Двигатель фарадея – Униполярный двигатель Фарадея

Содержание

Униполярный двигатель Фарадея

До сих пор не решена загадка движения униполярного двигателя Фарадея. Дело в том, что изобретенный им двигатель вращается вопреки физическим законам. Ученые не могут пока преодолеть парадокс движущей силы в его двигателе, в котором функционирует вращающийся магнит-ротор.

Взгляните на фото, как выглядит простой двигатель Фарадея, сделанный из винта,  батарейки, провода, и магнитного диска.

Любой человек, знакомый с элементами электротехники, знает, что обычные электродвигатели состоят из неподвижного статора и вращающегося ротора. В качестве статора используются два вида магнитов: постоянный или электромагнит (постоянный или переменный). Как правило в моторах устанавливается переменный электромагнит. Вращение ротора происходит за счет притягивания и отталкивания его от статора, таким образом ротору передается непрерывное движение.

Если ротор притягивается к статору, то и статор притягивается к ротору. Если ротор отталкивается от статора, то и статор отталкивается от ротора. На двигателе Фарадея отсутствует статор. Ротору в этом случае не от чего отталкиваться. В соответствии с известными законами физики  двигатель не должен вращаться. А он вращается.

Униполярный двигатель впервые был продемонстрирован Майклом Фарадеем в 1821 году в Королевском институте в Лондоне.

Рассмотрим несколько конструкций двигателей на неодимовых магнитах. На обычных магнитах такой двигатель не работает.

Первая модель одна из наиболее простейших, такой мотор можно сделать за минуту. В качестве ротора используется обыкновенный саморез и соединенный с ним неодимовый магнит. Ток подается непосредственно от одного полюса батарейки и через провод.

Вторая разработка мотора на неодимовых магнитах, создание которого понятно из видео

Третий вариант двигателя на магните. Неодимовые магниты в этом магазине.

Что нужно для сборки двигателя на магнитах и катушке? Использовано следующее. Одна батарея AAA, некоторое количество обмоточных проводов, два провода, изолента для крепления проводов к контактам батарейки, набор магнитов или один магнит (тогда и катушка поменьше диаметром). А подробное описание и указание на один важный секрет в данном варианте устройства читайте в статье “Сделайте своими руками двигатель на магните”.

Можно и так, не обязательно ставить магниты на батарейку:

Четвертая модель двигателя на неодимовых магнитах на видео, в котором вращается сама батарейка вместе с магнитом.

МАЙКЛ ФАРАДЕЙ (1791-1867)

Английский физик и химик. Майкл Фарадей родился в 1791 году в Ньюингтоне, Англия. Он происходил из бедной семьи и в значительной степени был самоучкой. Посвященный в возрасте четырнадцати лет изучению переплетчика и книготорговца, он использовал эту возможность и много читал. В возрасте двадцати лет он присутствовал на лекциях известного британского ученого сэра Хамфри Дэви, который его очаровал. Он написал Дэви и, наконец, получил работу в качестве помощника.

Несколько лет спустя Фарадей уже делал важные открытия самостоятельно. Ему не хватало хорошей математической основы, но он был непревзойденным как физик-экспериментатор. Первое важное открытие в области электричества, Фарадей сделал в 1821. Два года назад Эрстед обнаружил, что магнитная стрелка отклоняется, когда электрический ток течет через проводник, расположенный близко. Фарадей подумал, что если магнитная стрелка будет прикреплена, шнур будет двигаться. Во время работы над этой идеей ему удалось построить устройство, в котором шнур вращается вокруг магнита, пока электрический ток проходит через кабель. Фактически, Фарадей изобрел первый электродвигатель, первое устройство, которое использует электричество для перемещения объектов. Хотя он очень примитивен, Двигатель Фарадея был прародителем всех электродвигателей, которые в настоящее время используются. Это был огромный прорыв, но его практическое значение оставалось ограниченным, поскольку единственным известным источником электрического тока были примитивные химические батареи. Фарадей был убежден, что должен быть какой-то способ, чтобы использовать магнетизм для генерирования электрического тока, и упорно искал такого метода. Оказалось, что неподвижный магнит не генерирует электрический ток в соседнем проводнике, но в 1831 году Фарадей обнаружил, что если магнит проходит через замкнутую проволочную петлю, ток течет через кабель. Это явление называется электромагнитной индукцией, и открытие закона, регулирующего это явление (закон Фарадея), широко рассматривается как величайшее достижение Фарадея. Открытие Фарадея имело большое значение по двум причинам. Прежде всего, закон Фарадея имеет фундаментальное значение в теории электромагнетизма. Во-вторых, электромагнитная индукция может быть использована для генерации электрического тока, как показал сам Фарадей, построив первый генератор. Современные электрогенераторы, которые обеспечивают электроэнергией наши города и фабрики, конечно, гораздо сложнее, но все они основаны на одном и том же принципе электромагнитной индукции.

Фарадей также внес большой вклад в химию. Он изобрел метод сжижения газов и обнаружил множество различных химических веществ, включая бензол. Еще важнее его открытия в области электрохимии (изучение влияния электрического тока на химические соединения). В результате тщательно проведенных экспериментов Фарадей установил два закона электролиза, которые были названы в его честь. Эти законы составляют основу электрохимии. Он также популяризировал многие важные термины, используемые в этой области, такие как анод, катод, электрод и ион. Фарадей представил такие важные понятия для физики, как линии напряженности магнитного поля и линии напряженности электрического поля. Подчеркивая важность не столько магнитов, сколько полей между ними, он подготовил почву для многих достижений современной физики, в том числе уравнений Максвелла. Фарадей также обнаружил, что изменяется плоскость поляризации света, проходящего через магнитное поле. Это открытие было важно, потому что это был первый сигнал, что есть связь между светом и магнетизмом.

Фарадей был не только очень талантливым человеком, но и очень красивым. Он также был очень хорошим научным пропагандистом. Тем не менее он оставался скромным и не придавал значения славе, деньгам и почестям. Он не принял титул дворянина или позицию председателя Британского королевского общества, которую он предложил. Его брак был долгим и счастливым, но бездетным. Он умер в 1867 году недалеко от Лондона.

izobreteniya.net

Диск Фарадея, униполярная машина, парадокс Фарадея

Изучая диск Фарадея и т.н. «парадокс Фарадея», провел несколько простых опытов и сделал несколько интересных выводов. В первую очередь о том, на что следует обращать больше всего внимания для того, чтобы лучше понять процессы происходящие в этой (и подобных) униполярной машине.

