Эл схема принципиальная – Схемы электрические принципиальные | Скачать чертежи, схемы, рисунки, модели, техдокументацию

ПРИНЦИПИАЛЬНАЯ СХЕМА

   Одним из обязательных умений радиолюбителя, как впрочем и любого человека, непосредственно связанного с ремонтом или обслуживанием электрической и электронной техники, является умение читать принципиальные электрические схемы. Что же такое принципиальная схема? 

   Это схема, в которой каждая деталь обозначается графически, и после изучения которой, нам становится ясно, каким образом они все соединяются между собой. Принципиальные схемы являются важнейшими из схем, так как они позволяют понять, как функционирует устройство в целом. Вы не найдете на принципиальных схемах изображения самого устройства, с клеммами или выводами, к которым паяются или зажимаются под винтовое соединение провода, для этого служат монтажные схемы. На рисунке ниже изображена монтажная схема подключения электросчетчика:

   Как нам известно, из школьного курса физики, соединение на схеме, в месте пересечения проводов обозначается жирной точкой.

   Такое же пересечение проводов без точки означает, что соединения в данном месте нет. Есть ряд правил, по которым составляются принципиальные схемы, например входные части в устройстве, принято располагать в левой части схемы, а выходные в правой части. Это можно видеть на примере простейшего усилителя на одном транзисторе, части входных цепей у нас выделены красным, а выходных зеленым:

   Таким обозначением, как на рисунке ниже обозначается, любой источник питания постоянного тока. Это может быть как батарейки, так и сетевой блок питания. Длинной чертой обозначается при этом положительный полюс источника питания или плюс, а короткой отрицательный полюс или минус. 

   Такое обозначение на схемах обозначает батарею из нескольких соединенных последовательно гальванических элементов (батареек).

   На следующем рисунке мы можем видеть обозначение, которое может, в зависимости от того, в какой схеме используется, означать как кнопку с фиксацией или без фиксации, однополосный тумблер, или клавишный выключатель, так и контакт какого либо устройства, например реле.

   Контакты реле могут быть, как свободно замкнутыми, так и свободно разомкнутыми. Поясню, что свободно разомкнутые контакты, это контакты которые находятся в разомкнутом состоянии при отсутствии напряжения на катушке реле. На рисунке ниже приведены примеры свободно разомкнутого и свободно замкнутого контактов:  

   Следующее обозначение обозначает спаренные контакты, которые механически соединены между собой и включаются или отключаются одновременно. Это могут быть, как контакты реле, так и контакты переключателя или рубильника: 

   Как всем известно, у диода два вывода, катод и анод, обозначение диода можно видеть на рисунке ниже. Вершина треугольника, направленная к черточке, показывает своим направлением прямое включение диода, когда он проводит ток, от анода к катоду, от плюса к минусу. 

   В биполярных транзисторах, которые, как всем известно, имеют три вывода базу, эмиттер, коллектор, выводом со стрелкой обозначают эмиттер, основание транзистора является базой, а оставшийся вывод, обозначающийся просто черточкой будет коллектором. 

   Причем с помощью стрелки обозначающей эмиттер и указывающей внутрь, либо наружу транзистора, обозначают структуру транзистора. Эта стрелка символизирует собой (также, как и в диоде) p-n переход, и направлена также от плюса к минусу или от положительного электрода к отрицательному. 

   Транзистор у нас представляет собой, условно говоря, два диода соединенных между собой либо катодами, либо анодами. Соответственно, если базовый электрод у нас отрицательный, то это будет транзистор p-n-p структуры, а если положительный, то n-p-n структуры.

   В тиристорах есть три электрода, это уже знакомые нам по диоду и имеющие такое же обозначение катод и анод, плюс управляющий электрод. Его обозначение можно увидеть на рисунке ниже:

   Конденсаторы у нас обозначаются на схемах двумя параллельными полосками, которые подразумевают собой 2 обкладки конденсатора. 

   У полярного электролитического конденсатора в обозначении добавлен знак плюс, указывающий на положительный электрод конденсатора, который нужно подключать строго в соответствии со схемой. 

   Переменные и подстроечные конденсаторы обозначаются как и обычные конденсаторы, но имеют в своем обозначении косую черту, в знак того, что они могут изменять свою емкость. Если эта черта заканчивается стрелкой, то это конденсатор переменой емкости рассчитанный при работе на многократное изменение положения обкладок или говоря другими словами на частое изменение емкости. Если же косая черта заканчивается поперечной черточкой, то это подстроечный конденсатор, такой конденсатор обычно регулируют только один раз, при сборке устройства.

