Dsp что это – Руководство новичка по цифровой обработке сигналов (DSP) | Ресурсы

Руководство новичка по цифровой обработке сигналов (DSP) | Ресурсы

Что такое DSP?

Цифровые сигнальные процессоры (DSP, Digital Signal Processors) принимают на вход предварительно оцифрованные физические сигналы, например, звук, видеоизображение, показания температуры, давления и положения, и производят над ними математические манипуляции. Внутренняя структура цифровых сигнальных процессоров специально разрабатывается таким образом, чтобы они могли очень быстро выполнять такие математические функции, как “сложение”, “вычитание”, “умножение” и “деление”.

Сигналы необходимо обработать так, чтобы информация, которую они содержат, могла быть отображена графически, проанализирована или преобразована в полезный сигнал иного типа. В реальном мире обнаружение сигналов, соответствующих физическим явлениям, таким как звук, свет, температура или давление, и манипуляции ими осуществляется аналоговыми компонентами. Затем, аналого-цифровой преобразователь берет реальный сигнал и преобразовывает его в цифровой формат в виде последовательности нулей и единиц. На данном этапе в процесс вступает цифровой сигнальный процессор, который осуществляет сбор оцифрованной информации и ее обработку. Далее он выдает оцифрованную информацию обратно в реальный мир для дальнейшего использования. Выдача информации осуществляется одним из двух способов – в цифровом или в аналоговом формате. Во втором случае оцифрованный сигнал пропускается через цифро-аналоговый преобразователь. Все эти действия выполняются на очень высокой скорости.

Для иллюстрации этой концепции рассмотрим приведенную ниже блок-схему, на которой показано, как цифровой сигнальный процессор используется в составе MP3 аудиоплеера. В фазе записи аналоговый звуковой сигнал поступает в систему от приемника или иного источника. Этот аналоговый сигнал преобразовывается в цифровой сигнал при помощи аналого-цифрового преобразователя и передается в цифровой сигнальный процессор. Цифровой сигнальный процессор выполняет кодирование в формат MP3 и сохраняет файл в память. В фазе воспроизведения файл извлекается из памяти, декодируется цифровым сигнальным процессором и преобразовывается при помощи цифро-аналогового преобразователя обратно в аналоговый сигнал, который может быть воспроизведен в акустической системе. В более сложном примере цифровой сигнальный процессор может выполнять дополнительные функции, например, регулировку громкости, частотную компенсацию и обеспечение интерфейса пользователя.

Информация, формируемая цифровым сигнальным процессором, может быть использована компьютером, например, для управления системами безопасности, телефонами, домашними кинотеатрами или сжатием видеоизображений. Сигналы могут подвергаться сжатию (компрессии) для более быстрой и эффективной передачи из одного места в другое (например, в системах телеконференций для передачи речи и видеоизображений по телефонным линиям). Сигналы также могут подвергаться дополнительной обработке для повышения их качества или предоставления информации, которая изначально недоступна для восприятия человеком (например, в задачах эхокомпенсации в мобильных телефонах или компьютерного улучшения качества изображений). Физические сигналы могут обрабатываться и в аналоговой форме, однако цифровая обработка обеспечивает повышенное качество и быстродействие.

Поскольку цифровой сигнальный процессор является программируемым, он может быть использован в самых разнообразных задачах. При создании проекта вы можете написать собственное программное обеспечение или использовать программное обеспечение, обеспечиваемое компанией Analog Devices или сторонними компаниями.

Более подробную информацию о преимуществах применения цифровых сигнальных процессоров при обработке сигналов реального мира вы можете найти, прочитав первую часть статьи Цифровая обработка сигналов 101 – Вводный курс в проектирование систем цифровой обработки сигналов, которая называется “Зачем нужен цифровой сигнальный процессор?”

www.analog.com

Что такое мобильная DSP? / BYYD corporate blog / Habr


Научись получать доступ к мобильному рекламному инвентарю, используя данные в реальном времени и в автоматическом режиме.
Больше возможностей, выше потенциал

Что такое Mobile DSP?

Ну да, еще одна непонятная аббревиатура, которых там много в IT и в цифровой рекламе, в частности. Но эта – одна из важных.

DSP – Demand-side platform (платформа со стороны спроса)

Звучит пугающе? Позвольте я вам разъясню. Все эти технические аббревиатуры, как Монстры в «Комнате страха». Снимите с них маску, и под ней окажется нормальное (во всяком случае человеческое) лицо.

Держитесь за мою руку, и смелей, я проведу вас через эту «комнату страха» рекламных технологий.

Так, что же такое DSP?

Demand-side platform (DSP) – это программное обеспечение, которое облегчает покупку и продажу онлайн рекламы. Это цифровой инструмент, используемый Рекламодателями и Агентствами для эффективного поиска лучших площадок (инвентаря) для размещения их рекламы, в соответствии с необходимыми им параметрами.

Эти параметры сам рекламодатель (или агентство его представляющее) выбирает из возможных. Рекламодатель может отсортировать инвентарь издателя, сегментируя аудиторию (по демографическим параметрам, интересам, локации и т.д.) или по виду инвентаря (примеры: видео, мобайл, десктоп и т.д.).