Понимание принципа работы диска Фарадея помогает понять также то, как работают вообще все трансформаторы, катушки, генераторы, электродвигатели (в т.ч. униполярный генератор и униполярный двигатель) и т.п.

В заметке рисунки и подробное видео с разными опытами, иллюстрирующими все выводы без формул и подсчетов, «на пальцах».

Все нижеизложенное — попытка осмысления без претензий на академическую достоверность.

Направление силовых линий магнитного поля

Главный вывод который я для себя сделал: первое, на что стоит всегда обращать внимание в подобных системах — это геометрия магнитного поля, направление и конфигурация силовых линий.

Только геометрия силовых линий магнитного поля, их направление и конфигурация могут внести определенную ясность в понимание процессов, происходящих в униполярном генераторе или униполярном двигателе, диске Фарадея, а также любом трансформаторе, катушке, электродвигателе, генераторе и т.п.

Я для себя распределил степень важности так — 10% физики, 90% геометрии (магнитного поля) для понимания происходящего в этих системах.

Более подробно все описано в видео (см. ниже).

Надо понимать что диск Фарадея и внешняя цепь со скользящими контактами так или иначе образуют хорошо известную со школьных времен рамку — ее образует участок диска от его центра к месту соединения со скользящим контактом у его края, а также вся внешняя цепь (подходящие к контактам проводники).

Направление силы Лоренца, Ампера

Сила Ампера — частный случай силы Лоренца (см. Википедию).

Ниже на двух картинках показана сила Лоренца действующая на положительные заряды во всей цепи («рамке») в поле магнита типа «бублик» для случая когда внешняя цепь жестко соединена с медным диском (т.е. когда скользящие контакты отсутствуют, и внешняя цепь напрямую припаяна к диску).

1 рис. — для случая когда вся цепь вращается внешним механическим усилием («генератор»).
2 рис. — для случая, когда через цепь подается постоянный ток от внешнего источника («двигатель»).

Нажмите на один из рисунков, чтобы увеличить.

Далее чуть подробнее о том как здесь из «генератора» получается полноценный униполярный генератор (без кавычек).

Сила Лоренца проявляется (генерируется ток) только в участках цепи, ДВИГАЮЩИХСЯ в магнитном поле

Униполярный генератор

Итак, поскольку сила Лоренца, действующая на заряженные частицы диска Фарадея или униполярного генератора, будет действовать противоположно на разных участках цепи и диска, то для получения тока из этой машины следует приводить в движение (вращать) только те участки цепи (по возможности), направление силы Лоренца в которых будет совпадать. Остальные участки должны быть либо неподвижны, либо исключены из цепи, либо вращаться в противоположную сторону.

Вращение магнита не изменяет однородность магнитного поля вокруг оси вращения (см. последний раздел), поэтому стоит магнит или вращается — не играет роли (хотя идеальных магнитов не бывает, и неоднородность поля вокруг оси намагниченности, вызванная недостаточным качеством магнита, тоже оказывает некоторое влияние на результат).

Здесь важную роль играет то, какая часть всей цепи (включая подводящие провода и контакты) вращается, а какая неподвижна (т.к. только в движущейся части возникает сила Лоренца). А главное — в какой части магнитного поля находится вращающаяся часть, и из какого участка диска производится съем тока.

Например, если диск будет выступать далеко за пределы магнита, то в выступающей за край магнита части диска можно снять ток направления противоположного току который можно снять в части диска расположенной непосредственно над магнитом.

Униполярный двигатель

Все вышесказанное о генераторе справедливо и для режима «двигатель».

Подавать ток надо по возможности в те части диска, в которых сила Лоренца будет направлена в одну сторону. Именно эти участки надо освободить, предоставив возможность им свободно вращаться и «разорвать» цепь в соответствующих местах, поставив скользящие контакты (см. рисунки далее).

Остальные участки надо по возможности либо исключить, либо минимизировать их влияние.

Видео — опыты и выводы

Время разных этапов этого видео:

3 мин 34 сек — первые опыты

7 мин 08 сек — на что обращать главное внимание и продолжение опытов

16 мин 43 сек — ключевое объяснение

22 мин 53 сек — ГЛАВНЫЙ ОПЫТ

28 мин 51 сек — 2 часть, интересные наблюдения и еще опыты

37 мин 17 сек — ошибочный вывод одного из опытов

41 мин 01 сек — о парадоксе Фарадея

Что от чего отталкивается?

Мы с товарищем-электронщиком долго обсуждали эту тему и он высказал мысль построенную вокруг слова «отталкивается«.
Мысль, с которой я согласен — если что-то начинает движение, то оно от чего-то должно отталкиваться. Если что-то движется, то оно движется относительно чего-то.

Упрощенно говоря, можно сказать, что часть проводника (внешняя цепь или диск) отталкивается от магнита! Соответственно на магнит (через поле) действуют силы отталкивания. Иначе вся картина рушится и теряет логику. Про вращение магнита — см. раздел ниже.

На рисунках (можно кликнуть для увеличения) — варианты для режима «двигатель».
Для режима «генератор» работают те же принципы.

Здесь действие-противодействие происходит между двумя главными «участниками»:

  • магнит (магнитное поле)
  • разные участки проводника (заряженные частицы проводника)

Соответственно, когда диск вращается, а магнит неподвижен, то действие-противодействие происходит между магнитом и частью диска.

А когда магнит вращается вместе с диском, то действие-противодействие происходит между магнитом и внешней частью цепи (зафиксированными подводящими проводниками). Дело в том, что вращение магнита относительно внешнего участка цепи — это тоже самое, что вращение внешнего участка цепи относительно неподвижного магнита (но в противоположную сторону). В этом случае медный диск в процессе «отталкивания» почти не участвует.

Выходит так, что в отличие от заряженных частиц проводника (которые могут двигаться внутри него), магнитное поле жестко связано с магнитом. В т.ч. вдоль окружности вокруг оси намагниченности.
И еще один вывод: сила притягивающая два постоянных магнита — не какая-то загадочная сила перпендикулярная силе Лоренца, а это сила Лоренца и есть. Все дело во «вращении» электронов и той самой «геометрии«. Но это уже другая история…

Вращение «голого» магнита

В конце видео есть забавный опыт, и вывод о том, почему часть электрической цепи можно заставить вращаться, а заставить вращаться магнит «бублик» вокруг оси намагниченности — не получается (при неподвижной электрической цепи постоянного тока).