   На рисунке выше мы можем видеть изображение на схемах постоянных резисторов. Они имеют постоянное сопротивление, и два вывода. Переменные имеют три вывода и позволяют регулировать сопротивление, между центральным и крайними выводами, от нуля до номинального сопротивления резистора.

   Светодиоды обозначаются как диод (иногда в круге, иногда без него) с двумя стрелками, направленными от диода. Иногда диод обводят кружочком.

   На рисунке ниже изображено обозначение трансформатора, в данном случае трансформатор взят с несколькими вторичными обмотками:

   Дроссель (катушка с сердечником), как он изображается на схемах, на рисунке ниже под цифрой два, изображение катушки под цифрой один:

   И катушка с подстраиваемым сердечником изображена на рисунке три. Изображение разъемов, применяемое в электротехнике можно видеть на рисунке ниже, в данном случае изображена колодка разъемов, или говоря другими словами, несколько штук спаренных между собой.

   На следующей принципиальной схеме изображено реле:

   Показана катушка реле (слева) и две группы контактов, которые могут работать как на замыкание, так и на размыкание. Далее изображен диодный мост так, как он обозначается на схемах, причем в ходу оба изображения одного и того же моста.

   Здесь изображено обозначение на схемах динамической головки, или говоря по другому — обычного динамика:

   А тут мы можем видеть общее обозначение микрофона:

   Уверен, теперь вы без труда сможете самостоятельно расшифровать принципиальную электрическую схему любого устройства — телевизора, холодильника, ресивера и так далее. А чтоб закрепить пройденный материал, попробуйте расшифровать схему кота 🙂

   Конечно это лишь небольшая, хоть и основная часть условных обозначений элементов на схемах, но этого для начала вам вполне хватит. Урок подготовил — AKV.

   Форум по радиоэлектронике для начинающих

   Обсудить статью ПРИНЦИПИАЛЬНАЯ СХЕМА

radioskot.ru

Как читать электронные схемы?

Учимся читать принципиальные электрические схемы

О том, как читать принципиальные схемы я уже рассказывал в первой части. Теперь хотелось бы раскрыть данную тему более полно, чтобы даже у новичка в электронике не возникало вопросов. Итак, поехали. Начнём с электрических соединений.

Не секрет, что в схеме какая-либо радиодеталь, например микросхема может соединяться огромным количеством проводников с другими элементами схемы. Для того чтобы высвободить место на принципиальной схеме и убрать «повторяющиеся соединительные линии» их объединяют в своеобразный «виртуальный» жгут — обозначают групповую линию связи. На схемах групповая линия связи обозначается следующим образом.

Вот взгляните на пример.

Как видим, такая групповая линия имеет большую толщину, чем другие проводники в схеме.

Чтобы не запутаться, куда какие проводники идут, их нумеруют.

На рисунке я отметил соединительный провод под номером 8. Он соединяет 30 вывод микросхемы DD2 и 8 контакт разъёма XP5. Кроме этого, обратите внимание, куда идёт 4 провод. У разъёма XP5 он соединяется не со 2 контактом разъёма, а с 1, поэтому и указан с правой стороны соединительного проводника. Ко 2-му же контакту разъёма XP5 подключается 5 проводник, который идёт от 33 вывода микросхемы DD2. Отмечу, что соединительные проводники под разными номерами электрически между собой не связаны, и на реальной печатной плате могут быть разнесены по разным частям платы.

Электронная начинка многих приборов состоит из блоков. А, следовательно, для их соединения применяются разъёмные соединения. Вот так на схемах обозначаются разъёмные соединения.

XP1 — это вилка (он же «Папа»), XS1 — это розетка (она же «Мама»). Всё вместе это «Папа-Мама» или разъём X1 (X2).

Также в электронных устройствах могут быть механически связанные элементы. Поясню, о чём идёт речь.

Например, есть переменные резисторы, в которые встроен выключатель. Об одном из таких я рассказывал в статье про переменные резисторы. Вот так они обозначаются на принципиальной схеме. Где SA1 — выключатель, а R1 — переменный резистор. Пунктирная линия указывает на механическую связь этих элементов.

Ранее такие переменные резисторы очень часто применялись в портативных радиоприёмниках. При повороте ручки регулятора громкости (нашего переменного резистора) сначала замыкались контакты встроенного выключателя. Таким образом, мы включали приёмник и сразу той же ручкой регулировали громкость. Отмечу, что электрического контакта переменный резистор и выключатель не имеют. Они лишь связаны механически.