Смысл в том, что с DSP, весь этот процесс поиска и сортировки, который в прошлом осуществлялся вручную и был очень долгим и малоэффективным, теперь делается автоматически с помощью компьютера.

Это быстрей. Это гораздо более эффективней. И к тому же дешевле.

По всем параметрам – в выигрыше!

А что же с приставкой Мобильная?

Мобильная DSP предназначена для решения многих специфических задач, которые поставила «мобильная революция». Вот некоторые из них:

  • Мобильные пользователи носят свои телефоны повсюду. Для отслеживания их перемещения, чтоб доставлять вовремя локально-ориентированную рекламу, требуется наличие специальных технологий. Если сделать все умело, эти технологии представляют огромные возможности для персонализированного вовлечения.
  • Рекламный креатив. Мобильные устройства требуют, чтоб рекламные объявления показывались должным образом и выглядели достойно на экранах самых различных устройств.
  • Мобильные приложения. Большинство пользователей не только выходит в интернет, и смотрит видео на экранах своих смартфонов, но и активно пользуется мобильными приложениями. Точно также, как необходимо учитывать размеры и соотношения экрана; разные мобильные приложения, используют различные наборы правил, которые тоже надо принимать во внимание.

Чтоб найти мобильный инвентарь, mobile DSP интегрируется со специальными цифровыми площадками, называющимися рекламными биржами (ad exchanges). Это то место, где издатель размещает свои площадки для рекламы. Наша DSP интегрирована со всеми самыми крупнейшими мобильными рекламными биржами.

Процесс

После того как DSP интегрируется с рекламными биржами, она получает доступ к показу рекламы на миллионах площадок по всему интернету. И к тому же, сам процесс поиска и покупки рекламы занимает миллисекунды.

Как?

Все это происходит с помощью аукционов в реальном времени, в мире цифровой рекламы называющихся RTB (real-time bidding).

В этом процессе, DSP решает на какой площадке лучше покупать размещение, основываясь на параметрах, заданных рекламодателем, и делает ставки (bid) чтоб определить окончательную цену.

Последствия использования Мобильной DSP

DSP, особенно мобильные, меняют всю систему покупки и продажи цифрового медиа. DSP делает этот процесс более быстрым, эффективным, и лучше оптимизированным, используя большое разнообразие данных, которых с каждым днем все больше и они все доступнее.

Это означает, что человек больше не участвует в установлении окончательной цены.

Но это не обязательно плохо.

DSP позволяет покупателям рекламы вместо этого планировать стратегию и оптимизировать свою рекламную кампанию, а не погрязнуть в рутине надоедливых повторяющихся операций.

И это гораздо более интересно и продуктивно, не так ли?

BYYD • Мобильная рекламная платформа

habr.com

DSP и возможности real-time bidding в России. Читайте на Cossa.ru

DSP позволяет рекламодателям покупать аудиторию, а не конкретные места для размещения рекламы. Эти платформы анализируют на основе cookies поведение пользователей и на основании этого предлагают наиболее точный таргетинг. Рекламодатель, ознакомившись с результатами анализа, определяет, какая именно аудитория ему нужна, и сколько он готов платить за каждый показ объявления. Сделка происходит с помощью технологии RTB (real-time bidding) — она позволяет производить продажи и покупки рекламных показов на основе аукциона.

Рассмотрим алгоритм того, как это происходит.

Аукцион проходит в режиме реального времени: пока пользователь загружает веб-страницу, RTB-система успевает провести торги за показ рекламы. Запрос на показ рекламы рассылается всем участникам аукциона. DSP-системы должны за доли секунды определить, насколько ценным является этот показ, и сделать ставку. Победитель аукциона получает право показать свою рекламу. Её стоимость определяется по принципу «победитель платит минимальную цену, достаточную для победы».

Поскольку весь процесс происходит в реальном времени, рекламодатель может, по мере необходимости, корректировать размер той суммы, которую он готов платить за показы.

По мнению многих зарубежных рекламодателей, DSP-платформы привносят большую прозрачность в процесс осуществления рекламной сделки. Рекламодатели знают, где были показаны их объявления, и какие данные были использованы для таргетинга, и могут легко посчитать конверсию. Поскольку количество рекламных площадок постоянно увеличивается, сравнение их и подсчёт затрат вручную становится энерго- и времязатратным — в автоматизации всего процесса ещё одно преимущество DSP.

Несмотря на всю прозрачность процесса и возможность DSP работать с несколькими рекламными сетями сразу, крупные компании, такие как Yahoo! и Google, предпочитают создавать собственные DSP.

Пионером RTB в России выступила компания «Яндекс», запустившая эту систему в марте 2012 года. Кроме того, в Рунете эти возможности предоставляет Google.

Многие видели рекламу Konverta, но специалисты сообщают, что о результатах работы этой компании ничего неизвестно.

Также существует несколько платформ для издателей и владельцев ресурсов, так называемых Sell Side Platforms, или SSP.

В марте 2011 года RTB для издателей (закрытую бета-тест версию) представила компания AdFox. Подробнее о её преимуществах рассказал в своей презентации исполнительный директор AdFox Никита Пасынков.

