияет на работу (смена полярности просто поменяет действие записываемых кодов).

Рис. 4-3. Режим делителя напряжения (потенциометра).

В этой конфигурации соотношение внутреннего сопротивления определяется температурным коэффициентом устройства. Совпадение по температурному коэффициенту сопротивлений RAB и RWB составляет 1 ppm/°C (измерено для кода 80h). Для кодов с меньшими значениями температурный коэффициент движка будет доминировать. Рис. 2-3 даташита [1] показывает эффект температурного коэффициента движка. Выше младших кодов этот рисунок показывает, то 70% состояний даст температурный коэффициент меньше 5 ppm/°C. 30% состояний дадут ppm/°C меньше 1.

4.2. Типовые применения

4.2.1. Программируемые усилители с несимметричным выходом. Потенциометры часто используют для настройки уровней опорного напряжения или усиления. Схемы с программируемым усилением на основе цифровых потенциометров могут быть реализованы разными способами. Пример инвертирующего усилителя с одним источником питания показан на рис. 4-4. Из-за высокого входного сопротивления усилителя сопротивление движка не участвует в передаточной функции.

 
 
VOUT = -VIN * (RB/RA) + VREF * (1 + RB/RA)
 
Здесь:
 
     RAB*(256 – Dn)            RAB * Dn
RA = --------------       RB = --------
          256                     256
          
RAB = общее сопротивление канала
Dn = настройка движка (Dn = 0 .. 255)

Рис. 4-4. Инвертирующий программируемый усилитель с однополярным питанием.

Для не инвертирующего усилителя с однополярным питанием может быть использована схема на рис. 4-5.

 
 
 
VOUT = VIN * (1 + RB/RA)
 
Здесь:
 
     RAB*(256 – Dn)            RAB * Dn
RA = --------------       RB = --------
          256                     256
          
RAB = общее сопротивление канала
Dn = настройка движка (Dn = 0 .. 255)

Рис. 4-5. Не инвертирующий программируемый усилитель с однополярным питанием.

Чтобы эти схемы работали правильно, необходимо учесть некоторые моменты. Для линейной работы сигналы на входе и выходе не должны уходить за пределы уровней выводов VSS и VDD микросхемы потенциометра и не должны быть превышены пределы входных и выходных сигналов операционного усилителя. Схема на рис. 4-4 требует виртуальной земли или опорного напряжения для не инвертирующего усилителя. Для дополнительной информации обратитесь к апноуту 682 «Using Single-Supply Operational Amplifiers in Embedded Systems» (DS00682). При включении питания или поступления сигнала сброса (~RS), сопротивление установится в среднее положение, когда сопротивление плеч RA и RB равны. На основе передаточной функции схемы усиление составит 1. Когда код увеличивается, движок перемещается в сторону вывода A, и усиление увеличивается. Соответственно когда движок перемещается к выводу B, усиление уменьшается. Рис. 4-6 показывает эту зависимость. Обратите внимание на псевдо-логарифмическое усиление вокруг десятичного кода 128. По мене приближения движка к любому из выводов крутизна изменения усиления резко возрастает. Из-за несовпадения величин RA и RB для крайних старших и младших кодов малое изменение позиции движка очень сильно влияет на усиления. Как показано на рис. 4-3, рекомендуется использовать изменение коэффициента усиления в диапазоне от 0.1 до 10.

Рис. 4-6. Зависимость усиления от кода для схем инвертирующего и дифференциального усилителей.

4.2.2. Программируемый дифференциальный усилитель. Пример усилителя с дифференциальным входом, где используются цифровые потенциометры, показан на рис. 4-7. Для поддержки передаточной функции в оба канала резистора должны быть запрограммированы одинаковым кодом. Точное соответствие по сопротивлению между каналами сдвоенного резистора может быть использовано как достоинство для этой схемы. Эта схема покажет также стабильную работу в зависимости от температуры из-за низкого температурного коэффициента потенциометра. На рис. 4-6 также показана зависимость между усилением и кодом для этой схемы. Когда движок приближается к любому из выводов потенциометра, с каждым новым шагом усиление меняется очень значительно, поэтому рекомендуется менять коэффициент усиления в диапазоне между 0.1 и 10.

 
 
 
VOUT = (VA - VB) * RB/RA
 
Здесь:
 
     RAB*(256 – Dn)            RAB * Dn
RA = --------------       RB = --------
          256                     256
          
RAB = общее сопротивление канала
Dn = настройка движка (Dn = 0 .. 255)

Замечание: сопротивления каналов RAB должны быть одинаковые (каналы из одного корпуса MCP42XXX).

Рис. 4-7. Дифференциальный усилитель с однополярным питанием.

4.2.3. Программируемая подстройка смещения. Для приложений, где требуется только программируемое опорное напряжение, можно использовать схему на рис. 4-8. Эта схема показывает устройство, используемое в режиме потенциометра (делителя напряжения) с двумя дополнительными резисторами и буферным усилителем. Это создает линейную зависимость между выходным напряжением и программируемым кодом. Резисторы R1 и R2 могут использоваться для уменьшения или увеличения веса шага регулирования. Потенциометр в этом режиме работает стабильно при изменениях температуры. Температурная зависимость этой схемы показана на рис. 2-3 даташита [1]. Самые плохие показатели для температурной зависимости будут для нижних и верхних кодов из-за того, что начинает оказывать влияние сопротивление движка. R1 и R2 также используются для изменения границ напряжения, таким образом может быть снижена необходимость использования этих крайних кодов.

 
 

Рис. 4-8. Номиналы R1 и R2 меняют разрешающую способность схемы и пределы регулирования выходного напряжения.

4.3. Вычисление сопротивлений. Когда программируются настройки цифрового потенциометра, используются следующие выражения для получения сопротивлений. Код 00h соответствует крайнему положению движка максимально близко к выводу B, оставляя только сопротивление движка. Программирование кодов близко к FFh приближают движок к выводу A потенциометра. Выражения на рис. 4-9 могут использоваться для вычисления сопротивлений плеч.

 
 
 
RWA(Dn) = (RAB * (256 - Dn) / 256) + RW
 
RWB(Dn) = (RAB * Dn / 256) + RW
 
Здесь:
 
PA ножка A потенциометра
PB ножка B потенциометра
PW движок потенциометра
RWA сопротивление между выводом A и движком
RWB сопротивление между выводом B и движком
RAB общее сопротивление резистора (10 kΩ, 50 kΩ или 100 kΩ)
RW сопротивление движка
Dn 8-битное значение в регистре данных для потенциометра n

Рис. 4-9. Сопротивление плеч потенциометра является функцией кода. Следует заметить, что при использовании этих выражений для большинства схем усилителей с обратной связью (как на рис. 4-4 и 4-5) сопротивление движка можно опустить из-за высокого входного сопротивления усилителя.