Такая же ситуация обстоит и с электромагнитными реле. Сама обмотка реле и его контакты не имеют электрического соединения, но механически они связаны. Подаём ток на обмотку реле — контакты замыкаются или размыкаются.

Так как управляющая часть (обмотка реле) и исполнительная (контакты реле) могут быть разнесены на принципиальной схеме, то их связь обозначают пунктирной линией. Иногда пунктирную линию вообще не рисуют, а у контактов просто указывают принадлежность к реле (K1.1) и номер контактной группы (К1.1) и (К1.2).

Ещё довольно наглядный пример — это регулятор громкости стереоусилителя. Для регулировки громкости требуется два переменных резистора. Но регулировать громкость в каждом канале по отдельности нецелесообразно. Поэтому применяются сдвоенные переменные резисторы, где два переменных резистора имеют один регулирующий вал. Вот пример из реальной схемы.

На рисунке я выделил красным две параллельные линии — именно они указывают на механическую связь этих резисторов, а именно на то, что у них один общий регулирующий вал. Возможно, вы уже заметили, что эти резисторы имеют особое позиционное обозначение R4.1 и R4.2. Где R4 — это резистор и его порядковый номер в схеме, а 1 и 2 указывают на секции этого сдвоенного резистора.

Также механическая связь двух и более переменных резисторов может указываться пунктирной линией, а не двумя сплошными.

Отмечу, что электрически эти переменные резисторы не имеют контакта между собой. Их выводы могут быть соединены только в схеме.

Не секрет, что многие узлы радиоаппаратуры чувствительны к воздействию внешних или «соседствующих» электромагнитных полей. Особенно это актуально в приёмопередающей аппаратуре. Чтобы защитить такие узлы от воздействия нежелательных электромагнитных воздействий их помещают в экран, экранируют. Как правило, экран соединяют с общим проводом схемы. На схемах это отображается вот таким образом.

Здесь экранируется контур 1T1, а сам экран изображается штрих-пунктирной линией, который соединён с общим проводом. Экранирующим материалом может быть алюминий, металлический корпус, фольга, медная пластина и т.д.

А вот таким образом обозначают экранированные линии связи. На рисунке в правом нижнем углу показана группа из трёх экранированных проводников.

Похожим образом обозначается и коаксиальный кабель. Вот взгляните на его обозначение.

В реальности экранированый провод (коаксиальный) представляет собой проводник в изоляции, который снаружи покрыт или обмотан экраном из проводящего материала. Это может быть медная оплётка или покрытие из фольги. Экран, как правило, соединяют с общим проводом и тем самым отводят электромагнитные помехи и наводки.

Повторяющиеся элементы.

Бывают нередкие случаи, когда в электронном устройстве применяются абсолютно одинаковые элементы и загромождать ими принципиальную схему нецелесообразно. Вот, взгляните на такой пример.

Здесь мы видим, что в схеме присутствуют одинаковые по номиналу и мощности резисторы R8 — R15. Всего 8 штук. Каждый из них соединяет соответствующий вывод микросхемы и четырёхразрядный семисегментный индикатор. Чтобы не указывать эти повторяющиеся резисторы на схеме их просто заменили жирными точками.

Ещё один пример. Схема кроссовера (фильтра) для акустической колонки. Обратите внимание на то, как вместо трёх одинаковых конденсаторов C1 — C3 на схеме указан лишь один конденсатор, а рядом отмечено количество этих конденсаторов. Как видно из схемы, данные конденсаторы необходимо соединить параллельно, чтобы получить общую ёмкость 3 мкФ.

Аналогично и с конденсаторами C6 — C15 (10 мкФ) и C16 — C18 (11,7 мкФ). Их необходимо соединить параллельно и установить на место обозначенных конденсаторов.

Следует отметить, что правила обозначения радиодеталей и элементов на схемах в зарубежной документации несколько иные. Но, человеку, получившему хотя бы базовые знания по данной теме разобраться в них будет гораздо проще.

Назад

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

go-radio.ru

Как читать принципиальные схемы?

Как научиться читать принципиальные схемы

Те, кто только начал изучение электроники сталкиваются с вопросом: «Как читать принципиальные схемы?» Умение читать принципиальные схемы необходимо при самостоятельной сборке электронного устройства и не только. Что же представляет собой принципиальная схема? Принципиальная схема – это графическое представление совокупности электронных компонентов, соединённых токоведущими проводниками. Разработка любого электронного устройства начинается с разработки его принципиальной схемы.