Ещё одна RTB-платформа для издателей — Between Digital. Молодой проект, возникший в 2012 году, планирует предложить российским веб-издателям комплексный инструмент оптимизации доходов с помощью RTB. Причем клиенты компании получат доступ к платформе, которая создана на базе уже опробованной на западных рынках технологической разработки.

Наконец, на российском рынке присутствуют и западные игроки. Так, Crimtan.ru — это недавно открытый российский офис британской компании Crimson Tangerine, игрока рынка медийной интернет-рекламы, офисы которой расположены в Великобритании и Ирландии, Польше, Чехии, Болгарии, Прибалтике, Австралии и Новой Зеландии. Вот, что компания сообщает о себе:

Crimtan — это сеть поведенческой рекламы, построенная на основе собственной платформы Real-time Audience & Media Platform (RAMP360). Компания предоставляет рекламодателям продвинутые возможности интернет-маркетинга, используя чёткое профилирование, сегментацию и таргетинг интернет-аудитории, оптимизацию, доставку и отчётность по кампании с использованием обширной сети площадок, сетей, и агрегаторов трафика (SSPs и AdExchanges). Платформа RAMP360 базируется на множестве источников трафика, включая современные аукционные системы. Динамическая система моделирования собирает, агрегирует, анализирует и оптимизирует поступающие данные о пользователях интернета в реальном времени, а технологии real-time bidding гарантируют прицельную доставку рекламного сообщения наиболее релевантной аудитории, одновременно обеспечивая обратную связь для оптимизации кампаний.

На недавно прошедшей конференции Russian Internet Week (RIW) большое внимание уделялось обсуждению DSP и RTB как новому тренду, который вот-вот должен стать востребованным на российском рынке.

Cossa.ru благодарит за помощь в подготовке материала Татьяну Фирсову, эксперта аналитического центра Видео Интернешнл

www.cossa.ru

Что такое DSP процессор? — Автоэлектроника 63 на DRIVE2

Полный размер

Приветствую! Многие современные головные устройства идут со встроенным DSP процессором, давайте разберемся что это такое и для чего он нужен?! 🤔

Правильное, русское название у него «Цифровой сигнальный процессор» (от англ. Digital Signal Processor, DSP, цифровой процессор обработки сигналов (ЦПОС) — специализированный микропроцессор, предназначенный для обработки оцифрованных сигналов (обычно, в режиме реального времени)

Так давайте попробуем разобраться, зачем нужна эта временная коррекция, которая может управлять задержками на каждом канале. Но для начала давайте представим себе салон автомобиля, со всеми его характеристиками, неправильной формой (отличной от куба, которым является обычная комната), своим АЧХ (Амплитудно-частотная характеристика). И вот в этой «неправильной» среде звук распространяется не так как в обычной жилой комнате, часть его искажается, часть поглощается деталями салона. В итоге мы практически слышим не совсем то, что излучают динамики.

Немаловажным также является расположение слушателя относительно динамиков – как правило, в автомобиле слушатель (водитель, к примеру) находится не по центру и совсем на разных расстояниях от динамиков, что также вносит свои изменения в звучание, ведь один динамик звучит громче и напористее, так как находится ближе, а второй не так напористо и громко, ведь находится дальше от слушателя.

DSP-процессоры принципиально отличаются от микропроцессоров, образующих центральный процессор настольного компьютера. По роду своей деятельности центральному процессору приходится выполнять объединяющие функции. Он должен управлять работой различных компонентов аппаратного обеспечения компьютера, таких как дисководы, графические дисплеи и сетевой интерфейс, с тем чтобы обеспечить их согласованную работу.

Это означает, что центральные процессоры настольных компьютеров имеют сложную архитектуру, поскольку должны поддерживать такие базовые функции, как защита памяти, целочисленная арифметика, операции с плавающей запятой и обработка векторной графики.

В итоге типичный современный центральный процессор поддерживает несколько сот команд, которые обеспечивают выполнение всех этих функций. Следовательно, нужен модуль декодирования команд, который позволял бы реализовывать сложный словарь команд, а также множество интегральных схем. Они, собственно, и должны выполнять действия, определяемые командами. Иными словами, типичный процессор в настольном компьютере содержит десятки миллионов транзисторов.

DSP-процессор, напротив, должен быть «узким специалистом». Его единственная задача — изменять поток цифровых сигналов, и делать это быстро. DSP-процессор состоит главным образом из высокоскоростных аппаратных схем, выполняющих арифметические функции и манипулирующих битами, оптимизированных с тем, чтобы быстро изменять большие объемы данных.

Процессорная магнитола. Зачем?

И вот для того, что бы получить правильную звуковую сцену, в столь «не правильных» условиях и существует звуковые процессоры и процессорные магнитолы. Они позволяют очень виртуозно управлять звуковой сценой, смещать ее в любую сторону. Задержки же позволяют нивелировать «не правильное» размещение динамиков и форму салона. Задержки длятся миллисекунды, но они способны значительно сместить звуковую сцену, чем и пользуются профессионалы; в своих системах они способны «слить» весь звук со всех сторон в точке слушателя, где не ощущается ни «отдельности» сабвуфера, ни напора ближнего динамика.