Рис. 4-10 показывает пример вычислений для 10 kΩ потенциометра.

 
 
 
R = 10 kΩ
Код = C0h = 192
 
RWA(Dn) = (RAB * (256 - Dn) / 256) + RW
RWA(C0h) = (10kΩ * (256 - 192) / 256) + 52Ω = 2552Ω
 
RWB(Dn) = (RAB * Dn / 256) + RW
RWB(C0h) = (10kΩ * 192 / 256) + 52Ω = 7552Ω

Рис. 4-10. Пример расчетов сопротивления.

[5.0. Последовательный интерфейс]

Обмен данными между микроконтроллером и цифровым резистором MCP41XXX/42XXX осуществляется через последовательный интерфейс SPI. Этот интерфейс использует 3 команды:

1. Запись нового значения в регистр (регистры) данных потенциометра.
2. Перевод канала в низкопотребляющий режим выключения (low power shutdown mode).
3. Команда NOP (No Operation, пустая операция).

Выполнение любой команды происходит переводом сигнала ~CS в лог. 0, после чего вдвигается байт команды, за которым идет байт данных. Эти данные попадают в 16-битный регистр сдвига. Команда выполняется после того, как сигнал ~CS переводится в лог. 1. Данные вдвигаются через вывод SI по спаду тактов SCK, и выдвигаются на выход через вывод SO, см. рис. 5-1.

Примечание: не все микросхемы имеют вывод SO, это зависит от корпуса.

Рис. 5.1. Диаграмма сигналов для записи инструкций или данных в цифровой потенциометр.

Примечания к рис. 5-1: значения бит данных, помеченных крестиком X, не имеют значения. Всегда должно быть нацело поделенное на 16 количество тактов, когда сигнал ~CS находится в лог. 0, иначе команды не будут приняты устройством. Последовательный выход данных SO доступен только для двухканальной версии микросхемы MCP42XXX. Для одноканальной версии микросхемы MCP41XXX бит P1 не имеет значения.

Устройство отслеживает количество тактов (перепадов от 0 -> 1), пока сигнал ~CS находится в лог. 0, и оборвет все команды, если количество пришедших тактов не будет делиться нацело на 16.

5.1. Байт команды. Первый отправляемый байт всегда байт команды, за которым идет байт данных. Байт команды содержит 2 бита выбора команды и 2 бита выбора потенциометра. Содержимое не используемых бит игнорируется (биты ‘don’t care’, т. е. не имеет значения). Биты выбора команд суммарно описываются на рис. 5-2. Биты выбора команды C1 и C0 (биты 4:5) определяют, какая команда будет выполнена. Если биты команд оба 0 или 1, то будет выполнена команда NOP, как только загружены все 16 бит. Эта команда полезна в конфигурации, когда несколько микросхем соединены в цепочку. Когда биты команды 01, то будет выполнена команда с 8 битами, отправленными в байте данных. Данные будут записаны в потенциометр, определенный битами выбора потенциометра. Если биты команды 10, то будет выполнена команда shutdown на потенциометрах, определенных этими битами выбора потенциометра.

Для устройств MCP42XXX биты выбора потенциометра P1 и P0 (биты 0:1) определяют, на какие потенциометры действует команда. Соответствующая лог. 1 в позиции обозначает, что выполняется команда для этого потенциометра, в то время как лог. 0 обозначает, что команда не будет влиять на этот потенциометр (см. рис. 5-2).

D15 D14 D13 D12 D11 D10 D9 D8
X X C1 C0 X X P1 P2

Рис. 5-2. Формат байта команды.

Биты C1C0 задают команду:

C1 C0 Команда Описание
0 0 None Пустая команда (не будет выполнено никаких действий).
0 1 Write Data В регистр данных выбранного потенциометра (определяется состоянием бит P1P0) будут записано 8 бит данных, которые идут за командой (D7..D0).
1 0 Shutdown Потенциометры, выбранные битами P1P0, будут переведены в состояние «выключено» (Shutdown Mode). Биты данных (D7..D0) для этой команды не имеют значения.
1 1 None Пустая команда (не будет выполнено никаких действий).

Биты P1P0 выбирают потенциометры:

P1 P0 Выбор канала потенциометров
0 0 Пустой выбор: команда не повлияет на состояние потенциометров.
0 1 Команда выполнится для потенциометра 0.
1 0 Команда выполнится для потенциометра 1.
1 1 Команда выполнится для обоих потенциометров.

5.2. Запись данных в регистры. Когда новые данные записаны в один или большее количество регистров данных потенциометра, за командой записи идет байт данных с новым значением. Команда выбирается битами C1C0, установленными в 01. Биты выбора потенциометра P1 и P0 позволяют новому значению записаться в potentiometer 0, potentiometer 1 (или в них оба) одной командой. Лог. 1 либо для P1, либо для P0 приведет к записи данных в соответствующий регистр данных потенциометра, и лог. 0 не окажет изменения, данные этого потенциометра не поменяется. См. суммарное описание формата команды на рис. 5-2.

5.3. Использование команды Shutdown. Команда shutdown позволяет перевести схему приложение в режим низкого потребления тока (power-saving mode). В этом режиме выводы отключены, и ножки потенциометра B и W замкнуты друг на друга. Эта команда выбирается, когда биты команды C1C0 установлены в 10. Биты выбора потенциометра P1 и P0 позволяют выключить каждый потенциометр независимо друг от друга. Если либо P1, либо P0 в лог. 1, то соответствующий потенциометр перейдет в режим shutdown. Лог. 0 для P1 или P0 не окажет эффекта. 8 бит данных, которые идут за командой, все еще нужны для передачи команды shutdown, но их содержимое не имеет значения. См. суммарное описание формата команды на рис. 5-2.

Как только определенный потенциометр вошел в режим shutdown, он будет оставаться в нем, пока не произойдет следующее:

• Новое значение записано в регистр данных потенциометра, при этом вывод ~SHDN должен быть в лог. 1. Устройство будет оставаться в режиме shutdown до перепада 0 -> на выводе ~CS, после чего устройство выйдет из режима shutdown, и новое значение будет записано в регистр (регистры) данных. Если вывод ~SHDN находится в лог. 0, когда принято новое значение, то регистры все-таки получат новое значение, но устройство останется в режиме shutdown. Этот сценарий подразумевает, что принята допустимая команда. Если принята недопустимая команда, то она будет игнорирована, и устройство останется в режиме shutdown.

Примечание: иногда у микросхемы нет вывода ~SHDN, тогда подразумевается, что он всегда находится в состоянии лог. 0. Это зависит от корпуса микросхемы — если корпус имеет 8 выводов, то нет не только вывода ~SHDN, но также нет выводов ~SHDN и сброса ~RS. Поэтому все, что написано дальше, к этим микросхемам не относиться.