Именно на принципиальной схеме показано, как именно нужно соединять радиодетали, чтобы в итоге получить готовое электронное устройство, которое способно выполнять определённые функции. Чтобы понять, что же изображено на принципиальной схеме нужно, во-первых знать условное обозначение тех элементов, из которых состоит электронная схема. У любой радиодетали есть своё условное графическое обозначение – УГО. Как правило, оно отображает конструктивное устройство или назначение. Так, например, условное графическое обозначение динамика очень точно передаёт реальное устройство динамика. Вот так динамик обозначается на схеме.

Согласитесь, очень похоже. Вот так выглядит условное обозначение резистора.

Обычный прямоугольник, внутри которого может указываться его мощность (В данном случае резистор мощностью 2 Вт, о чём свидетельствует две вертикальные черты). А вот таким образом обозначается обычный конденсатор постоянной ёмкости.

Это достаточно простые элементы. А вот полупроводниковые электронные компоненты, вроде транзисторов, микросхем, симисторов имеют куда более изощрённое изображение. Так, например, у любого биполярного транзистора не менее трёх выводов: база, коллектор, эмиттер. На условном изображении биполярного транзистора эти выводы изображены особым образом. Чтобы отличать на схеме резистор от транзистора, во-первых надо знать условное изображение этого элемента и, желательно, его базовые свойства и характеристики. Поскольку каждая радиодеталь уникальна, то в условном изображении графически может быть зашифрована определённая информация. Так, например, известно, что биполярные транзисторы могут иметь разную структуру: p-n-p или n-p-n. Поэтому и УГО транзисторов разной структуры несколько отличаются. Взгляните…

Поэтому, перед тем, как начать разбираться в принципиальных схемах, желательно познакомиться с радиодеталями и их свойствами. Так будет легче разобраться, что же всё-таки изображено на схеме.

На нашем сайте уже было рассказано о многих радиодеталях и их свойствах, а также их условном обозначении на схеме. Если забыли – добро пожаловать в раздел «Старт».

Кроме условных изображений радиодеталей на принципиальной схеме указывается и другая уточняющая информация. Если внимательно посмотреть на схему, то можно заметить, что рядом с каждым условным изображением радиодетали стоят несколько латинских букв, например, VT, BA, C и др. Это сокращённое буквенное обозначение радиодетали. Сделано это для того, чтобы при описании работы или настройки схемы можно было ссылаться на тот или иной элемент. Не трудно заметь, что они ещё и пронумерованы, например, вот так: VT1, C2, R33 и т.д.

Понятно, что однотипных радиодеталей в схеме может быть сколь угодно много. Поэтому, чтобы упорядочить всё это и применяется нумерация. Нумерация однотипных деталей, например резисторов, ведётся на принципиальных схемах согласно правилу «И». Это конечно, лишь аналогия, но довольно наглядная. Взгляните на любую схему, и вы увидите, что однотипные радиодетали на ней пронумерованы начиная с левого верхнего угла, затем по порядку нумерация идёт вниз, а затем снова нумерация начинается сверху, а затем вниз и так далее. А теперь вспомните, как вы пишите букву «И». Думаю, с этим всё понятно.

Что же ещё рассказать о принципиальной схеме? А вот что. На схеме радом с каждой радиодеталью указывается её основные параметры или типономинал. Иногда эта информация выносится в таблицу, чтобы упростить для восприятия принципиальную схему. Например, рядом с изображением конденсатора, как правило, указывается его номинальная ёмкость в микрофарадах или пикофарадах. Также может указываться и номинальное рабочее напряжение, если это важно.

Рядом с УГО транзистора обычно указывается типономинал транзистора, например, КТ3107, КТ315, TIP120 и т.д. Вообще для любых полупроводниковых электронных компонентов вроде микросхем, диодов, стабилитронов, транзисторов указывается типономинал компонента, который предполагается для использования в схеме.

Для резисторов обычно указывается всего лишь его номинальное сопротивление в килоомах, омах или мегаомах. Номинальная мощность резистора шифруется наклонными чёрточками внутри прямоугольника. Также мощность резистора на схеме и на его изображении может и не указываться. Это означает, что мощность резистора может быть любой, даже самой малой, поскольку рабочие токи в схеме незначительны и их может выдержать даже самый маломощный резистор, выпускаемый промышленностью.