Плюсы:

1. Возможно настройка отличной звуковой сцены, добиться которой в беспроцессорном варианте тяжело.

2. Множество регулировок звуковой сцены.

3. Наличие приличного эквалайзера, с помощью которого можно отлично порезать сигнал на полосы.

4. Качественность подобных аппаратов

www.drive2.ru

Процессор цифровой обработки сигналов | Computerworld Россия

Определение

Процессор цифровой обработки сигналов (digital signal processor — DSP) — это специализированный программируемый микропроцессор, предназначенный для манипулирования в реальном масштабе времени потоком цифровых данных. DSP-процессоры широко используются для обработки потоков графической информации, аудио- и видеосигналов.

Любой современный компьютер оснащен центральным процессором и только немногие — процессором цифровой обработки сигналов (DSP — digital signal processor). Центральный процессор, очевидно, представляет собой цифровую систему и обрабатывает цифровые данные, поэтому на первый взгляд неясна разница между цифровыми данными и цифровыми сигналами, то есть теми сигналами, которые обрабатывает DSP-процессор.

К цифровым сигналам, в общем случае, естественно отнести все потоки цифровой информации, которые формируются в процессе телекоммуникаций. Главное, что отличает эту информацию, — она не обязательно заносится в память (и поэтому может оказаться недоступной в будущем), следовательно, обрабатывать ее нужно в режиме реального времени.

Число источников цифровой информации практически неограниченно. Так, например, загружаемые файлы в формате MP3 содержат цифровые сигналы, собственно и представляющие звукозапись. В некоторых камкодерах выполняется оцифровка видеосигналов и их запись в цифровом формате. В дорогих моделях беспроводных и сотовых телефонов перед передачей также производится преобразование голоса в цифровой сигнал.

Вариации на тему

DSP-процессоры принципиально отличаются от микропроцессоров, образующих центральный процессор настольного компьютера. По роду своей деятельности центральному процессору приходится выполнять объединяющие функции. Он должен управлять работой различных компонентов аппаратного обеспечения компьютера, таких как дисководы, графические дисплеи и сетевой интерфейс, с тем чтобы обеспечить их согласованную работу.

Это означает, что центральные процессоры настольных компьютеров имеют сложную архитектуру, поскольку должны поддерживать такие базовые функции, как защита памяти, целочисленная арифметика, операции с плавающей запятой и обработка векторной графики.

В итоге типичный современный центральный процессор поддерживает несколько сот команд, которые обеспечивают выполнение всех этих функций. Следовательно, нужен модуль декодирования команд, который позволял бы реализовывать сложный словарь команд, а также множество интегральных схем. Они, собственно, и должны выполнять действия, определяемые командами. Иными словами, типичный процессор в настольном компьютере содержит десятки миллионов транзисторов.

DSP-процессор, напротив, должен быть «узким специалистом». Его единственная задача — изменять поток цифровых сигналов, и делать это быстро. DSP-процессор состоит главным образом из высокоскоростных аппаратных схем, выполняющих арифметические функции и манипулирующих битами, оптимизированных с тем, чтобы быстро изменять большие объемы данных.

В силу этого набор команд у DSP куда меньше, чем у центрального процессора настольного компьютера; их число не превышает 80. Это значит, что для DSP требуется облегченный декодер команд и гораздо меньшее число исполнительных устройств. Кроме того, все исполнительные устройства в конечном итоге должны поддерживать высокопроизводительные арифметические операции. Таким образом, типичный DSP-процессор состоит не более чем из нескольких сот тысяч транзисторов.

Являясь узкоспециализированным, DSP-процессор отлично справляется со своей работой. Его математические функции позволяют непрерывно принимать и изменять цифровой сигнал (такой, как звукозаписи в MP3 или запись разговора по сотовому телефону), не тормозя передачу информации и не теряя ее. Для повышения пропускной способности DSP-процессор оснащается дополнительными внутренними шинами данных, которые обеспечивают более быстрый перенос данных между арифметическими модулями и интерфейсами процессора.

Зачем нужны DSP-процессоры?

Специфические возможности DSP-процессора в части обработки информации делают его идеальным средством для многих приложений. Используя алгоритмы, основанные на соответствующем математическом аппарате, DSP-процессор может воспринимать цифровой сигнал и выполнять операции свертки для усиления или подавления тех или иных свойств сигнала.

В силу того что в DSP-процессорах значительно меньше транзисторов, чем в центральных процессорах, они потребляют меньше энергии, что позволяет использовать их в продуктах, работающих от батарей. Крайне упрощается и их производство, поэтому они находят себе применение в недорогих устройствах. Сочетание низкого энергопотребления и невысокая стоимость обусловливает применение DSP-процессоров в сотовых телефонах и в роботах-игрушках.

Впрочем, спектр их применения этим далеко не ограничивается. В силу большого числа арифметических модулей, наличия интегрированной на кристалле памяти и дополнительных шин данных часть DSP-процессоров могут использоваться для поддержки многопроцессорной обработки. Они могут выполнять сжатие/распаковку «живого видео» при передаче по Internet. Подобные высокопроизводительные DSP-процессоры часто применяются в оборудовании для организации видеоконференций.