Также можно использовать аппаратный вывод выключения (shutdown pin) и вывод сброса (reset pin) для вывода устройства из программно активированного режима выключения. Чтобы сделать это, сначала должен быть выдан импульс лог. 0 на выводе выборки. Для нескольких устройств использование общего вывод ~SHDN или RESET позволяет с помощью выборки перевести вывести из shutdown только нужную микросхему. См. рис. 1-3 диаграммы сигналов. С предварительной подачей импульса выборки может возникнуть одна из ситуаций для вывода устройства из программного shutdown:

• На выводе ~RS появляется импульс лог. 0 на время как минимум 150 нс, при этом ~SHDN должен быть в лог. 1. Если вывод ~SHDN в лог. 0, то регистры все еще будут установлены в среднее значение, но устройство останется в режиме shutdown. Это условие подразумевает, что ~CS находится в лог. 1, так как перевод вывода ~RS в лог. 0 при выводе ~CS в лог. 0 приведет к недопустимому состоянию, и результаты будут непредсказуемы.

• Перепад 0 -> 1 на выводе ~SHDN, который произошел после уровня лог. 0 как минимум 100 нс, когда вывод ~CS был в лог. 1. Переключение ~SHDN в лог. 0, когда ~CS в лог. 0 это недопустимое состояние, которое приведет к непредсказуемым результатам.

• Устройство выключено и потом снова включено.

Примечание: аппаратный вывод ~SHDN всегда переведет устройство в режим shutdown, независимо от того, переведен ли потенциометр в режим shutdown программной командой.

Когда устройство выключено, регистры данных устанавливаются в среднее значение (80h). Схема сброса при включении питания используется для гарантии, что после включения устройства оно окажется в известном состоянии.

5.8. Использование MCP41XXX/42XXX в SPI Mode 11. Можно работать с устройствами в режимах SPI 00 и 11. Разница между этими режимами только в том, что когда используется режим 11, такты остаются в режиме ожидания в состоянии лог. 1, в то время как в режиме 00 такты остаются в режиме ожидания в лог. 0. В обоих режима данные вдвигаются в устройство через вход SI по положительным перепадам SCK, и выдвигаются наружу через вывод SO по спадам уровня SCK. Операции с использованием режима 00 показаны на рис. 5-1. Пример на рис. 5-5 показывает режим 11.

Рис. 5-5. Диаграмма сигналов для работы в режиме SPI Mode 11.

[Ссылки]

1. MCP41XXX/42XXX Single/Dual Digital Potentiometer with SPI™ Interface site:microchip.com.
2. AD9833: программируемый генератор сигналов.

microsin.net

Цифровые потенциометры компании On Semiconductor

Значительная часть электронных схем, особенно аналоговых, содержит элементы, предназначенные для подстройки характеристик при наладке или для оперативного управления при использовании аппаратуры. Для этих целей использовались электромеханические переменные и подстроечные резисторы. Заменой электромеханическим резисторам с подвижным контактом, имеющим ограниченные возможности, относительно большие габариты, требующим ручной установки в необходимое положение, становятся цифровые потенциометры.

 

Классификация

Рассмотрим основные критерии, по которым можно классифицировать цифровые потенциометры:

  • Наличие или отсутствие энергонезависимой памяти. В первом случае, при включении питания будет автоматически восстановлено последнее используемое значение. Во втором- заранее определенное начальное значение (как правило, соответствующее половине диапазона). Третий вариант- возможность однократно «прошить» в постоянную OTP-память иное начальное значение, отличное от значения, заданного производителем.
  • Интерфейс управления. Могут использоваться либо стандартные интерфейсы I2C или SPI, либо, так называемое «кнопочное управление»- Up/Down Control, которое будет рассмотрено ниже.
  • Количество потенциометров в корпусе. В номенклатуре компании ON Semiconductor представлены изделия с 1, 2 или 4 потенциометрами.
  • Разрешающая способность или количество положений движка. Как правило, число, равное степени 2. В продукции ON Semiconductor представлены потенциометры с разрешающей способностью от 16 до 256. Иногда используются «некратные» значения, например 100. В микросхемах, управляемых по интерфейсу, используются большие значения (64, 128, 256). В микросхемах с «кнопочным управлением» без энергонезависимой памяти- малые (16 и 32), а с памятью — промежуточные (от 32 до 128).

Поскольку номенклатура цифровых потенциометров компании ON Semiconductor достаточно широка (более 300 микросхем и 35 семейств), то не имеет смысла приводить таблицы с параметрами. Параметрический поиск доступен на сайте производителя http://www.onsemi.com/. Продукция, в соответствии с этими критериями, была объединена в группы, что иллюстрируется рисунком 1.

 

 

Рис. 1. Основные группы цифровых потенциометров компании ON Semiconductor

К другим параметрам отнесем:

  • Полное сопротивление потенциометра (сопротивление между крайними положениями H и L). Обычно используются значения 10, 50 или 100кОм. Реже- 1; 2,5 и 32кОм.
  • Допустимое напряжение между выводами H и L. Принципиальное отличие цифровых потенциометров от переменных резисторов заключается в том, что напряжение между выводами H и L не может быть выше регламентированного. Как правило, оно равно напряжению питания самой микросхемы (обычно 2,7…5,5В). Исключением являются семейства САТ5132 и САТ51323- при величине питания до 5,5В, напряжение между выводами H и L может достигать 16В.
  • Функциональная характеристика. Вбольшинстве случаев эта характеристика (зависимость сопротивления между выводами W и L от управляющего кода) линейна, то есть предполагается, что все резисторы в цепочке имеют одинаковое сопротивление. Исключением является семейство CAT5116, в котором реализована логарифмическая характеристика.
  • Нелинейность характеристики. Она определяется реальным отклонением резисторов в цепочке от номинального значения.

Есть и другие параметры: температурный коэффициент сопротивления; отклонение полного сопротивления; сопротивление движка. Они имеют тот же смысл, что и для традиционных переменных резисторов, и приведены в документации производителя на конкретную микросхему.

 

Управление Up/Down

Отметим, что управление Up/Down используется только для моделей с одним потенциометром в корпусе (одинарные). Применение этого управления в «многоканальных» микросхемах привело бы к существенному увеличению внешних выводов. Наиболее простыми являются цифровые потенциометры с управлением Up/Down. В продукции компании ON Semiconductor реализованы три модификации такого управления:

  • Управление по двум линиям CS и U/D;
  • Управление по трем линиям CS, U/D и INC;
  • Управление по двум линиям Up и Down.

 

Управление по двум линиям CS и U/D

Назначение линии CS (активный низкий) заключается в том, что отрицательный перепад фиксирует направление изменения сопротивления, которое (изменение сопротивления) возможно только при низком уровне сигнала. При высоком уровне сигнала изменения сопротивления не происходит.