Вот перед вами простейшая схема двухкаскадного усилителя звуковой частоты. На схеме изображены несколько элементов: батарея питания (или просто батарейка) GB1; постоянные резисторы R1, R2, R3, R4; выключатель питания SA1, электролитические конденсаторы С1, С2; конденсатор постоянной ёмкости С3; высокоомный динамик BA1; биполярные транзисторы VT1, VT2 структуры n-p-n. Как видите, с помощью латинских букв я ссылаюсь на конкретный элемент в схеме.

Что мы можем узнать, взглянув на эту схему?

Любая электроника работает от электрического тока, следовательно, на схеме должен указываться источник тока, от которого питается схема. Источником тока может быть и батарейка и электросеть переменного тока или же блок питания.

Итак. Так как схема усилителя питается от батареи постоянного тока GB1, то, следовательно, батарейка обладает полярностью: плюсом «+» и минусом «-». На условном изображении батареи питания мы видим, что рядом с её выводами указана полярность.

Полярность. О ней стоит упомянуть отдельно. Так, например, электролитические конденсаторы C1 и C2 обладают полярностью. Если взять реальный электролитический конденсатор, то на его корпусе указывается какой из его выводов плюсовой, а какой минусовой. А теперь, самое главное. При самостоятельной сборке электронных устройств необходимо соблюдать полярность подключения электронных деталей в схеме. Несоблюдение этого простого правила приведёт к неработоспособности устройства и, возможно, другим нежелательным последствиям. Поэтому не ленитесь время от времени поглядывать на принципиальную схему, по которой собираете устройство.

На схеме видно, что для сборки усилителя понадобятся постоянные резисторы R1 — R4 мощностью не менее 0,125 Вт. Это видно из их условного обозначения.

Также можно заметить, что резисторы R2* и R4* отмечены звёздочкой *. Это означает, что номинальное сопротивление этих резисторов нужно подобрать с целью налаживания оптимальной работы транзистора. Обычно в таких случаях вместо резисторов, номинал которых нужно подобрать, временно ставится переменный резистор с сопротивлением несколько больше, чем номинал резистора, указанного на схеме. Для определения оптимальной работы транзистора в данном случае в разрыв цепи коллектора подключается миллиамперметр. Место на схеме, куда необходимо подключить амперметр указано на схеме вот так. Тут же указан ток, который соответствует оптимальной работе транзистора.

Напомним, что для замера тока, амперметр включается в разрыв цепи.

Далее включают схему усилителя выключателем SA1 и начинают переменным резистором менять сопротивление R2*. При этом отслеживают показания амперметра и добиваются того, чтобы миллиамперметр показывал ток 0,4 — 0,6 миллиампер (мА). На этом настройка режима транзистора VT1 считается завершённой. Вместо переменного резистора R2*, который мы устанавливали в схему на время наладки, ставится резистор с таким номинальным сопротивлением, которое равно сопротивлению переменного резистора, полученного в результате наладки.

Каков вывод из всего этого длинного повествования о налаживании работы схемы? А вывод таков, что если на схеме вы видите какую-либо радиодеталь со звёздочкой (например, R5*), то это значит, что в процессе сборки устройства по данной принципиальной схеме потребуется налаживать работу определённых участков схемы. О том, как налаживать работу устройства, как правило, упоминается в описании к самой принципиальной схеме.

Если взглянуть на схему усилителя, то также можно заметить, что на ней присутствует вот такое условное обозначение.

Этим обозначением показывают так называемый общий провод. В технической документации он называется корпусом. Как видим, общим проводом в показанной схеме усилителя является провод, который подключен к минусовому «-» выводу батареи питания GB1. Для других схем общим проводом может быть и тот провод, который подключен к плюсу источника питания. В схемах с двуполярным питанием, общий провод указывается обособленно и не подключен ни к плюсовому, ни к минусовому выводу источника питания.

Зачем «общий провод» или «корпус» указывается на схеме?

Относительно общего провода проводятся все измерения в схеме, за исключением тех, которые оговариваются отдельно, а также относительно его подключаются периферийные устройства. По общему проводу течёт общий ток, потребляемый всеми элементами схемы.

Общий провод схемы в реальности часто соединяют с металлическим корпусом электронного прибора или металлическим шасси, на котором крепятся печатные платы.

Стоит понимать, что общий провод это не то же самое, что и «земля». «Земля» — это заземление, то есть искусственное соединение с землёй посредством заземляющего устройства. Обозначается оно на схемах так.

В отдельных случаях общий провод устройства подключают к заземлению.