Внутри DSP

Приведенная здесь диаграмма иллюстрирует строение ядра процессора Motorola DSP 5680x. Раздельные внутренние шины команд, данных и адресов способствуют резкому повышению пропускной способности вычислительной системы. Наличие вторичной шины данных позволяет арифметическому устройству считать два значения, перемножить их и выполнить операцию накопления результата за один такт процессора.

Поделитесь материалом с коллегами и друзьями

www.osp.ru

DSP в любительской радиоаппаратуре | RUQRZ.COM


Современные трансиверы с DSP технологией уже давно появились на рынке и, кажется, оповещают звоном триумфальное шествие цифровой обработки сигналов. Что же дает цифровая обработка сигналов — DSP?
Для тех, кто еще не знает, что такое DSP (Digital Signal Processor) — это цифровой процессор, предназначенный для специальной цифровой обработки сигналов. Аналогично DSP существовала и существует до сих пор хорошо известная аналоговая обработка сигналов — ASP. В целом же, DSP не такое уж новое устройство. Более 20 лет назад, с появлением TTL — электроники, некоторые соответствующие задачи стали реализовывать на цифровых микросхемах, но тогда эти устройства еще не получили название DSP.

В радиолюбительской практике уже в 1975 году появилась схема 10Гц фильтра для CW, автором которой является Рей Петит — W7GHM. В те времена использовались простые схемы. Сегодня же цифровые процессоры позволяют решать множество разнообразнейших задач. Своему дальнейшему развитию любительская радиосвязь обязана именно появлению DSP процессора — интегральной микросхемы с большой степенью интеграции.

Теорию цифровой обработки сигналов невозможно описать вкратце. Но в ARRL Handbook наиболее важные положения описаны на 18-ти страницах.

Очевидно, что далеко не все возможности DSP в области радио уже исчерпаны. О наиболее важных из них, на сегодняшний день, мы имеем хорошее представление. Самыми большими ограничениями применения DSP являются верхняя граничная частота обрабатываемого сигнала и пока еще высокая цена, поэтому DSP используются, в основном, в высококлассных устройствах. Некоторые модели DSP работают на частотах до 10 МГц. Если же требуются большие объемы математических вычислений по обработке сигналов, то приходится ограничиваться частотами до 100 кГц. Например, для реализации полосового фильтра промежуточной частоты (ZF-фильтр).

К целому ряду преимуществ, уже предоставляемых DSP, добавилась возможность снижения искажений при модуляции речевым сигналом. Человеческая речь, с точки зрения ее обработки, обладает чрезмерной избыточностью. Большой динамический диапазон речи и музыки можно сжать, но при этом возникают проблемы с приданием естественности и разборчивости.

Все попытки оптимизировать речевую передачу с помощью аналоговых устройств были не особенно удачными. DSP позволяет управлять амплитудно-частотной характеристикой тракта приема-передачи без внесения каких-либо видимых искажений. А перемодуляции, которая вызывает пресловутые «Splatters», можно избежать.

Существует естественный барьер, препятствующий новым видам передачи. Этим барьером является инерция самих радиолюбителей. Достаточно вспомнить о том, какая инерция проявлялась при переходе от AM модуляции к SSB. Передача цифровых сигналов производится в полосе SSB канала (AFSK). Будут ли задействованы другие методы модуляции покажет будущее. Остается только подождать. Но, в тоже время, практически не сдают свои позиции старый Бодо — RTTY и щелкающий телеграф.

Новые DSP демодуляторы работают значительно линейнее, чем аналоговые SSB детекторы и более помехоустойчивы. Несмотря на то, что их схемы различны, — функциональное предназначение однотипно. Автоматическая настройка на однополосный сигнал с помощью DSP будет рано или поздно решена — это вопрос времени и пресловутый «голос Буратино» уйдет в прошлое.

Теперь о двух важнейших применениях DSP, которые уже можно использовать на практике. С их помощью приемная техника становится наиболее эффективной.

Фильтры для устранения шумов и помех.

В радиоприемниках цифровая обработка демодулироваииых сигналов превосходит вое известные способы аналоговой обработки. В США в профессиональной технике подобные устройства получили название DENOISER — шумоподавитель. Но могут употребляться и другие обозначения.

В DENOISERe цифровым фильтром выделяется НЧ область, в которой распознаются связанные когерентные сигналы (частоты), а фильтровые коэффициенты вычисляются с помощью специально адаптированных LMS-алгоритмов по Hoff-Widrow методике. На английском языке этот процесс называется «Dynamic peaking around all cohereni signals». Шумы радиоприемника, которые, как правило, осложняют прием слабых сигналов, могут быть снижены на 10—20 дБ.

Цифровой Notch-фильтр определяет и реагирует на все помехи в полосе пропускания и ослабляет их, не требуя ручной подстройки, причем степень ослабления превосходит известные нам аналоговые Nolch- фильтры, и может достигать 50 дБ.