Линия U/D в момент отрицательного перепада сигнала CS определяет направление изменения сопротивления (при низком уровне — уменьшение, при высоком — увеличение). При низком уровне сигнала CS положительный перепад сигнала U/D приводит к изменению сопротивления на один дискрет (в направлении, определенном ранее).

Рассмотрим диаграмму А на рисунке 2.

 

 

Рис. 2. Диаграммы двух методов управления Up/Down

В момент 1 состояние сигнала CS из высокого становится низким. Поскольку состояние линии U/D высокое, то определяется направление на повышение. В моменты 2 положительный перепад сигнала U/D приводит к увеличению сопротивления (напряжение между нижней точкой L и средней точкой W потенциометра растет). В момент 3 положительный перепад сигнала CS запрещает дальнейшее изменение сопротивления. В моменты 4 по положительному перепаду сигнала U/D ничего не происходит, поскольку состояние сигнала CS высокое. В момент 5 состояние сигнала CS переходит из высокого в низкий, но в этот раз состояние линии U/D низкое, следовательно, определяется направление на понижение. Соответственно, в моменты 6 положительный перепад сигнала U/D приводит к уменьшению сопротивления.

Данный метод реализован в микросхемах CAT5110, CAT5118…CAT5127 и CAT5128.

 

Управление по трем линиям CS, U/D и INC

Данный метод (иллюстрируется диаграммой Б на рис. 2) более прост в понимании, но в реализации занимает на одну линию больше. Сигнал CS только запрещает (при высоком уровне) или разрешает (при низком уровне) изменение состояния потенциометра. Сигнал U/D только задает направление изменения: низкий уровень — на понижение, высокий — на повышение. Любые изменения состояния могут происходит только по отрицательному перепаду сигнала INC. Если при этом на линии CS низкий уровень, а на линии U/D высокий — сопротивление растет. На линии CS низкий уровень, и на линии U/D низкийуровень — сопротивление уменьшается. Если на линии CS высокий уровень, то отрицательный перепад сигнала INC никаких изменения сопротивления не вызывает.

Данный метод реализован в микросхемах CAT5111…CAT5116 и CAT5133.

 

Управление по двум линиям Up и Down

Данный способ управления заставляет вспомнить о простейшем RS-триггере. Отрицательный перепад сигнала Down вызывает уменьшение сопротивления, а отрицательный перепад сигнала Up — соответственно, его повышение. При этом в первом случае предполагается, что на линии Up — высокий уровень. А во втором случае, соответственно, предполагается, что высокий уровень — на линии Down. На временных диаграммах из документации производителя [4] эти условия выполняются, то есть все хорошо. А если что-то не выполняется? С одной стороны, в документации производителя ясно указано: срабатывание по отрицательному перепаду сигнала Up произойдет «если и только» на линии Down будет высокий уровень. Про срабатывание по отрицательному перепаду сигнала Down каких-то ограничений не приведено. Надо понимать, что оно произойдет в любом случае, а как на самом деле… Метод реализован только в одной микросхеме CAT5128.

 

Цифровые потенциометры с управлением Up/Down без энергонезависимой памяти

В данную группу входят (рис. 1) три микросхемы (CAT5120, CAT5121 и CAT5122) с разрешающей способностью 16 положений и восемь микросхем (CAT5110, CAT5115, CAT518, CAT5119, CAT5123, CAT5124, CAT5125 и CAT5128) на 32 положения. Обобщенная структура цифровых потенциометров этого типа приведена на рис. 3.

 

 

Рис. 3. Обобщенная структура цифровых потенциометров с управлением Up/Down без энергонезависимой памяти

Рассмотрим ее работу. Сигналы управления (две или три линии, показанные цифрами 1, 2 и 3) поступают на схему управления, которая, при необходимости, формирует сигналы инкремента и декремента реверсивного счетчика (показан счетчик для 32 состояний). Выходы счетчика дешифрируются, и замыкается один из ключей. Например, для состояния 0 будет замкнут нижний ключ, и сопротивление между выводами W и L будет равно нулю, а между W и H — будет максимальным. С инкрементом счетчика сопротивление между W и L будет расти, а между W и H — уменьшаться.

При каждом выключении питания текущее состояние не запоминается. При каждом включении питания формируется сигнал PoR, который загружает счетчик неизменяемым стартовым значением (Обычно, половина диапазона — в рассматриваемом случае 16).

Отметим также, что на рис. 3 представлен обобщенный случай, а именно, если контакты питания не связаны с выводами потенциометра, то вывод L не связан с общим проводом Gnd, а вывод H — с питанием Vcc. Такая схема требует наличия семи- или восьмивыводного корпуса и из рассматриваемых устройств реализована лишь в CAT5115 (управление по трем линиям), CAT5128. Остальные устройства размещены в пяти- или шестивыводных корпусах за счет организации внутренних коммутаций, которые представлены на рис. 4.

 

 

Рис. 4. Внутренние коммутации в цифровых потенциометрах с управлением Up/Down без энергонезависимой памяти

 

Цифровые потенциометры с управлением Up/Down с энергонезависимой памятью

В данную группу входят (рис. 1) четыре микросхемы (CAT5112, CAT5114, CAT5127 и CAT5129) с разрешающей способностью 32 положения, три микросхемы (CAT5111, CAT5113 и CAT5116) на 100 положений и CAT5133 на 128 положений. Обобщенная структура цифровых потенциометров этого типа приведена на рис. 5.

 

 

Рис. 5. Обобщенная структура цифровых потенциометров с управление Up/Down с энергонезависимой памятью

По сравнению с рис. 3 добавлена энергонезависимая память, которая по своему функциональному назначению является регистром. В этот регистр перезаписывается значение реверсивного счетчика при снятии сигнала CS. При выключении питания состояние счетчика теряется, но продолжает храниться в регистре. При следующем включении питания формируется сигнал PoR, который загружает счетчик последним значением.

Отметим также отличительную особенность CAT5127 и CAT5129 — они обеспечивают длительное сохранение сопротивления после отключения электроэнергии.

 

Цифровые потенциометры с управлением по последовательным интерфейсам

Рассмотрим те преимущества и возможности, которые вносят последовательные интерфейсы при управлении цифровыми потенциометрами.

Летом 2009 года компания ON Semiconductor выпустила два новых изделия: CAT5171 и CAT5172 — цифровые потенциометры с разрешением на 258 положений без энергонезависимой памяти, с интерфейсами, соответственно, SPI и I2C. Структурные схемы потенциометров представлены на рис. 6.

 

 

Рис. 6. Структурные схемы цифровых потенциометров CAT5171 и CAT5172

Рассмотрим потенциометр CAT5172. Как видим, интерфейс SPI однонаправленный, то есть микросхема только принимает данные. Самое существенное достоинство — это возможность прямого задания управляющего кода. Потенциометры с управлением Up/Down не обеспечивали возможности чтения текущего состояния счетчика. Следовательно, в реальной системе состояние приходилось дублировать вне потенциометра. В таких потенциометрах было необходимо контролировать число циклов инкремента (декремента), необходимых для установления требуемого кода. Сама реализации одного цикла была достаточно сложна. При подозрениях на сбойную ситуацию привести потенциометр в среднее положение было возможно только при снятии питания.