Проводник можно разорвать в местах противоположного направления силы Лоренца, а магнит разорвать нельзя

Дело в том что магнит и весь проводник (внешняя цепь и сам диск) образуют связанную пару — две взаимодействующие системы, каждая из которых замкнута внутри себя. В случае с проводником — замкнута электрическая цепь, в случае с магнитом — «замкнуты» силовые линии магнитного поля.

При этом, в электрической цепи проводник можно физически разорвать, не нарушая самой цепи (поставив диск и скользящие контакты), в тех местах, где сила Лоренца «разворачивается» в обратном направлении, «отпустив» разные участки электрической цепи двигаться (вращаться) каждый в свою, противоположную друг другу сторону, а разорвать «цепь» силовых линий магнитного поля или магнита, так чтобы разные участки магнитного поля «не мешали» друг другу — видимо невозможно (?). Никаких подобий «скользящих контактов» для магнитного поля или магнита кажется еще не придумали.

Поэтому и возникает проблема с вращением магнита — его магнитное поле представляет собой цельную систему, которая всегда замкнута в себе и неразрывна в теле магнита. В ней противоположные силы на участках, где магнитное поле разнонаправленно, взаимно компенсируются, оставляя магнит неподвижным.

При этом, работа силы Лоренца, Ампера в неподвижно зафиксированном проводнике в поле магнита, уходит видимо не только на нагрев проводника, но и на искажение силовых линий магнитного поля магнита.

КСТАТИ! Интересно было бы провести опыт, в котором через неподвижный проводник, находящийся в поле магнита, пропустить огромный ток, и посмотреть — как будет реагировать магнит. Нагреется ли магнит, размагнитится ли, или может быть он просто разломается на куски (и тогда интересно — в каких местах?).

Все вышеизложенное — попытка осмысления без претензий на академическую достоверность.

Вопросы

Что осталось не до конца ясным и требует проверки:

1. Можно ли все-таки заставить вращаться магнит отдельно от диска?

Если дать возможность и диску, и магниту, свободно вращаться независимо друг от друга, и подать ток на диск через скользящие контакты, то будут ли и диск, и магнит вращаться? И если да, то в какую сторону будет вращаться магнит? Для эксперимента нужен большой неодимовый магнит — его у меня пока нет. С обычным магнитом не хватает силы магнитного поля.

2. Вращение разных частей диска в разные стороны

Если сделать свободно вращающимися независимо друг от друга и от неподвижного магнита — центральную часть диска (над «дыркой бублика» магнита), среднюю часть диска, а так же часть диска выступающую за край магнита, и подать ток через скользящие контакты (в т.ч. скользящие контакты между этими вращающимися частями диска) — будут ли центральная и крайняя часть диска вращаться в одну сторону, а средняя — в противоположную?

3. Сила Лоренца внутри магнита

Действует ли сила Лоренца на частицы внутри магнита, магнитное поле которого искажается внешними силами?

dummyluck.com

История создания электродвигателя

Электромеханика является относительно молодой, по историческим меркам, отраслью науки и техники.

1800, Вольта

Итальянский физик, химик и физиолог, Алессандро Вольта, первый в мире создал химический источник тока.

1820, Эрстед

Датский ученый, физик, Ханс Кристиан Эрстед, обнаружил на опыте отклоняющее действие тока на магнитную стрелку.

1821, Фарадей

Первый электродвигатель Фарадея, 1821 г.

Британский физик-экспериментатор и химик, Майкл Фарадей, опубликовал трактат «О некоторых новых электромагнитных движениях и о теории магнетизма», где описал, как заставить намагниченную стрелку непрерывно вращаться вокруг одного из магнитных полюсов. Эта конструкция впервые реализовала непрерывное преобразование электрической энергии в механическую. Принято считать ее первым электродвигателем в истории.

1822, Ампер

Французский физик, Андре Мари Ампер, открыл магнитный эффект соленоида (катушки с током), откуда следовала идея эквивалентности соленоида постоянному магниту. Среди прочего Ампер предложил использовать железный сердечник, помещенный внутрь соленоида, для усиления магнитного поля. В 1820 году им был открыт закон Ампера.

1822, Барлоу

Английский физик и математик, Питер Барлоу, изобрел колесо Барлоу, по сути, униполярный электродвигатель.

1825, Араго

Французский физик и астроном, Доминик Франсуа Жан Араго, опубликовал опыт показывающий, что вращающийся медный диск заставляет вращаться магнитную стрелку, подвешенную над ним.

1825, Стёрджен

Британский физик, электротехник и изобретатель, Уильям Стёрджен, в 1825 изготовил первый электромагнит, который представлял из себя согнутый стержень из мягкого железа с обмоткой из толстой медной проволоки.

Вращающееся устройство Йедлика, 1827/28 гг.

1827, Йедлик

Венгерский физик и электротехник, Аньош Иштван Йедлик, изобрел первую в мире динамо-машину (генератор постоянного тока), однако практически не объявлял о своем изобретении до конца 1850-х годов.

1831, Фарадей

Английский физик, Майкл Фарадей, открыл электромагнитную индукцию, то есть явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него. Формулировка закона электромагнитной индукции.

1831, Генри

Американский физик, Джозеф Генри, независимо от Фарадея обнаружил взаимоиндукцию, но Фарадей раньше опубликовал свои результаты.

1832, Пикси

Генератор постоянного тока Пикси

Француз, Ипполит Пикси, сконструировал первый генератор переменного тока. Устройство состояло из двух катушек индуктивности с железным сердечником напротив которых располагался вращающийся магнит подковообразной формы, который приводился в движение вращением рычага. Позже для получения постоянного пульсирующего тока к этому устройству был добавлен коммутатор.

Электродвигатель Стёрджена
Strurgejn’s Annals of Electricity, 1836/37, vol. 1

1833, Стёрджен

Британский физик, Уильям Стёрджен, публично продемонстрировал электродвигатель на постоянном токе в Марте 1833 года в Аделаидской галерее практической науки в Лондоне. Данное изобретение считается первым электродвигателем, который можно было использовать.

1833, Ленц

В начале в электромеханике разграничивали магнито-электрические машины (электрические генераторы) и электро-магнитные машины (электрические двигатели). Российский физик (немецкого происхождения), Эмилий Христианович Ленц, опубликовал статью о законе взаимности магнито-электрических явлений, то есть о взаимозаменяемости электрического двигателя и генератора.