SSB операторы, страдающие от телеграфных помех, могут практически забыть про них, поскольку CW сигнал прослушивается в качестве еле слышимых щелчков. Более того, фильтр автоматически заглушает даже собственные свисты (пораженные точки), В новых трансиверах часто встречается название Auto Notch. Но пренебрегать аналоговым Notch-фильтром пока не следует, он может быть полезен в режиме CW.

Существенное ослабление помех — это хорошее приобретение для радиоприемника. Некоторые сигналы, благодаря DSP обработке, становятся более разборчивыми, Но к использованию DSP еще надо привыкнуть, поскольку в зависимости от степени ослабления помех наблюдается некоторое «обезличивание» принимаемых корреспондентов. Вместе с ослаблением помех очень эффективно происходит снижение шумов, но еще большего чуда от Denoiser’a ожидать ие приходится.

Цифровые фильтры для приемника.

Если, что и может вас заинтересовать для обеспечения селекции в радиоприемнике, так это способность DSP реализовывать хорошую фильтрацию в области промежуточной и низкой частоты. С помощью соответствующего программного обеспечения становится возможным выполнение разнообразных режимов фильтрации. Легко реализуются цифровые полосовые фильтры и фильтры низких и высоких частот, которые могут быть наделены различными свойствами. На сегодняшний день существуют два способа цифровой фильтрации.

Фильтр с импульсной характеристикой бесконечной длительности — IIR (Infinite Impuls Response) для своей реализации не требует сложного программного обеспечения. По своим характеристикам IIR близок к аналоговым фильтрам. Подобные фильтры обладают незначительной групповой задержкой в полосе пропускания.

Фильтр с импульсной характеристикой конечной длительности — FIR (Finite Impuls Response) требует серьезной программной поддержки и с его помощью могут быть реализованы лучшие характеристики — он обладает высокой крутизной, малой неравномерностью в полосе пропускания и малыми фазовыми искажениями. И в отличии от аналоговых фильтров не вносит отражений.

DSP фильтры в не конкуренции, особенно, если требуется узкополосная фильрация, например, фильтрация в полосе 250 Гц с коэффициентом прямоугольности. Даже полосы пропускания для специальных режимов, таких как EME и CCW — 50 и 10 Гц, соответственно, могут быть легко реализованы с помощью DSP.

К недостаткам можно отнести то обстоятельство, что FIR фильтры имеют несколько большую групповую задержку от 10 до 100 мс, которая может сказываться при работе Amtor/Pactor Dx. Обычно принимается в расчет задержка от 18 до 32 мс. Таким образом, особого выигрыша здесь нет.

Как было отмечено выше, появляется все больше новых траисиверов, предоставляющих возможность точной настройки с шагом 1—2 Гц. При каком значении полосы пропускания возможен компромисс между повышенной четкостью приема и более затруднительной настройкой, предстоит выяснить только на практике. К употреблению очень узкополосных фильтров необходимо привыкнуть, особенно, если раньше не приходилось иметь с ними дело. По всей видимости, хорошо будут читаться телеграфные сигналы с 50 Гц DSP фильтром, хотя это и противоречит теории.

Границы цифровой обработки сигналов.

Только в редких случаях становится заметным то, что DSP фильтры ие идеальны.

На рисунках показаны типичная АЧХ NF фильтра с полосой пропускания 200 Гц. Измерения проводились в лаборатории ARRL. Из графика видно, что справа и слева от полосы пропускания расположено множество всплесков АЧХ с внеполосным затуханием — 52 дБ. Несколько усовершенствованные алгоритмы цифровой обработки позволяют отодвинуть эту границу до — 60 дБ. Больших достижений добиться пока не удается. Все сведения о прямоугольности DSP фильтра основываются на этих данных и нигде не удается встретить более достоверную информацию.

Для нормального применения DSP предельная частота уже называлась и сейчас прилагаются усилия, чтобы увеличить верхнюю границу до 455 кГц.

Хорошо известно — все цифровые схемы создают сильные помехи в широком спектре частот и DSP также не являются исключением, поэтому необходима тщательная экранировка и хорошая развязка по цепям питания. Как бы не были хороши цифровые фильтры с их узкополосностью и крутизной скатов, они не могут существенно исправить то, что происходит в широкополосной части приемника — интермодуляцию и т.п.

Еслн кварцевые фильтры очень чувствительны к фазовым сдвигам, то и DSP фильтр пока не может снять эту проблему. Это является одним из недостатков DSP NF-фильтра.

Структурная схема DSP:

На рисунке показана типичная схема DSP NF фильтра. Ее автор W9GR. И хотя это любительская конструкция, но по такому же принципу строятся и профессиональные устройства. Основное достоинство структурных схем — их наглядность. Важнейшими компонентами являются AD/DA (аналого-цифровые и цифро-аналоговые) преобразователи. Здесь используются 8-ми разрядные преобразователи, которые выбраны только из-за сходной цены, но не является исключением использование и 12-13-ти разрядных преобразователей. Более совершенные DSP рассчитаны для обработан 16-ти и даже 32 разрядных слов.