В случае с CAT5172 возможности считать текущее состояния также нет, но есть возможность непосредственно записать требуемое значение. При этом нет необходимости помнить текущее состояние и думать «в какую сторону крутить потенциометр». Кроме того, естественным образом увеличилась разрешающая способность — длительность установки перестала зависить от того, насколько сильно надо изменить положение «движка»: на 3 дискретных шага или на 30. Интерфейс выполнен в простейшем варианте сдвигового регистра и легко реализуется как с помощью микроконтроллера, так и на жесткой логике. Число выводов микросхемы (если сравнивать с полным вариантом CAT5115) не изменилось.

Потенциометр CAT5171 реализован с использованием более сложного двунаправленного I2C. За счет этого появляются дополнительные возможности: он позволяет считать текущее состояние в целях контроля. Кроме того реализованы функции: принудительный возврат в среднее состояние и функцию Shutdown, то есть разрыв цепи резисторов между положениями H, W, L. Интерфейс I2C — тривиальный атрибут современных микроконтроллеров, и его реализация также не вызывает сложностей.

Другие дополнительные преимущества:

  • Возможность реализации нескольких потенциометров в одном корпусе. Ранее каждый из потенциометров требовал своих линий управления, что увеличивало число выводов;
  • Возможность чтения как регистра начальных значений, так и счетчика текущего состояния;
  • Возможность реализации вариантов работы- например, прямой переход и инкремент по шагам.

 

Области применения

Области применения цифровых потенциометров в настоящее время весьма разнообразны, назовем некоторые из них:

  • Подстройка «тонких» датчиков: давления, температуры, положения, оптических датчиков;
  • Цифровая регулировка усиления;
  • Регулировка частоты и скважности генераторов;
  • Регулировка громкости в аудиосистемах;
  • Регулировка смещения нуля в усилителях;
  • Реализация регулируемых источников опорного напряжения;
  • Регулировка выходного напряжения стабилизаторов;
  • Регулировка контрастности ЖК-индикаторов;
  • Замена электромеханических потенциометров на цифровые аналоги.

 

Заключение

Словосочетание «цифровые потенциометры» у большинства отечественных разработчиков прочно ассоциируется с компаниями Maxim Integrated Products и Analog Devices. Безусловно, названные компании заметны на этом направлении. Но и в компании ON Semiconductor оно возникло не на пустом месте. Купив в 2008 году компанию Catalyst Semiconductor, ONSemi существенно дополнила свою номенклатуру. EEPROM-память и цифровые потенциометры — для нее направления новые. Однако мы видим, что практически не обновлявшаяся с 2004 года линейка цифровых потенциометров Catalyst дополнилась новыми изделиями в целевых нишах. Безусловно, следует ожидать дальнейшего развития этого направления в продукции ON Semiconductor.

 

Литература

1. Ридико Л. Цифровые потенциометры//Компоненты и технологии, №5, 2001.

2. Шитиков А. Цифровые потенциометры от Dallas Semiconductor//Компоненты и технологии, №8, 2001.

3. Андрусевич А. Управление потенциалом. Цифровые потенциометры Maxim/Dallas//Новости электроники, №15, 2006.

4. CAP5128. 32-Tap Digital Up/Down Control Potentiometer//Документ компании On Semiconductor Doc. No. MD-2128 Rev. C (CAT5128-D.pdf).

Получение технической информации, заказ образцов, поставка — e-mail: [email protected]

 

 

 