Как уже было сказано, все радиодетали на принципиальной схеме соединяются с помощью токоведущих проводников. Токоведущим проводником может быть медный провод или же дорожка из медной фольги на печатной плате. Токоведущий проводник на принципиальной схеме обозначается обычной линией. Вот так.

Места пайки (электрического соединения) этих проводников между собой, либо с выводами радиодеталей изображаются жирной точкой. Вот так.

Стоит понимать, что на принципиальной схеме точкой указывается только соединение трёх и более проводников или выводов. Если на схеме показывать соединение двух проводников, например, вывода радиодетали и проводника, то схема была бы перегружена ненужными изображениями и при этом потерялась бы её информативность и лаконичность. Поэтому, стоит понимать, что в реальной схеме могут присутствовать электрические соединения, которые не указаны на принципиальной схеме.

В следующей части речь пойдёт о соединениях и разъёмах, повторяющихся и механически связанных элементах, экранированных деталях и проводниках. Жмите «Далее«…

Далее

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

go-radio.ru

Что такое электрическая схема | Электрика в квартире, ремонт бытовых электроприборов

Автор DUNDUK На чтение 4 мин. Опубликовано

В данной статье мы постараемся выяснить, что же такое электрическая схема, и каково ее назначение.

В общепринятом выражении схемой можно назвать документ, включающий в себя составные части какого-либо устройства (изделия), а с помощью условных обозначений на схемах наглядно показываются связи между этими составными частями.

Электрическая схема – это своего рода тот же документ, где обозначены электрические связи между составными частями электроустройства. Т.е. главное назначение электрической схемы – это понятие принципа работы того или иного электроустройства или электроцепи.

Наличие электросхемы дает возможность:

  • выполнять монтаж (сборку) установки (цепи) в соответствии с схемой;
  • осуществлять сверку со схемой при монтаже (для исключения ошибок) и пусконаладочных работах;
  • выполнять диагностику и устранять неисправности при ремонтных работах.

Электрические схемы можно разделить на несколько типов. В зависимости от типа схемы, технические сведения об устройстве и принципе его работы могут быть полными или общими.

Типы электросхем

  • структурные;
  • функциональные;
  • принципиальные;
  • монтажные.

Существуют строгие нормативы, регламентирующие выполнение (черчения) электрических схем. На сегодняшний день таким документом является ГОСТ 2.702-2011, он обязателен для всех типов электросхем.

Структурная электрическая схема

Данная электросхема дает представление о принципе действия устройства (электроустановки) и об основных его функциональных узлах (частях) лишь в общих чертах.
Работа над проектом, чаще всего, начинается именно с этой схемы. Изображение функциональных узлов (частей) выполняется в виде прямоугольников или условных графических изображений. Их реальное расположение при этом не принимается во внимание. Связи между узлами изображаются линиями, а направление протекания электрических процессов – стрелками на этих линиях. Так же на схеме указывают технические параметры функциональных частей в виде поясняющих надписей.
структурная электрическая схема

Функциональная электрическая схема

Электросхема очень похожа на структурную схему. Основное отличие заключается в том, что функциональная схема более детально показывает принцип работы устройства (изделия, установки).
На данной электрической схеме досконально показываются происходящие процессы между функциональными узлами (частями).

функциональная электрическая схема

Принципиальная электрическая схема

Это самая распространенная электрическая схема из всех типов схем, она дает наиболее полное представление о работе всех электроцепей установки. На ней показываются все электрические и магнитные связи между функциональными частями и компонентами электроустановки. Принципиальная электросхема может быть как общей, так и однолинейной. Однолинейная схема проста по восприятию и очень широко применяется в электроэнергетике.

принципиальная электрическая схема

Монтажная электрическая схема

Данная электросхема показывает реальное расположение узлов и агрегатов электрической установки, а также связи между ними (электрические кабели и провода). В монтажной схеме применяется буквенно-цифровое обозначение всех элементов электрической цепи (электрические аппараты, соединения и т.д.) и нумерация проводов и кабелей. После монтажа электроустановки (электроцепи) эта нумерация сохраняется и наносится на провода посредством бирок или цифровых маркеров. Схема используется для непосредственного производства работ или для изготовления изделия.

Монтажная схема иногда носит другое название – схема соединений или схема подключения.

монтажная электрическая схема

Другие типы электрических схем

Стоит отметить, что существует еще несколько типов электросхем. Поговорим о них вкратце.