Май 1834, Якоби

Первый вращающийся электродвигатель. Якоби, 1834

Немецкий и русский физик, академик Императорской Санкт-Петербургской Академии Наук, Борис Семенович (Мориц Герман фон) Якоби, изобрел первый в мире электродвигатель с непосредственным вращением рабочего вала. Мощность двигателя составляла около 15 Вт, частота вращения ротора 80-120 оборотов в минуту. До этого изобретения существовали только устройства с возвратно-поступательным или качательным движением якоря.

1836 — 1837, Дэвенпорт

Проводя эксперименты с магнитами, американский кузнец и изобретатель, Томас Дэвенпорт, создает свой первый электромотор в июле 1834 года. В декабре этого же года он впервые продемонстрировал свое изобретение. В 1837 году Дэвенпорт получил первый патент (патент США №132) на электрическую машину.

1839, Якоби

Используя электродвигатель питающийся от 69 гальванических элементов Грове и развивающий 1 лошадиную силу, в 1839 г. Якоби построил лодку способную двигаться с 14 пассажирами по Неве против течения. Это было первое практическое применение электродвигателя.

1837 — 1842, Дэвидсон

Шотландский изобретатель, Роберт Дэвидсон, занимался разработкой электродвигателя с 1837 года. Он сделал несколько приводов для токарного станка и моделей транспортного средства. Дэвидсон изобрел первый электрический локомотив.

1856, Сименс

Немецкий инженер, изобретатель, ученый, промышленник, основатель фирмы Siemens, Вернер фон Сименс изобрел электрический генератор с двойным T-образным якорем. Он первый разместил обмотки в пазах.

1861-1864, Максвелл

Британский физик, математик и механик, Джеймс Клерк Максвелл, обобщил знания об электромагнетизме в четырех фундаментальных уравнениях. Вместе с выражением для силы Лоренца уравнения Максвелла образуют полную систему уравнений классической электродинамики.

1871-1873, Грамм

Бельгийский изобретатель, Зеноб Теофил Грамм, устранил недостаток электрических машин с двух-Т-образным якорем Сименса, который заключался в сильных пульсациях вырабатываемого тока и быстром перегреве. Грамм предложил конструкцию генератора с самовозбуждением, который имел кольцевой якорь.

1885, Феррарис

Итальянский физик и инженер, Галилео Феррарис, изобрел первый двухфазный асинхронный электродвигатель. Однако Феррарис думал, что такой двигатель не сможет иметь КПД выше 50%, поэтому он потерял интерес и не продолжал улучшать асинхронный электродвигатель. Считается, что Феррарис первым объяснил явление вращающегося магнитного поля.

1887, Тесла

Американец сербского происхождения, изобретатель, Никола Тесла, работая независимо от Феррариса, изобрел и запатентовал двухфазный асинхронный электродвигатель с явно выраженными полюсами статора (сосредоточенными обмотками). Тесла ошибачно считал что двухфазная система токов оптимальна с экономической точки зрения среди всех многофазных систем.

1889-1891, Доливо-Добровольский

Русский электротехник польского происхождения, Михаил Осипович Доливо-Добровольский, прочитав доклад Феррариса о вращающемся магнитном поле изобрел ротор в виде «беличьей клетки». Дальнейшая работа в этом направлении привела к разработке трехфазной системы переменных токов и трехфазного асинхронного электродвигателя, получившего широкое применение в промышленности и практически не изменившегося до нашего времени.

Широкое внедрение электромеханических устройств в России начинается после Октябрьской революции 1917 г., когда электрификация всей страны стала основой технической политики нового государства. Можно сказать, что XX век стал веком становления и широкого распространения электромеханики.

Выбор между двухфазной и трехфазной системой

Доливо-Добровольский справедливо считал, что увеличение числа фаз в двигателе улучшает распределение намагничивающей силы по окружности статора. Переход к трехфазной системы от двухфазной уже дает большой выигрыш в этом отношении. Дальнейшее увеличение числа фаз нецелесообразно, так как приводит к значительному увеличению расходов металла на провода.

Для Теслы же казалось очевидным, что чем меньше число фаз, тем меньше требуется проводов, и следовательно тем дешевле устройство электропередачи. При этом двухфазная система передачи требовала применения четырех проводов, что представлялось не желательным в сравнении с двух проводными системами постоянного или однофазного переменного токов. Поэтому Тесла предлагал применять трех проводную линию для двухфазной системы, делая один провод общим. Но это не сильно уменьшало количество затрачиваемого на систему металла, так как общий провод должен был быть большего сечения.

Таким образом трехфазная система токов предложенная Доливо-Добровольским была оптимальной для передачи энергии. Она практически сразу нашла широкое применение в промышленности и до наших дней является основной системой передачи электрической энергии во всем мире.

engineering-solutions.ru

Униполярный двигатель Фарадея — Размышлизмы разумного человека

06:36 pm: Униполярный двигатель Фарадея

Прогулки про странным сайтам посвященным, к примеру, «исследованиям
альтернативных источников энергии и транспортных средств. Свободной энергии, вечным
двигателям, антигравитации и многому другому
» изредка дают любопытные результаты.

Вот здесь,
например, предлагается построить некий простой мотор Стефана Маринова. Уж
не знаю, кто такой Стефан Маринов, но на картинке изображен т.н. униполярный двигатель
Фарадея и даже сама картинка поперта с Википедии
из статьи «Homopolar motor».
Конструкция мотора до крайности проста и его изготовление требует покупки разве что сильного магнита
— чем сильнее, тем лучше. Это если под рукой не окажется аудиодинамика или наушников,
которых не жалко, так что можно вытащить магнит оттуда.

А вот тут можно найти еще
более детальные инструкции по изготовлению такого мотора.

Для тех кто не читает по-английски:

Весь мотор состоит из дискообразного магнита (нижняя шайба на рисунке) изготовленного
из токопроводящего материала, шурупа (обеспечивающего точечный подвесной контакт
для минимизации трения), источника питания (батарейка типа D, но подойдет подойдет любой
источник питания выдающий ток в 1-10А в режиме короткого замыкания) являющегося одновременно
и контактной площадкой (эти функции можно развести, если есть желание) и проволочки
подающей электричество от другой стороны батарейки.