Тактовая частота DSP — 20 МГц, но уже встречаются DSP с тактовой частотой — 40 МГц и выше. На входе и на выходе DSP установлены активные низкочастотные фильтры, а в дорогих устройствах — интегральные SC фильтры. Управляющая программа, хранящаяся в PROM (ПЗУ), определяет свойства цифрового фильтра — ее поставляет производитель. Она является гордостью разработчика, стоит дорого и ее, как правило, держат в тайне. Хотя имеются некоторые отличия в схемных решениях разных производителей, ио абсолютного превосходства нет ни у кого. Цифровые устройства строятся таким образом, чтобы имелась возможность замены микросхемы PROM с имеющейся программой иа более совершенную.

Среди производителей выделяются три фирмы, которые выпускают полные комплекты микросхем для построения DSP. Это Texas Instruments, Analog Devices и Motorola. Для каждого определенного применения они поставляют простые и более сложные микросхемы. 32-х разрядные DSP фирмы Motorola позволяют расширить их области применения, но они существенно дороже.

Что еще почитать по теме:

www.ruqrz.com

DSP — цифровая обработка сигнала | RUQRZ.COM

Не так давно благодаря большому прогрессу в области обработки звука и компьютерных технологий в наше сознание твердо вошло такое понятие как DSP — Digital Signal Processing (Цифровая Обработка Сигнала). Цифровая обработка сигнала — это область техники, занимающаяся реализацией вычислительных алгоритмов в реальном времени. DSP говорит нам о возможности того или иного трансивера реализовывать этот сервис через свои технические возможности. Некоторые современные трансиверы имеют цифровую обработку как на прием, так и на передачу. Можно с уверенностью сказать, что цифровая обработка обеспечивает качество, которое соответствует новым технологиям и времени, в котором мы живем.

Цифровая обработка применительно к радиолюбительству чаще всего применяется при обработке сигнала из эфира, с целью обеспечения более качественного приема, устранения помех, сопровождающих передачу корреспондента. Это осуществляется при работе любыми видами связи, включая цифровые. Для этой цели часто используют компьютер со встроенной звуковой картой (ЗК) и соответствующее программное обеспечение. Однако в реальном времени сигнал обрабатывается с задержкой, и если в режиме приема это еще терпимо, то при передаче — нет.

Работая SSB и используя аппаратно-программные возможности компьютера в обработке сигнала с микрофона, который подключен к звуковой карте компьютера (с последующей подачей НЧ- сигнала на балансный модулятор трансивера), задержка очень существенна. Речь идет не просто об усилении сигнала с микрофона до определенного уровня с помощью ЗК, а об использовании специальных программ обработки сигнала в реальном времени. Ситуация еще более обостряется при работе такими цифровыми видами как Amtor, Pactor, Packet, когда одновременно программно компьютер используется, скажем, как Notch-фильтр и вместе с имеющимся на станции TNC-контроллером он обеспечивает перечисленные виды работ. Задержка в обработке сигнала в компьютере в таких случаях недопустима. Для того чтобы избавиться от этой проблемы, применяют звуковую карту Audigy-2 (например, AUDIGY-2 [OEM] 24 bit 96 kHz).

Также эта звуковая карта имеет аппаратно встроенный процессор эффектов, что позволяет, используя программно-аппаратные возможности, производить обработку сигнала в реальном времени на достаточно высоком уровне, т.е. в режиме передачи, например, в телефонных видах работ — SSB, AM, ЧМ — иметь хороший эквалайзер, компрессор, лимитер, а в режиме приема — Notch-фильтр, экспандер или что-либо другое.

Все это возможно даже при наличии персонального компьютера с процессором Pentium 200…500 МГц, хотя применение более мощных машин приветствуется, поскольку появляются еще большие возможности обработки сигнала с применением программного обеспечения — Plug In и соответствующих программ, алгоритм обработки которых требует более высокой производительности компьютера.

В этом случае современные технологии позволяют не применять внешние дорогостоящие приборы цифровой обработки, а в той или иной степени имитировать их работу, используя для этого вычислительные мощности центрального процессора компьютера и звуковой карты. Однако зто возможно при действительно очень высоких ресурсах компьютера. Применяя эти технологии, остается лишь установить узел стыковки — интерфейс — между трансивером и компьютером и с успехом использовать возможности последнего.

Отдавая должное цифровой обработке сигнала в трансивере или с помощью компьютера, радиолюбители также используют внешние блоки DSP обработки. Это относительно новое направление в радиолюбительстве.

Речь идет о цифровой обработке сигнала с применением высокотехнологичного, современного оборудования, применяемого в радиовещательных и музыкальных студиях, обеспечивающего абсолютно профессиональное качество и естественность звучания. Это высококачественные микшерные пульты, а также всевозможные аналого-цифровые многополосные (чаще параметрические) эквалайзеры, системы шумоподавления — Noise Gate, компрессоры, лимитеры, процессоры мультиэффектов, позволяющие получить различные алгоритмы звуковой обработки.

Следует отметить, что DSP — это общее понятие. Можно иметь DSP эквалайзер, компрессор, другие устройства и даже предусилитель микрофона. Иметь функцию DSP в трансиве- ре — это одно, иметь целую студию DSP-оборудования — это совершенно другие возможности. Это справедливо, если в обоих случаях упомянутая обработка осуществляется по низкой частоте.