Топологическая схема (схема расположения) – показывается расположение составных частей (элементов) электроустройства. Также на схеме может указываться расположение устройства или объекта на местности (например, подстанции). Для лучшего восприятия топологическая схема часто выполняется в виде трехмерной модели. Расположение составных частей на схеме соответствует действительному расположению частей объекта в конструкции или на местности.

Мнемоническая схема – такой тип схемы выполняется в виде плаката, на котором показывается реальное состояние коммутационных аппаратов (их действующее положение) на управляемом ими объекте. Основное применение таких схем – диспетчерские пункты на объектах электроэнергетики. Значение мнемонических схем постепенно снижается благодаря повсеместному внедрению компьютеризированных систем управления контролем и сигнализацией.

Кабельные планы – это схема (чертеж) расположения электрических кабелей и проводов с указанием их маркировки.

Сама по себе электрическая схемы мало что дает, если человек не умеет ее правильно читать. О том как правильно читать электрические схемы можно узнать здесь. Особенно это относится к электрическим принципиальным схемам – такие схемы бывают весьма сложными и громоздкими и на их изучение может понадобиться много времени.

Чтобы читать принципиальную схему необходимо знать и понимать принцип действия отдельных приборов, элементов, аппаратов и узлов. Разобравшись в том, как связаны между собой все эти части схемы, можно понять как, собственно, функционирует схема. Другими словами, зная основы построения схем и разбираясь в протекающих там электрических процессах, можно научиться понимать, как работает электроустановка и другое электрооборудование, не пользуясь при этом специальным описанием (мануалом).

elektrikdom.com

Принципиальные электрические схемы и сервис мануалы

«Принципиальные схемы, service manuals» — архив сервис мануалов современной электронной аппаратуры: телевизоров, бытовой техники, магнитол, мониторов, телефонов и др. Схемы электрические принципиальные и service manuals будут полезны при ремонте и настройке той или иной электронной аппаратуры. Все выложено в виде zip-архивов в фомате djvu или pdf, доступных для закачки. Плагин для просмотра djvu можно взять здесь.

НазваниеКатегорияМодельОписание схемы, service manual
Cхемы смартфона Nokia 5530 XPressMusic / RM-504Схемы телефоновNokia 5530 XPressMusic / RM-504В архиве приведены принципиальная и электромонтажная схемы смартфона Nokia 5530 XPressMusic / RM-504: 1) Электромонтажная схема 2) Камера 3) Процессор RAPID, память SDRAM, интерфейс ММС, сенсоры 4) Контроллер питания Betty, аудиоинтерфейс, AV-коннектор 5) Дисплей, пользовательский интерфейс 6)&nbsp…
Принципиальная электрическая схема DVD/HDD-рекордеров PIONEER DVR-440/450/540/543/545/550/640/645/650 и DVD/HDD/VCR-рекордера PIONEER DVR-RT602H-SСхемы видеотехникиDVD/HDD-рекордеры PIONEER DVR-440/450/540/543/545/550/640/645/650, DVD/HDD/VCR-рекордер PIONEER DVR-RT602H-SВ архиве приведена принципиальная электрическая схема DVD/HDD-рекордеров PIONEER DVR-440/450/540/543/545/550/640/645/650 и DVD/HDD/VCR-рекордера PIONEER DVR-RT602H-S: 1) Электрическая принципиальная схема части главной платы с линейными стабилизаторами напряжения; 2) Схема соединений рекордеров DVR-440HX-S, DVR-540HX-S (исполнени…
Электрические схемы DVD-проигрывателей LG с механизмом DPСхемы видеотехникиDVD-проигрыватель LG с механизмами DP-11, DP-12, DP-12V/AVВ архиве приведены принципиальные электрические схемы системы управления и декодера MPEG DVD-проигрывателей LG с механизмом: DP-11 моделей DV-256/276/276X  DP-12, DP-12V/AV моделей DV-286K/310P/392H/556/840.
Электронный компас. Прошивка и исходникиСхемы измерительной техникиЭлектронный компас на Atmega8 и Arduino UNOВ архивах приведены прошивка и исходники для реализация электронного компаса на ATmega8 и arduino72_HMC5883L.
Схемы эмулятора CD чейнджераСхемы аудиотехникиCD-чейнджер для Toyota CorollaВ архиве приведены схемы эмулятора CD-чейнджера для Toyota Corolla

www.radioradar.net

Принципиальные и монтажные электрические схемы

Современное
электрическое оборудование в своей работе использует многочисленные
технологические процессы, протекающие по различным алгоритмам.