Наши информационные каналы
Рубрики: статья
О компании

…читать далее

www.compel.ru

Цифровые потенциометры | Аналоговые устройства

1AD5144A425610 kOhms, 100 kOhms835Non-VolatileI²C2.35.5$2.90 (AD5144ABRUZ10)
2AD5144425610 kOhms, 100 kOhms835Non-VolatileI²C2.35.5$2.90 (AD5144BCPZ100-RL7)
3AD5143425610 kOhms, 100 kOhms835Non-VolatileI²C2.35.5$2.85 (AD5143BCPZ100-RL7)
4AD5142A225610 kOhms, 100 kOhms835Non-VolatileI²C2.35.5$1.65 (AD5142ABCPZ100-RL7)
5AD5142225610 kOhms, 100 kOhms835Non-VolatileSPI2.35.5$1.65 (AD5142BCPZ100-RL7)
6AD5141125610 kOhms, 100 kOhms835Non-VolatileI²C, SPI2.35.5$0.90 (AD5141BCPZ100-RL7)
7AD5124412810 kOhms, 100 kOhms835Non-VolatileI²C2.35.5$2.50 (AD5124BCPZ100-RL7)
8AD5123412810 kOhms, 100 kOhms835Non-VolatileI²C2.35.5$2.45 (AD5123BCPZ100-RL7)
9AD5122A212810 kOhms, 100 kOhms835Non-VolatileI²C2.35.5$1.45 (AD5122ABCPZ100-RL7)
10AD5122212810 kOhms, 100 kOhms835Non-VolatileSPI2.35.5$1.45 (AD5122BCPZ100-RL7)
11AD5121112810 kOhms, 100 kOhms835Non-VolatileI²C, SPI2.35.5$0.70 (AD5121BCPZ100-RL7)
12AD511616410 kOhms, 5 kOhms, 80 kOhms835Non-VolatilePushbutton2.35.5$0.66 (AD5116BCPZ10-500R7)
13AD511513210 kOhms, 80 kOhms835Non-VolatileUp/Down2.35.5$0.60 (AD5115BCPZ10-500R7)
14AD511413210 kOhms, 80 kOhms835Non-VolatileI²C2.35.5$0.60 (AD5114BCPZ10-1-RL7)
15AD511316410 kOhms, 5 kOhms, 80 kOhms835Non-VolatileUp/Down2.35.5$0.68 (AD5113BCPZ10-500R7)
16AD511216410 kOhms, 5 kOhms, 80 kOhms835Non-VolatileI²C2.35.5$0.68 (AD5112BCPZ10-1-RL7)
17AD5111112810 kOhms, 80 kOhms835Non-VolatileUp/Down2.35.5$0.76 (AD5111BCPZ10-500R7)
18AD5110112810 kOhms, 80 kOhms835Non-VolatileI²C2.35.5$0.76 (AD5110BCPZ10-1-RL7)
19AD51751102410 kOhms1535Non-VolatileI²C2.75.5$1.45 (AD5175BCPZ-10-RL7)
20AD51741102410 kOhms1535Non-VolatileSPI2.75.5$1.45 (AD5174BCPZ-10-RL7)
21AD52741256100 kOhms, 20 kOhms, 50 kOhms15Non-VolatileI²C2.75.5$0.98 (AD5274BCPZ-100-RL7)
22AD527211024100 kOhms, 20 kOhms, 50 kOhms15Non-VolatileI²C2.75.5$1.64 (AD5272BCPZ-100-RL7)
23AD52711256100 kOhms, 20 kOhms, 50 kOhms15Non-VolatileSPI2.75.5$0.98 (AD5271BCPZ-20-RL7)
24AD527011024100 kOhms, 20 kOhms, 50 kOhms15Non-VolatileSPI2.75.5$1.64 (AD5270BCPZ-100-RL7)
25AD529311024100 kOhms, 20 kOhms, 50 kOhms135VolatileSPI933$2.63 (AD5293BRUZ-100)
26AD529211024100 kOhms, 20 kOhms, 50 kOhms135Non-VolatileSPI933$2.70 (AD5292BRUZ-100)
27AD52911256100 kOhms, 20 kOhms, 50 kOhms135Non-VolatileSPI933$2.36 (AD5291BRUZ-100)
28AD5290125610 kOhms, 100 kOhms, 50 kOhms3035VolatileSPI2030$2.07 (AD5290YRMZ10)
29AD5259125610 kOhms, 100 kOhms, 5 kOhms, 50 kOhms30500Non-VolatileI²C2.75.5$0.93 (AD5259BCPZ100-R7)
30AD52581641 kOhms, 10 kOhms, 100 kOhms, 50 kOhms30500Non-VolatileI²C2.75.5$0.61 (AD5258BRMZ1)
31AD525222561 kOhms, 10 kOhms, 100 kOhms, 50 kOhms20650Non-VolatileI²C2.75.5$1.66 (AD5252BRUZ1)
32AD52512641 kOhms, 10 kOhms, 100 kOhms, 50 kOhms20650Non-VolatileI²C2.75.5$2.47 (AD5251BRUZ50)
33AD525442561 kOhms, 10 kOhms, 100 kOhms, 50 kOhms20650Non-VolatileI²C2.75.5$2.66 (AD5254BRUZ1)
34AD52534641 kOhms, 10 kOhms, 100 kOhms, 50 kOhms20650Non-VolatileI²C2.75.5$2.56 (AD5253BRUZ10)
35AD522813210 kOhms, 100 kOhms, 50 kOhms2035VolatilePushbutton2.75.5$0.42 (AD5228BUJZ100-RL7)
36AD522716410 kOhms, 100 kOhms, 50 kOhms2035VolatileUp/Down2.75.5$0.45 (AD5227BUJZ100-RL7)
37AD517116410 kOhms, 100 kOhms, 5 kOhms, 50 kOhms3035One Time ProgrammableI²C2.75.5$0.74 (AD5171BRJZ10-R7)
38AD51651256100 kOhms2035VolatileSPI2.75.5$0.73 (AD5165BUJZ100-R7)
39AD5248225610 kOhms, 100 kOhms, 2.5 kOhms, 50 kOhms2035VolatileI²C2.75.5$1.03 (AD5248BRMZ10)
40AD5243225610 kOhms, 100 kOhms, 2.5 kOhms, 50 kOhms2035VolatileI²C2.75.5$1.03 (AD5243BRMZ10)
41AD5170125610 kOhms, 100 kOhms, 2.5 kOhms, 50 kOhms2035One Time ProgrammableI²C2.75.5$1.26 (AD5170BRMZ10)
42AD5247112810 kOhms, 100 kOhms, 5 kOhms, 50 kOhms2045VolatileI²C2.75.5$0.46 (AD5247BKSZ100-1RL7)
43AD5246112810 kOhms, 100 kOhms, 5 kOhms, 50 kOhms2045VolatileI²C2.75.5$0.46 (AD5246BKSZ100-RL7)
44AD5173225610 kOhms, 100 kOhms, 2.5 kOhms, 50 kOhms2035One Time ProgrammableI²C2.75.5$1.66 (AD5173BRMZ10)
45AD5172225610 kOhms, 100 kOhms, 2.5 kOhms, 50 kOhms2035One Time ProgrammableI²C2.75.5$1.66 (AD5172BRMZ10)
46AD5162225610 kOhms, 100 kOhms, 2.5 kOhms, 50 kOhms2035VolatileSPI2.75.5$1.03 (AD5162BRMZ10)
47AD5263425620 kOhms, 200 kOhms, 50 kOhms3030VolatileI²C515$3.12 (AD5263BRUZ20)
48AD5245125610 kOhms, 100 kOhms, 5 kOhms, 50 kOhms3045VolatileI²C2.75.5$0.66 (AD5245BRJZ100-RL7)
49AD5161125610 kOhms, 100 kOhms, 5 kOhms, 50 kOhms3045VolatileI²C2.75.5$0.67 (AD5161BRMZ10)
50AD5160125610 kOhms, 100 kOhms, 5 kOhms, 50 kOhms1545VolatileSPI2.75.5$0.66 (AD5160BRJZ100-RL7)
51AD5282225620 kOhms, 200 kOhms, 50 kOhms3030VolatileI²C515$2.07 (AD5282BRUZ20)
52AD5280125620 kOhms, 200 kOhms, 50 kOhms3030VolatileI²C515$1.89 (AD5280BRUZ20)
53AD52731641 kOhms, 10 kOhms, 100 kOhms, 50 kOhms30300One Time ProgrammableI²C2.75.5$0.71 (AD5273BRJZ100-R7)
54AD52352102425 kOhms, 250 kOhms835Non-VolatileSPI2.75.5$4.42 (AD5235BRUZ25)
55AD5262225620 kOhms, 200 kOhms, 50 kOhms3035VolatileSPI515$2.07 (AD5262BRUZ20)
56AD5260125620 kOhms, 200 kOhms, 50 kOhms3035VolatileSPI515$1.89 (AD5260BRUZ20)
57AD523346410 kOhms, 100 kOhms, 50 kOhms30600Non-VolatileSPI2.75.5$3.14 (AD5233BRUZ10)
58AD5232225610 kOhms, 100 kOhms, 50 kOhms30600Non-VolatileSPI2.75.5$2.78 (AD5232BRUZ10)
59AD52311102410 kOhms, 100 kOhms, 50 kOhms30600Non-VolatileSPI2.75.5$2.03 (AD5231BRUZ10)
60ADN28502102425 kOhms, 250 kOhms835Non-VolatileSPI2.75.5$4.42 (ADN2850BCPZ25)
61AD5207225610 kOhms, 100 kOhms, 50 kOhms30500VolatileSPI2.75.5$1.09 (AD5207BRUZ10)
62AD524222561 MOhms, 10 kOhms, 100 kOhms3030VolatileI²C2.75.5$1.31 (AD5242BRUZ10)
63AD524112561 MOhms, 10 kOhms, 100 kOhms3030VolatileI²C2.75.5$0.96 (AD5241BRUZ10)
64AD520113310 kOhms, 50 kOhms30500VolatileSPI2.75.5$0.63 (AD5201BRMZ10)
65AD5200125610 kOhms, 50 kOhms30500VolatileSPI2.75.5$1.12 (AD5200BRMZ10)
66AD522221281 MOhms, 10 kOhms, 100 kOhms, 50 kOhms3035VolatileUp/Down2.75.5$1.08 (AD5222BRUZ10)
67AD5206625610 kOhms, 100 kOhms, 50 kOhms30700VolatileSPI2.75.5$2.13 (AD5206BRUZ10)
68AD5204425610 kOhms, 100 kOhms, 50 kOhms30700VolatileSPI2.75.5$1.67 (AD5204BCPZ10-REEL)
69AD5220112810 kOhms, 100 kOhms, 50 kOhms30800VolatileUp/Down2.75.5$1.06 (AD5220WBRZ10-REEL7)
70AD520346410 kOhms, 100 kOhms30700VolatileSPI2.75.5$1.97 (AD5203ARUZ100)
71AD7376112810 kOhms, 100 kOhms, 50 kOhms30300VolatileSPI533$3.84 (AD7376ARUZ10)
72AD840012561 kOhms, 10 kOhms, 100 kOhms, 50 kOhms20500VolatileSPI2.75.5$1.24 (AD8400ARZ1)
73AD840342561 kOhms, 10 kOhms, 100 kOhms, 50 kOhms20500VolatileSPI2.75.5$3.07 (AD8403ARZ1)
74AD840222561 kOhms, 10 kOhms, 100 kOhms, 50 kOhms20500VolatileSPI2.75.5$1.85 (AD8402ARUZ1)