Известные фирмы-производители DSP оборудования — Behringer www.behringer.com, Alesis www.alesis.com и другие — имеют огромный его перечень, и многое из него с успехом может быть применено радиолюбителями.

Каждое из этих устройств выполняет свою задачу и, как правило, содержит в своих двух каналах прецизионные 24-битовые АЦП и ЦАП (аналогово-цифровые и цифро-аналоговые преобразователи), работающие на профессиональной частоте дискредитации и имеющие диапазон рабочих частот 20 Гц…20 кГц.

Краткая справка

Аналогово-цифровой и цифро-аналоговый преобразователи. Первый преобразует аналоговый сигнал в цифровое значение амплитуды, второй выполняет обратное преобразование.

Принцип работы АЦП состоит в измерении уровня входного сигнала и выдаче результата в цифровой форме. В результате работы АЦП непрерывный аналоговый сигнал превращается в импульсный, с одновременным измерением амплитуды каждого импульса. ЦАП получает на входе цифровое значение амплитуды и выдает на выходе импульсы напряжения или тока нужной величины, которые расположенный за ним интегратор (аналоговый фильтр) превращает в непрерывный аналоговый сигнал.

Как всякое новое (особенно требующее вложения денег) направление, оно имеет своих сторонников и противников. Для достижения высокого уровня качества требуется применение на передачу более широкого фильтра в SSB-формирователе трансивера — 3 кГц, а не 2,4 кГц или 2,5 кГц,но это не выходит за рамки регламента радиолюбительской связи в части применяемого оборудования.

Сегодня отвергать право на существование направления в обработке звука с помощью добавочных устройств может только ленивый, завистливый или тот, кто не приветствует прогресс и новые технологии.

«Hi-Fi Audio in SSB» — высокое качество обработки НЧ-сигнала в SSB, или «Extended SSB» — расширенное SSB — фразы, часто слышимые и частично объясняющие уже более чем 10-летнюю активность радиолюбителей со всего мира на частоте 14178 кГц.

Здесь находится «круглый стол» любителей студийных сигналов и способов их получения. Это «круглый стол», который не имеет времени проведения. Работа ведется практически круглые сутки. В мире насчитывается чуть более 100 активных радиолюбителей, использующих эти технологии Их не очень беспокоят QRM, тк они уже достигли значительных успехов в оснащении своих станций и имеют не только высокого класса трансиверы усилители мощности (часто класса High Power), но и, что самое важное, эффективные направленные антенны

Многие слышат при практически любом прохождении, а иногда и при его отсутствии Билла, W2ONV, из Нью-Джерси — старейшего радиолюбителя и большого специалиста в области обработки звука с помощью внешних DSP-устройств Имея мощность 1,5 кВт (максимально разрешенную в США) и два сфазированных четырехэлементных волновых канала, он в течение уже многих лет практически всегда слышен в Европе на частоте 14178 кГц Люди, работающие на этом «круглом столе» — разного возраста, в основном, от 30 до 80 лет, причем тон в работе в большей степени задают радиолюбители старшей возрастной группы И это не дань уважения старшему поколению, это констатация факта Именно они имеют большие успехи в области цифровой обработки, поскольку владеют достаточными знаниями и более серьезным оборудованием.

Радиолюбители на «14178» — выдержанные и спокойные, полностью увлеченные своим делом Начинающим коллегам- энтузиастам всегда рады и оказывают им всяческое содействие Большой вклад в развитие обработки звука вносят сами же радиолюбители, размещая на своих WEB-страницах в Интернете полезную информацию Многие согласятся, что огромный вклад в развитие этого направления внес John, NU9N, создавший сайт в Интернете (www.nu9n.com), где он разместил практически учебник по применению внешних устройств цифровой обработки, последовательности их подключения (очень важный вопрос) установке параметров На сайте NU9N можно также скачать образцы DSP-сигналов многих радиолюбителей Слушать их достаточно интересно.

К сожалению, в количественном плане станции из бывшего Союза представлены на 14178 кГц очень слабо — Василий, ER4DX, Игорь, EW1MM, Сергей, EW1DM, Сергей, RW3PS, Виктор, RA9FIF и Олег, RV3AAJ (других данных нет) Сказывается отсутствие лишних финансов на приобретение аудио- оборудования, а также менталитет людей — когда нет времени и средств всем этим заниматься, значит, это плохо, значит, это не нужно Очевидно, следует остановиться на том, что все направления в радиолюбительстве имеют право на жизнь, будь то соревнования, работа QRP (или QRO), DX’ing И даже отсутствие у некоторых знаний азбуки Морзе, иностранного языка и многого другого — это ведь тоже «направление», и мы, увы, к этому уже вроде как и начинаем привыкать.

Пожелаем же «молодым’ (10 лет для радио — срок небольшой) успехов в их нелегком хобби, а всех кто уже достиг результатов в других областях, приглашаю присоединиться к сообществу любителей студийных сигналов, в конце концов, интереснее дебюта ведь ничего нет.

И.ПОДГОРНЫЙ

Что еще почитать по теме:

www.ruqrz.com