Электромонтёру,
напомним, что это специалист, который занимается эксплуатацией, монтажом,
наладкой и ремонтом электрооборудования, нужно иметь правильную информацию обо
всех особенностях электрооборудования. Для этого создают специальные электрические
схемы
.

Электросхема
представляет собой документ, в котором по определённым правилам обозначаются связи
между составными частями устройств, которые работают за счёт протекания
электроэнергии.

Проще
говоря, электрическая схема – это чертёж или графическое
изображение электрооборудования и цепей связи.

Самая
простая электрическая цепь может содержать всего лишь три элемента: источник,
нагрузку и соединительные провода.

Но
в реальности электрические цепи намного сложнее. Они, помимо основных
элементов, содержат различные выключатели, рубильники, пускатели, контакторы,
предохранители, реле в автоматах, электроизмерительные приборы, розетки, вилки
и другое.

Всё
это и указывается в электрической схеме и даёт понимание электромонтёрам о том,
как работает установка и из каких элементов она состоит.

Основное
назначение электросхемы
– помощь в подключении установок, а
также в поиске неисправности в цепи.

Электрические
схемы создаются для электриков всех специальностей. Но каждая отдельная схема
имеет свои особенности оформления. Чаще всего электрические схемы делят на принципиальные
и монтажные.

Оба
типа этих схем очень взаимосвязаны. Они дополняют информацию друг у друга,
выполняются по единым стандартам, понятным всем пользователям, но имеют отличия
в своём назначении.

Итак,
принципиальная электрическая схема представляет собой графическое
изображение электрической цепи, на котором все её элементы изображают в виде
условных знаков.

На
экране вы видите таблицу с условными обозначениями элементов электрической
цепи.

Принципиальные
электрические схемы
создают в первую очередь для того,
чтобы показать принцип работы и взаимодействие составляющих элементов в порядке
очерёдности их срабатывания.

На
экране вы видите простейшую принципиальную электрическую схему цепи.

Обратите
внимание, она состоит из источника электрической энергии в виде батареи
гальванических элементов, нагрузки в виде лампы накаливания и выключателя.

Что
касается монтажных электрических схем, то они представляют собой
чертежи или эскизы частей электрооборудования, по которым выполняется сборка,
монтаж электроустановки. В монтажных схемах учитываются расположение,
компоновка составных частей и отображаются все электрические связи между ними.

На
экране вы видите пример монтажной электрической схемы.

По
этой схеме электромонтёр увидит, что все элементы электрической цепи крепятся
на монтажной плате. Источником электроэнергии служит батарея от карманного
фонарика. Монтажные провода, которые идут к батарее, припаиваются
непосредственно к её электродам. А малогабаритная лампочка вворачивается в
ламповый патрон, который закреплён на плате. В свою очередь монтажные провода
крепятся к клеммам лампового патрона с помощью пайки, как и провода к
выключателю. А контакты выключателя также закреплены на монтажной плате.

По
указанным примерам схем можно сделать вывод, что основным отличием
принципиальной и монтажной электрических схем является
то, что
принципиальная схема показывает соединение только основных элементов цепи, без
комплектующей арматуры (например, электророзеток, вилок, ламповых патронов), а
вот монтажная электрическая схема показывает точное (реальное) расположение
элементов относительно друг друга, комплектующую арматуру и места подключения
проводов.

Получается,
что все монтажные схемы создаются на основе принципиальных и содержат всю
необходимую информацию по производству монтажа электроустановки, включая
выполнение электрических соединений. Без их использования создать качественно,
надёжно и понятно для всех специалистов электрические подключения современного
оборудования невозможно.

Для
того чтобы правильно вычертить электрическую схему нужно обязательно соблюдать
размеры и пропорции условных графических обозначений
.

Линии
связей между элементами схемы обязательно нужно проводить параллельно или
взаимно перпендикулярно, соблюдая условие замкнутости цепи, наклонные линии не
применять.

Итоги
урока

На
этом уроке мы говорили об электрических схемах. Узнали, что электросхема – это
чертёж или графическое изображение электрооборудования и цепей связи. Основное
назначение электрической схемы – помощь в подключении установок, а также в
поиске неисправности в цепи. Электрические схемы чаще всего делят на
принципиальные и монтажные. Принципиальные электрические схемы создают для
того, чтобы показать принцип работы и взаимодействие составляющих элементов в
порядке очерёдности их срабатывания. В монтажных схемах учитываются
расположение, компоновка составных частей и отображаются все электрические
связи между ними.

videouroki.net