При достаточном токе и силе магнита магнит начинает вращаться и раскручивается
до нескольких тысяч оборотов в минуту. Этот эффект связан с возникновением т.н.
силы Ампера в проводнике через который течет ток перпендикулярный магнитному полю.
Направление силы Ампера перпендикулярно как линиям магнитного поля, так и направлению
тока (правило правой руки) и раскручивает диск магнита. При изменении полярности
направление вращения меняется на противоположное.

Конструкцию двигателя можно менять и усложнять — например, магнит может не быть
токопроводящим, достаточно иметь немагнитный диск из токопроводящего материала закрепленный
сверху на той же оси так, чтобы он был соединен с шурупом. Второй контакт (проволочка)
может не касаться металла непосредственно, чтобы избежать механического трения —
например, круглая крышка банки из-под кофе (металлическая или пластиковая) с налитым
в нее электропроводящей жидкостью (раствором медного купороса, к примеру) помещенная
между магнитом и шурупом обеспечит замечательный жидкостный контакт практически
без трения. Магнит можно заменить электромагнитом. И т.д.

Я видел работающий униполярный двигатель Фарадея — он действительно работает
и действительно так как описано. Собственно, я лично и не сомневался, что будет,
хотя анализ принципа работы униполярного двигателя может, вообще-то, вызвать некоторые вопросы
и недоразумения типа рассмотренных в разделе «Sources
of Confusion». Однако в этом разделе, как впрочем, и во многих других статьях и
темах форумов посвященных этому двигателю, не упоминается самая главная проблема
этот двигатель
нарушает
закон
сохранения момента импульса
.

Любой, кому доводилось разбирать любой электродвигатель знает, что они состоят
из неподвижного статора
и вращающегося ротора.
Статор может быть сделан из постоянного магнита как в простейших моторчиках
типа тех, что стояли в советских электрических игрушках или быть электромагнитом —
постоянным или переменным. Ротор практически всегда — переменный электромагнит.
Движение ротора происходит за счет притягивания и/или отталкивания его от статора,
причем в определенных фазах вращения ротора намагничивание ротора, а возможно и статора
меняется, так что притягивание и/или отталкивание продолжается сообщая ротору непрерывное
вращение.

В предыдущем абзаце обратите внимание на слова — притягивание и отталкивание.
Если ротор притягивается к статору, то и статор притягивается к ротору. Если ротор
отталкивается от статора, то и статор отталкивается от ротора. В полном соответствии с

законом Ньютона. Если вам когда-нибудь приходилось держать в руках электромотор
в стадии начальной раскрутки, то вы могли чувствовать, что корпус (со статором внутри него)
пытается провернуться в направлении противоположном направлению вращения ротора.
Тот самый
закон
сохранения момента импульса. А теперь посмотрите на двигатель Фарадея
— у него нет статора. Ему не от чего отталкиваться. В соответствии с законом сохранения импульса ни магнит,
ни двигатель в целом не должны вращаться. А он вращается.
Наблюдается так называемое
безопорное вращение, в терминологии «альтернативщиков».

Этому эффекту без малого 200 лет и он до сих пор не объяснен официальной
наукой. Более того, она старается о нем просто не упоминать (кто сказал — «Нонконспирология»?).
И только любители «свободной энергии, вечных двигателей, и антигравитации»
говорят о нём, но кто же будет слушать этих юродивых, верно?

Между тем, этот же эффект может быть использован для изготовления линейного
двигателя
(задача чисто инженерная), что позволяет создать так называемый безопорный
двигатель
— т.е. двигатель не нуждающийся в отбрасывании от себя других масс
в любом виде (так, колесо отбрасывает от себя Землю, винтовой самолет — воздух,
ракета — разогретый газ и т.п.). Такой двигатель будет нарушать родственный закон —
закон
сохранения импульса. Сравните:

Tags: важное, наука

nkgb.livejournal.com

Модернизация диска Фарадея: Создание эффективных униполярных генераторов

Униполярный генератор, динамо машина, диск Фарадея: не важно, как вы его называете, в любом случае, униполярный генератор — это интересное устройство. В отличии от большинства других устройств того же назначения, униполярные генераторы способны вырабатывать большой ток при низком напряжении и выделять большое количество электроэнергии. Из-за таких характеристик, учёные работали над улучшением этого устройства с момента его изобретения. Вы также можете провести анализ рабочих характеристик униполярного генератора с использованием программного обеспечения COMSOL Multiphysics®.

Краткая история униполярных генераторов

Спустя 10 лет после прорыва в области электродвигателей в 1831 году Майкл Фарадей создал свой первый генератор. Первая установка (которую позже назвали униполярным генератором) была очень простой. Она состояла из медного диска, который вращался между полюсами постоянного магнита. Несмотря на то, что генератор Фарадея успешно демонстрировал принцип действия электромагнитной индукции, на практике он был слишком неэффективен из-за больших потерь и возникновения противотоков.


Схематичное изображение одного из первых униполярных генераторов, также известного, как диск Фарадея. Изображение имеется в свободном доступе в США, взято из Wikimedia Commons.

На протяжении многих лет учёные пытались улучшить производительность униполярных генераторов. Одним из самых известных примеров является разработанная Николой Теслой конструкция, в которой металлический ремень разделял параллельные диски на параллельных валах. Такая конструкция помогла уменьшить потери на трение, что значительно повысило эффективность устройства.

В 1950-е годы было обнаружено, что униполярные генераторы отлично очень полезны для импульсных силовых установок, так как они могут запасать энергию в течении длительного периода и практически мгновенно выделять её. Данное открытие возобновило интерес к генераторам, а учёные начали создавать масштабные конструкции генераторов. Один из них был создан сэром Майклом Олифантом в австралийском Национальном университете. Этот огромный генератор использовался на протяжении 20 лет и мог выдавать ток до 2 МА.


Некоторые элементы созданного сэром Олифантом униполярного генератора, который был разобран и выставлен на всеобщее обозрение. Изображение предоставлено Martyman, взято из англоязычной Википедии. Доступно по лицензии CC BY-SA 3.0 из Wikimedia Commons.

Не смотря на то, что униполярные генераторы прошли долгий путь и назывались различными именами изобретателей, учёные и инженеры до сих пор продолжают работать над улучшением производительности этих устройств. Одним из подходов к такой модернизации, конечно, является численное электродинамическое моделирование…

Моделирование простого униполярного генератора с использованием модуля AC/DC пакета COMSOL Multiphysics®

Давайте рассмотрим учебный пример, в котором представлена простая 3D модель униполярного генератора. Он состоит из вращающегося диска радиусом 10 см, который помещён в однородное магнитное поле величиной 1 Тл. Медный проводник соединяет край диска с его центром, чтобы создать замкнутую цепь для протекания тока, вызванного вращением проводника в постоянном магнитном поле (Lorentz current).