www.analog.com

Какие бывают переменные резисторы?

Конструкция, обозначение и разновидности переменных и подстроечных резисторов

Если посмотреть на всё изобилие радиокомпонентов, которые используются в промышленности и радиолюбителями, то нетрудно заметить, что некоторые радиодетали могут изменять величину своего основного параметра.

К таким элементам относятся переменные и подстроечные резисторы, сопротивление которых можно менять.

Переменных резисторов выпускается очень большой ассортимент, как для обычных электронных схем, так и для схем использующих микромонтаж.

Все переменные и подстроечные резисторы подразделяются на проволочные и тонкоплёночные.

В первом случае на керамический стержень наматывается константановая или манганиновая проволока. Вдоль проволочной обмотки перемещается ползунковый контакт. За счёт этого меняется сопротивление между подвижным контактом и одним из крайних выводов проволочной обмотки.

Во втором случае на подковообразную пластину из диэлектрика наносится резистивная плёнка с определённым сопротивлением, а ползунок перемещается вращением оси. Резистивная плёнка – это тонкий слой углерода (проще говоря, сажи) и лака. Поэтому в описании к конкретной модели резистора в пункте тип проводника обычно пишут «углеродистое» или «углерод». Естественно, в качестве материала резистивного слоя могут применяться и другие материалы и вещества.

А чем подстроечные резисторы отличаются от переменных?

Подстроечные резисторы в отличие от переменных рассчитаны на гораздо меньшее число циклов перемещения подвижной системы (ползунка). Максимальное число для некоторых экземпляров, например, для высоковольтного резистора НР1-9А вообще ограничено 100.

Для переменных резисторов количество циклов может достигать 50 000 – 100 000. Этот параметр называют износоустойчивостью. При превышении этого количества надёжная работа не гарантируется. Поэтому применять подстроечные резисторы взамен переменных строго не рекомендуется – это сказывается на надёжности устройства.

Давайте взглянем на устройство тонкоплёночного переменного резистора марки СП1. На рисунке вы видите реальный переменный резистор, сопротивление которого 1 МОм (1 000 000 Ом).

А вот его внутреннее устройство (снята защитная крышка). Тут же на рисунке указаны основные конструктивные части.

Четвёртый вывод, который виден на первом изображении — это вывод металлической крышки, который служит электрическим экраном и обычно присоединяется к общему проводу (GND).

Подстроечный резистор имеет схожее конструктивное исполнение. Вот взгляните. На фото подстроечный резистор СП3-27б (150 кОм).

Подстройка сопротивления осуществляется регулировочной отвёрткой. Для этого в конструкции резистора предусмотрен паз.

Теперь, когда мы разобрались с устройством переменных и подстроечных резисторов, давайте узнаем, как они обозначаются на принципиальной схеме.

Обозначение переменных и подстроечных резисторов на принципиальных схемах.

  • Обычное изображение переменного резистора на принципиальной схеме.

    Как видим, оно состоит из обозначения обычного постоянного резистора и «отвода» — стрелочки. Стрелка с отводом символизирует средний контакт, который мы и перемещаем по поверхности из намотанного на каркас высокоомного провода или тонкоплёночному покрытию.

    Рядом с графическим изображением ставится буква R с порядковым номером в схеме. Также рядом указывается номинальное сопротивление (например, 100k — 100 кОм).

    Если переменный резистор включен в схему реостатом (подвижный средний вывод соединён с одним из крайних), то на схеме он может указываться с двумя выводами (на изображении это R2). На зарубежных схемах переменный резистор обозначается не прямоугольником, а зигзагообразной линией. На картинке это R3.

  • Переменный резистор, объединённый с выключателем питания.

    Используется в недорогой переносной аппаратуре. Сам переменный резистор, как правило, используется в цепи регулирования громкости звука, а поскольку он физически (но не электрически!) совмещён с выключателем, то при повороте ручки можно включить прибор и тут же отрегулировать громкость звука. До широкого внедрения цифровой регулировки громкости, такие комбинированные резисторы активно применялись в переносных радиоприёмниках.

    На фото — регулировочный резистор с выключателем СП3-3бМ.

    На фотографии чётко видна конструкция выключателя, который замыкает свои контакты при повороте дискового регулятора. Часто использовался в аудиоаппаратуре советского производства (например, в переговорных устройствах, радиоприёмниках и пр.).

  • Также в электронике применяются сдвоенные или объединённые переменные резисторы. У них подвижный контакт конструктивно объединён, и его перемещением можно менять сопротивление у двух или нескольких переменных резисторов одновременно.

    Такие резисторы частенько применялись в аналоговой аудиоаппаратуре как регулятор стерео баланса или один из резисторов многополосного эквалайзера. Число сдвоенных резисторов в эквалайзере высокого класса может достигать 20.

    В первом квадрате показано обозначение сдвоенного переменного резистора (R1.1; R1.2), который частенько используется в стереофонической аппаратуре. Во втором показано условное изображение на схеме счетверённого переменного резистора. Обратите внимание на буквенную маркировку (R1.1; R1.2; R1.3; R1.4).