Геометрия модели униполярного генератора.

Обратите внимание, что угловая скорость диска — 1200 об/мин, а протекающий через проводник ток равен примерно 45.16 кА. Для моделирования вращающегося диска можно использовать узел Lorentz term (вклад силы Лоренца) по двум причинам:

  1. В диске нет магнитных источников, которые вращаются вместе с ним
  2. Диск ничем не ограничен и направление его движения не изменяется

В данном случае распределение тока не изменяется при вращении диска.

Анализ результатов электродинамического расчета

После проведения стационарного расчёта можно проанализировать распределение тока в диске и проводнике. Анализируя полученные результаты для нормы плотности тока и его направления, вы можете найти способы улучшения конструкции униполярного генератора.

Норма плотности тока (слева) и направление тока (справа) в медном проводнике и в диске.

Более того, можно изучить влияние магнитного поля, например, на вращение. Ниже приведён график распределения общей и индуцированной магнитной индукции в системе.


Из векторной диаграммы можно заметить, что униполярный генератор влияет на магнитное поле вокруг (возмущает его). Скорость колеса изображена бирюзовыми стрелками на поверхности.

Резистивные потери играют ключевую роль в эффективности таких генераторов, поэтому важно их минимизировать. На графике ниже продемонстрированы расчетные потери в проводящих частях генератора, которые легко получить в результате моделирования.


Резистивные потери в диске и в проводнике.

Используя электродинамическое моделирование, инженеры могут модернизировать конструкции униполярных генераторов, улучшать их производительность путём уменьшения потерь на трение или изменения распределения магнитного поля.

Дальнейшие шаги

Чтобы скачать учебный пример, представленный в этой заметке, нажмите на кнопку ниже. Вы окажетесь в Галерее приложений, где сможете войти в свою учетную запись COMSOL Access и загрузить MPH-файл, а также ознакомиться с пошаговыми инструкциями по сборке модели.

Дополнительные ресурсы
  • Узнайте большое о моделировании генераторов и двигателей в корпоративном блоге COMSOL:
  • Узнайте, что ещё вы можете смоделировать с использованием модуля AC/DC

www.comsol.ru

Вараксина Е., Майер Проф. В. | Учебные униполярные электродвигатели

Эксперимент

Е. И.
Вараксина,
ГГПИ им. В.Г.Короленко, г. Глазов, Удмуртская респ.;
Проф. В. В.
Майер,
, ГГПИ им. В.Г.Короленко, г. Глазов, Удмуртская Респ.

Предлагаются учебные экспериментальные исследования униполярных электродвигателей. Подробно описаны конструкции приборов и технологии их изготовления. Внимание читателя обращается на богатейшую информацию о моделях униполярных двигателей в интернете. Статья написана так, что её можно непосредственно рекомендовать учащимся для изучения и последующего планирования исследовательского проекта. При необходимости учитель может давать школьникам отдельные задания, используя для их формулировки соответствующие фрагменты статьи.

В школе изучают коллекторный электродвигатель постоянного тока. Он состоит из неподвижного статора, вращающегося ротора и коллектора, обеспечивающего питание двигателя электрическим током. В качестве статора используют двухполюсный постоянный магнит или электромагнит. Ротор представляет собой электромагнит, ток на который подаётся через полукольца и щётки, образующие коллектор. Однако первый электродвигатель, созданный в 1821 г. великим Фарадеем, был униполярным: в нём использовался только один полюс магнита, коллектор вообще отсутствовал. Экспериментальным исследованиям униполярных электродвигателей и посвящена настоящая статья.

1. Униполярный электродвигатель

Рис. 1. Демонстрационный униполярный электродвигатель


Известно немало различных конструкций униполярных электродвигателей. Один из приборов, применявшихся для демонстрации принципа действия униполярного электродвигателя, изображён на рис. 1. В нём вокруг северного полюса постоянного магнита 1 вращается проволочная рамка 2. Середина рамки соединена с остриём, которое погружено в чашечку со ртутью 3, концы рамки опущены в кольцевой сосуд с ртутью 4.


Электрический ток от правой клеммы проходит через центральную металлическую стойку, ртутный контакт 3, ветви рамки 2, кольцевой сосуд с ртутью 4 и боковую металлическую стойку к левой клемме. Воспользовавшись правилом левой руки, нетрудно сообразить, что для указанных на рисунке положения северного магнитного полюса и направления тока на рамку действует пара сил, заставляющая её вращаться в направлении, показанном стрелками.

2. Обсуждение конструкции униполярного двигателя


Рассмотренную модель униполярного двигателя в настоящее время нельзя использовать для воспроизведения в школе или дома. Дело не только в том, что она конструктивно сложна. Главная причина в том, что пары ртути ядовиты, поэтому применение ртути в учебных опытах неприемлемо.


Ртуть в описанных приборах выполняет две функции. Во-первых, обладая хорошей проводимостью, ртуть обеспечивает надёжный электрический контакт с небольшим электрическим сопротивлением между подвижными и неподвижными проводниками. Во-вторых, являясь при комнатной температуре жидкостью, создаёт сравнительно небольшое механическое сопротивление движущимся в ней проводникам.


Отсюда следует, что для создания пригодного для учебных опытов прибора нужно решить проблему хорошего контакта и малого сопротивления между движущимися проводниками.


Сразу приходит в голову идея использовать в кольцевом сосуде вместо ртути доступный электролит, например, водный раствор медного купороса. А как быть со ртутным контактом 3? Нужно, чтобы сила трения, возникающая при вращении рамки на острие, была мала, а контакт тем не менее был надёжным.


Нетрудно сообразить, что этим противоречивым требованиям может удовлетворить магнитный контакт, состоящий из постоянного стального магнита и примагниченного к его полюсу стального острия.

3. Учебная модель униполярного двигателя

Рис. 2. Основные элементы учебной модели униполярного двигателя


Для изготовления учебной модели униполярного двигателя придётся немного потрудиться. Все элементы, необходимые для сборки модели и выполнения экспериментального исследования, изображены на рис. 2.