    На принципиальных схемах объединённые резисторы обозначаются с использованием соединяющей пунктирной линии. Этим указывается то, что их подвижные контакты механически объединены на валу одной ручки-регулятора.

  • Обозначение подстроечного резистора.

    Подстроечный резистор на схеме обозначается аналогично переменному за одним исключением – у него нет стрелочки. Это говорит нам о том, что регулировка сопротивления производится либо единоразово при настройке электронной схемы, либо очень редко при профилактических работах.

Типы переменных и подстроечных резисторов.

Для того чтобы иметь представление обо всём многообразии переменных и подстроечных резисторов ознакомимся с фотографиями.

Неразборный переменный резистор.

Обычный переменный резистор широкого применения. Хорошо заметен тип: СП4 – 1, мощность 0,25 Ватт, сопротивление 100 кОм.

Резистор снизу залит эпоксидным  компаундом, то есть он неразборный и ремонту не подлежит. Этот тип очень надёжный, так как он выпускался для оборонной аппаратуры.

А это подстроечные резисторы СП3-16б. Резисторы СП3-16б предназначены для перпендикулярной установки на печатную плату, а мощность их составляет 0,125 Вт. Имеют линейную (А) функциональную характеристику. Как видим, их конструкция весьма добротна и надёжна.

Однооборотные непроволочные подстроечные резисторы.

Малогабаритный подстроечный резистор, который впаивается непосредственно в печатную плату бытовой аппаратуры. Он имеет очень маленькие размеры и на некоторых платах распаивается до десятка ему подобных.

На фото ниже показаны подстроечные резисторы СП3-19а (справа) мощностью 0,5 Вт. Материал резистивного слоя — металлокерамика.

Лакоплёночные резисторы СП3-38. Устройство их весьма примитивно.

Так как его корпус является открытым, то на поверхность оседает пыль, конденсируется влага, что и сказывается на надёжности такого изделия. Материал проводника — металлокерамика, а мощность невысока — около 0,125 Вт.

Подстройка таких резисторов осуществляется отверткой из диэлектрика во избежание короткого замыкания. В бытовой электронной аппаратуре найти их довольно легко.

Резисторы РП1-302 (на фото справа) и РП1-63 (слева).

Для подстройки сопротивления резисторов РП1-63 может потребоваться специальная отвёртка. Если приглядется, то паз под отвёртку имеет шестигранную форму. В отличие от СП3-38 такие резисторы имеют защищённый корпус. Это положительно сказывается на их надёжности.

Мощные проволочные подстроечные резисторы.

Здесь показан мощный 3-ёх ваттный проволочный резистор СП5-50МА.

Его корпус сделан просторным, чтобы к проводящему проволочному слою был приток воздуха для охлаждения. Если перевернуть резистор, то можно детально разглядеть его устройство в том числе и изоляционную планку на которой намотан высокоомный проводник.

Высоковольтные регулировочные резисторы.

Достаточно редкий экземпляр подстроечного резистора (НР1-9А). Ещё не так давно они стояли во всех кинескопных телевизорах и были завязаны в цепи регулировки высокого напряжения. Его сопротивление 68 МОм.  (Из телевизора я его, собственно, и вытащил, чтобы сфоткать и показать вам).

Сам по себе НР1-9А является набором керметных резисторов. Его рабочее напряжение 8500 В (это 8,5 киловольт!!!), а предельное рабочее напряжение составляет аж 15 кВ! Номинальная мощность – 4 Вт. Почему регулировочный резистор НР1-9А называют набором резисторов? Да потому, что он состоит из нескольких. Его внутренняя структура соответствует схеме из 3-ёх отдельных резисторов.

В современных кинескопных телевизорах они встраиваются прямо в ТДКС (Трансформатор диодно-каскадный строчный).

Ползунковые переменные резисторы.

В аудиоаппаратуре с аналоговым управлением часто применяются движковые регулировочные резисторы. Их ещё называют ползунковыми. Они широко использовались в электронных приборах для регулировки яркости, контрастности, громкости, тембра и др. Вот взгляните на их конструкцию.

Далее на фото показан ползунковый переменный резистор СП3-23а. Из маркировки следует, что мощность его составляет 0,5 Вт, а функциональная характеристика соответствует линейной зависимости (буква А). Сопротивление — 1кОм.

Также как и переменные резисторы с круговой движковой системой, ползунковые могут быть сдвоенные, например резистор СП3-23б (самый нижний на первом фото). В его составе два переменных резистора с общим подвижным контактом.

Подстроечные многооборотные резисторы.

Очень часто, особенно в специальной аппаратуре, применялись очень удобные и одно время совершенно дефицитные проволочные многооборотные подстроечные резисторы.

Выводы так же были жёсткие для впайки в уже готовые гнёзда, или выполненные из гибкого провода МГТФ, чтобы их можно было распаять в любые точки платы. От нуля до максимального сопротивления регулировочный винт под отвёртку нужно было повернуть ровно 40 раз. Этим достигалась очень высокая точность установки параметров схемы.

На фото показан многооборотный подстроечный резистор СП5-2А. Изменение сопротивления производится круговым перемещением подвижной контактной системы через червячную пару. За 40 полных оборотов можно изменить его сопротивление от минимального до максимального значения. Применяются резисторы СП5-2А в цепях постоянного и переменного тока, и рассчитаны на мощность 0,5 – 1 Вт (зависит от модификации). Износоустойчивость – от 100 до 200 циклов. Функциональная характеристика – линейная (А).

Более полную информацию по резисторам отечественного производства можно получить из справочника «Резисторы» под редакцией И.И. Четверткова и В.М. Терехова. В нём приведены данные практически по всем резисторам. Справочник вы найдёте здесь.

Ремонт переменного резистора.

Так как переменные резисторы – это электромеханическое изделие, то со временем они начинают портиться. Из-за износа проводящего слоя и ослабления прижима скользящего контакта они начинают плохо работать, появляется так называемый «шорох».

В большинстве случаев восстанавливать неисправный переменный резистор нет смысла, но бывают и исключения. Например, нужного для замены может просто не оказаться под рукой или же он может быть очень редкий. Так в некоторых микшерских пультах используются достаточно редкие и уникальные образцы. Найти замену им сложно.

В таком случае восстановить правильную работу переменного резистора можно с помощью обычного карандаша. Грифель карандаша состоит из графита – твёрдого углерода. Поэтому можно аккуратно разобрать переменный резистор, подогнуть ослабший скользящий контакт, а по проводящему слою несколько раз провести грифелем карандаша. Этим мы восстановим проводящий слой. Также не помешает смазать покрытие силиконовой смазкой. Затем резистор собираем обратно. Естественно, такой метод подходит лишь для резисторов с тонкоплёночным покрытием.

Честно говоря, простейший переменный резистор можно смастерить из простого карандаша, ведь грифель его сделан из углерода! А напоследок, давайте прикинем в уме, как это можно сделать.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

go-radio.ru