Из медной проволоки диаметром около 1 мм согните П-образную рамку размером примерно 80 × 200 мм. Середину рамки и концы медной проволоки очистите от изоляции. От стального гвоздя диаметром 3–4 мм отрежьте кусок длиной 2–3 см и хорошо заострите один его конец. Получившийся стальной сердечник припаяйте к середине рамки из медной проволоки и подвесьте его к полюсу зажатого в штативной лапке стального полосового или подковообразного магнита. К другому полюсу магнита примагнитьте стальную шайбу с прикрученным к ней многожильным медным проводом в полихлорвиниловой изоляции. Толкните рамку, и вы увидите, как легко она колеблется и крутится на магнитном подвесе.


Подберите цилиндрический пластиковый сосуд диаметром примерно 110 мм и глубиной 40 мм. В центре дна сосуда сделайте круглое отверстие и посредством резинового колечка герметично закрепите в нём медный электрод диаметром 4–6 мм. Вместо медного можно использовать угольный электрод, в качестве которого подойдёт анод одного из элементов батареи карманного фонаря. С частью электрода, выступающей из дна сосуда вниз, соедините многожильный медный провод в изоляции. Сосуд установите на кольцевой керамический магнит диаметром 80 мм от старого динамика.




Статья подготовлена при поддержке салона свадебной и вечерней моды «моя Леди». Если Вы решили приобрести качественный и надежный костюм или платье, то оптимальным решением станет обратиться в салон «моя Леди». На сайте, расположенном по адресу www.salonmylady.ru, вы сможете, не отходя от экрана монитора, заказать офисные платья и костюмы по выгодной цене. Более подробную информацию о ценах и акциях действующих на данный момент вы сможете найти на сайте www.salonmylady.ru.

Рис. 3. Учебная модель униполярного двигателя в работе


Из пенопласта или другого материала малой плотности сделайте диск с отверстием в центре так, чтобы он мог свободно плавать на поверхности жидкости вокруг угольного электрода. Возьмите также две батарейки карманного фонаря на 4,5 В и соедините их последовательно. В стакане воды приготовьте насыщенный раствор медного купороса. Теперь всё готово для эксперимента.


В стоящий на магните пластиковый сосуд налейте раствор медного купороса. Над сосудом в магнитном держателе подвесьте проволочную рамку так, чтобы её оголенные концы погрузились в электролит. Провода, идущие от магнитного держателя и от угольного электрода, соедините с полюсами одной батарейки так, чтобы на прибор было подано напряжение 4,5 В. Если всё сделано правильно, вы увидите, что рамка начинает медленно вращаться вокруг своей оси!


Увеличьте напряжение – рамка начнёт крутиться значительно быстрее. Понятно, что если у вас под руками имеется источник, дающий большее напряжение, вы можете ещё увеличить скорость вращения ротора своего униполярного двигателя. Смените полярность напряжения – и рамка начнёт крутиться в противоположную сторону.


Посмотрите в сосуд с жидкостью: вы видите, что электролит также вращается, но в сторону, противоположную вращению рамки. Чтобы лучше продемонстрировать это явление, поместите на поверхность электролита плавающий диск: он будет крутиться в одну сторону, а рамка – в противоположную (рис. 3)!

4. Современные постоянные магниты


Успех построенной вами модели униполярного электродвигателя в значительной мере обеспечен мощным магнитным полем, создаваемым кольцевым керамическим магнитом. Основой этого магнита является феррит – керамический ферромагнитный материал, получивший широкое распространение около полувека назад.

Рис. 4. Внешний вид неодимовых магнитов


Однако за прошедшие после создания ферритовых магнитов десятилетия техника шагнула далеко вперёд. Современные неодимовые магниты, которые изготавливаются из сплава редкоземельного металла неодима c железом и бором (NdFeB), не идут ни в какое сравнение с керамическими. Они обладают огромной остаточной магнитной индукцией и весьма значительной коэрцитивной силой. Кроме того, поверхности этих магнитов покрыты защитным проводящим слоем. Сфера применения неодимовых магнитов настолько обширна, что легче указать те области, в которых эти магниты пока не используются.


Неодимовые магниты небольших размеров (рис. 4) вполне доступны по цене, и нет ничего проще, как приобрести их в интернет-магазине. Будем считать, что в вашем распоряжении имеется несколько неодимовых магнитов с продольной поляризацией в виде никелированных дисков или шайб диаметром 8–19 мм и толщиной 2–8 мм. На всякий случай напомним, что небольшие неодимовые магниты цилиндрической формы можно извлечь из вышедших из строя миниатюрных динамиков, телефонов и другой электронной техники.


5. Современные модели униполярного двигателя


Теперь приступим к созданию неодимового аналога двигателей, изображённых на рис. 1, 3.

Рис. 5. Униполярный двигатель с неодимовыми магнитами: а – верхний контакт отсутствует, т.к. на катоде элемента лежит изолирующая прокладка; б – прокладка убрана, двигатель работает


К положительному полюсу гальванического элемента 1 примагнитьте один или несколько неодимовых магнитов 2 (рис. 5, a). Из медной проволоки диаметром около 1 мм согните рамку 3, форма которой понятна из фотографии. Очистите от изоляции середину и концы рамки. Установите середину рамки на отрицательный полюс элемента так, чтобы её концы слегка касались боковой поверхности магнита. Как только вам удастся уравновесить рамку и обеспечить такой электрический контакт, что по ней пойдёт ток, рамка начнёт вращаться вокруг оси гальванического элемента (рис. 5, б)!


Чтобы вращение было заметно издали, к рамке можно приклеить полоски разноцветной изоленты.

6. Впечатляющая демонстрация униполярного двигателя


Размышляя об униполярном двигателе, мы пришли к выводу, что было бы интересно разработать такую конструкцию, которая обеспечивает вращение массивного ротора. Но такой ротор нужно ещё сделать. А что, если вместо металлического ротора использовать массивные гальванические элементы?

Рис. 6. Демонстрационный униполярный двигатель с массивным ротором


На рис. 6, а показано, к чему привели мысли о мощном униполярном двигателе. Демонстрационную модель униполярного двигателя соберите так. В муфте универсального штатива горизонтально закрепите стальной никелированный стержень 1 и к нему через стальной шарик 2 диаметром 8 мм от подшипника подвесьте неодимовый магнит 3 диаметром 10 мм и толщиной 2 мм. К магниту присоедините анод гальванического элемента 4 на 1,5 В. К первому гальваническому элементу посредством такого же неодимового магнита 5 присоедините второй элемент 6 так, чтобы оба элемента были включены последовательно. На катод второго элемента навесьте 2–3 неодимовых магнита 7 диаметром 19 мм и толщиной 6 мм. С помощью стальной шайбы на магнитах закрепите изогнутую из толстой бумаги П-образную полоску 8, служащую индикатором вращения. На стержне 1 изолентой закрепите оголённый конец многожильного провода 9 в полихлорвиниловой изоляции, скрученного в спираль для придания ему упругих свойств.


Второй оголённый конец многожильного провода приведите в соприкосновение с боковой поверхностью неодимовых магнитов, висящих на последнем элементе. При этом батарея из последовательно соединённых элементов приходит в быстрое вращение вокруг своей оси (рис. 6, б)!


На зрителей опыт производит сильное впечатление, поскольку, на первый взгляд, отсутствует причина, заставляющая массивную батарею вращаться столь энергично. Вместо двух элементов в опыте можно использовать один, три или четыре последовательно соединённых неодимовыми магнитами гальванических элементов.


В заключение заметим, что нет физических явлений, которые не нашли бы практического применения. Из самых общих соображений вам должно быть ясно, что униполярный электродвигатель может служить и электрогенератором. В производствах, для которых нужны токи силой в сотни тысяч и даже миллионы ампер используют униполярные генераторы, подобные тем машинам, с которыми вы имели дело. Но подробности в следующий раз.

7. Для самостоятельного исследования


1. Магниты и магнитное поле. Какие бывают магниты и как их изготавливают? Что такое остаточная магнитная индукция? Что понимают под коэрцитивной силой? Чему равна магнитная энергия? Ответы на эти и многие другие вопросы вы найдёте на сайте www.valtar.ru/, где очень интересно и вполне доступно рассказано о современных магнитах и магнитном поле.


2. Неодимовые магниты. Узнать, какие неодимовые магниты имеются в продаже, вы сможете на сайте www.magnitos.ru.


3. Униполярные двигатели. На сайте www.youtube.com/results?search_query=homopolar+motor&search=Search имеется видеоинформация о многочисленных моделях униполярного двигателя, построенных зарубежными учёными-физиками и любителями физики. С этими моделями полезно познакомиться, если вы хотите придумать что-нибудь новенькое.


4. Направления вращения элементов униполярного двигателя. Пользуясь правилом левой руки, определите направления силы Лоренца, действующей на положительные и отрицательные ионы электролита, рис. 3. Определите направление силы Лоренца, действующей на электроны, перемещающиеся в проволочной рамке. Сопоставьте полученные выводы с результатами эксперимента.


5. Сила Ампера. Допустим, что остаточная магнитная индукция вашего неодимового магнита 1,2 Тл, его диаметр 19 мм, сила тока, проходящего по поверхности магнита, 1 А. Оцените модуль силы, приводящей во вращение ротор униполярного двигателя, рис. 6.

Продолжение

следует

fiz.1sept.ru

Парадокс Фарадея — Бортжурнал безупречной биологической машины

Считается, что в 1831 году Майкл Фарадей изобрёл первую динамо-машину, которая носит имя диск Фарадея. На самом деле самое первое динамо было изобретено Питером Барлоу в 1822 году и носит название колесо Барлоу и они с Фарадеем переписывались на этот счёт. Но Фарадей пошёл заметно дальше Барлоу, сформулировал закон электромагнитной индукции и исследовал это дело вдоль и поперёк. То есть первое в истории человечества устройство, которое могло непрерывно преобразовывать электрическую энергию в механическую и обратно (т.е. первый мотор и генератор) были изобретены 181 год назад. Вот так выглядит оригинальная зарисовка Барлоу:

Зубчатое колесо (на самом деле в зубьях нет необходимости) на проводящей скобе; подковообразный магнит, создающий осевое поле; ванночка со ртутью. Батарея постоянного тока подключается к металлической скобе, через которую электрический ток подаётся к оси колеса и к ванночке со ртутью, в которую опущена внешняя сторона колеса Барлоу.

Ток протекает по радиусу, взаимодействует с перепендикулярным ему магнитным полем постояннго магнита, в результате чего возникает сила (момент силы) направленная перпендикулярно радиусу колеса, по касательной, которая начинает вращать колесо. Это простейший электрический мотор.

Если начать непрерывно крутить колесо с помощью внешнего источника механической энергии а внешнюю цепь замкнуть, то в ней потечёт электрический ток. Чем большую мощность потребляет внешняя цепь, тем сложнее будет вращать колесо. Это простейший генератор.

В чём же заключается парадокс Фарадея?

Если взять круглый постоянный магнит и проводящий диск, собрать простой диск Фарадея и включить его в качестве генератора (крутить внешней силой), возникают интересные возможности:

1. Зафиксируем диск постоянного манита и будем вращать диск Фарадея (ротор генератора) — во внешней цепи начнёт протекать магнитное поле.
2. Зафиксируем диск и начнём вращать магнит: во внешней цепи не возникает никакого тока, хотя ситуация на вид симметрична — есть относительное движение магнита и диска.
3. Самый интересный вариант: соединим магнит и диск и начнём их вращать вместе — во внешней цепи снова начнёт протекать ток, мы снова создали униполярный генератор.

В чём парадокс? Во-первых закон магнитной индукции утверждает, что E = — dФ/dt. То есть генерируемое напряжение есть изменение магнитного потока по времени взятое с обратным знаком. Но во всех трёх случаях формально магнитный поток одинаков и не изменяется, поэтому и производная по времени должна быть равна нулю. Но если подумать о магнитном поле, как о линиях магнитного поля (как их всегда рисуют на разных картинках), то в принципе чем быстрее любой из радиусов диска пересекает эти линии, тем больше будет генерируемое напряжение. То есть чем быстрее вращается диск относительно неподвижного магнитного поля, тем больше должно генерироваться электричества. НО, тогда в случае два возникает вопрос о том, почему силовые линии магнитного поля вращающегося магнита не вызывают магнитной индукции, а в случае три — вызывают, хотя во втором случае магнит вращается, а в третьем не вращается.

Тут сразу же возникает вопрос о том, что силовые линии постоянного магнита НЕ ВРАЩАЮТСЯ вместе с вращающимся магнитом. И опыты типа 2 и 3 красноречиво на это намекают. Потому что если бы силовые линии магнита вращались вместе с магнитом, то тока не было бы в случае 3, а в случае два он бы имел место. Как я понимаю, до сих порямых доказательств или опровержений этого факта нет. Такие курские магнитные аномалии даёт наука в своих законах 🙂

arky-titan.livejournal.com