Fap026 120s200e2 схема – Электробытовые товары :: Блоки питания и адаптеры :: Блок питания для Триколор GS 12V 2A

Поиск fap026-120s200e2 в таможенной базе:


10226050/080613/0022060
Получатель: ООО «ВЛВ»
ТН ВЭД: 8504909900: преобразователей.статических.прочие
ЧАСТИ ПРЕОБРАЗОВАТЕЛЕЙ **************** ******************* ******* **************** ***** ***** ****** **************** *** ** *** *** ** **** **** ******* ***********

10226050/040413/0012304
Получатель: ООО «ВЛВ»
ТН ВЭД: 8504909900: преобразователей.статических.прочие
ЧАСТИ ПРЕОБРАЗОВАТЕЛЕЙ **************** ******************* ******* **************** ***** ***** ****** **************** ****** ** *** *** ** **** **** ******* ***********

10226050/090413/0012944
Получатель: АО НАУЧНО-ПРОИЗВОДСТВЕННОЕ ОБЪЕДИНЕНИЕ ЦИФРОВЫЕ ТЕЛЕВИЗИОННЫЕ СИСТЕМЫ
ТН ВЭД: 8504403009: используемые.с.телекоммуникационной.аппаратурой,.вычислительными.машинами.и.их.блоками.прочие
1-БЛОК ПИТАНИЯ(ЭЛЕКТРОННЫЙ ******************* ****** ********* ********* **** ************ *************** *********** *** **** *********** ********* ***** ******* **** * ********** *** *** ********************* **** ******* *** ********** ******* **** ***************** ****

10226050/130313/0008865
Получатель: ООО «ВЛВ»
ТН ВЭД: 8504909900: преобразователей.статических.прочие
ЧАСТИ АДАПТЕР ******* **************** ***** ***** ****** **************** **** ** *** *** ** **** **** ******* ***********

10226050/060213/0003466
Получатель: ООО «ВЛВ»
ТН ВЭД: 8504909900: преобразователей.статических.прочие
ЧАСТИ ПРЕОБРАЗОВАТЕЛЕЙ **************** ******************* ******* **************** ***** ***** ****** **************** **** ** *** *** ** **** **** ******* ***********

10226050/200213/0005690
Получатель: ООО «ВЛВ»
ТН ВЭД: 8504909900: преобразователей.статических.прочие
ЧАСТИ ПРЕОБРАЗОВАТЕЛЕЙ **************** ******************* ******* **************** ***** ***** ****** **************** ****** ** *** *** ** **** **** ******* ***********

10226040/290113/0000629
Получатель: АО НАУЧНО-ПРОИЗВОДСТВЕННОЕ ОБЪЕДИНЕНИЕ ЦИФРОВЫЕ ТЕЛЕВИЗИОННЫЕ СИСТЕМЫ
ТН ВЭД: 8504403009: используемые.с.телекоммуникационной.аппаратурой,.вычислительными.машинами.и.их.блоками.прочие
БЛОК ПИТАНИЯ(ЭЛЕКТРОННЫЙ ******************* ****** ********* ********* **** ************ *************** *********** *** **** *********** ********* ***** ******* **** * ********** *** *** ********************* **** ******* *** ********** ******* **** ***************** ****

10226050/240113/0001663
Получатель: ООО «ВЛВ»
ТН ВЭД: 8504909900: преобразователей.статических.прочие
ЧАСТИ ПРЕОБРАЗОВАТЕЛЕЙ **************** ******************* ******* **************** ***** ***** ****** **************** ***** ** *** *** ** **** **** ******* ***********

10226050/240113/0001666
Получатель: ООО «ВЛВ»
ТН ВЭД: 8504909900: преобразователей.статических.прочие
ЧАСТИ ПРЕОБРАЗОВАТЕЛЕЙ **************** ******************* ******* **************** ***** ***** ****** **************** ****** ** *** *** ** **** **** ******* ***********

ved-import.com

Устройство и ремонт импульсного адаптера CP-PWR-CUBE-3

В статье описано устройство и ремонт им­пульсного адаптера CPPWRCUBE-3 модели IP-телефона CP-7912GA, изготовленного от­дельным блоком и предназначенного для обеспе­чения питания напряжением +48 В IP телефонов Cisco моделей 7900 (7911, 7912).

Внешний вид импульсного адаптера показан на рис.1, его производитель Cisco Systems (Ма­лайзия). Адаптер, в свою очередь, китайского происхождения, является совместимым со всеми моделями IP-телефонов Cisco серии 7900 и поз­воляет заменить устаревшую модель CP-PWR-CUBE-2. Его назначение — обеспечение питанием +48 В телефонных аппаратов моделей серии 7900, например 7911 или 7912, в случаях когда не обеспечивается питание этих телефонов по кабе­лю Ethernet «витая пара».

Рис. 1

Основные технические характеристики адапте­ра приведены в таблице.

Все радиоэлементы адаптера смонтированы на монтажной плате (рис.2) как навесным монтажом, так и технологией монтажа SMD-элементов. Пла­та установлена в пластмассовом непроветривае­мом корпусе, который состоит из двух склеенных между собой половин.

Рис. 2

Устройство и принципиальная схема

Принципиальная схема создана автором путем изучения элементов и монтажа печатной платы. Адаптер построен по классической схеме им­пульсного стабилизированного источника питания с низкочастотным питанием преобразователя вы­сокой частоты и трансформаторным разделением высокочастотной и нагрузочной сетей. Располо­жение деталей на плате показано на

рис.2, а прин­ципиальная схема устройства — на рис.3.

Рис. 3

В адаптере применены элементы токовой защи­ты низкочастотной части, защиты от сетевых брос­ков питания и помех. Особенностью построения ис­точника питания является обеспечение нормального теплового режима источника при функционировании источника питания в широком диапазоне входных на­пряжений. При решении этой задачи производите­ли используют микросхему серии ТОР в качестве преобразователя высокой частоты и осуществляют стабилизацию напряжения, как в преобразователь­ной, так и в нагрузочной частях адаптера. Для обес­печения стабилизации выходных напряжений им­пульсный трансформатор имеет две вторичные обмотки, одна из которых используется для питания собственно нагрузки, а вторая — для обеспечения стабилизированной работы, их взаимодействие осу­ществляется посредством оптопары.

Рассмотрим адаптер более подробно. Низко­частотная часть адаптера образована предохрани­телем F1, термистором ТН1, нагрузочными рези­сторами переменного тока R11 A, R11 В, диодным мостом BD1, конденсатором фильтра С2, нагру­зочными резисторами R1, R1A, R1B, R3 в цепи по­стоянного тока. Элементы С1, NF1, С5, С13 пред­назначены для фильтрации помех.

Высокочастотный преобразователь образован микросхемой преобразователя IC1, обмоткой им­пульсного трансформатора Т1 и вспомогательны­ми элементами TVS1, D5, СЗ, R2, R9, С9, осуще­ствляющими демпфирование «хвоста» импульса на обмотке I трансформатора Т1, а также резис­торами R20, R20A, R20B.

Особенности применения TVS-диодов можно найти в [2].

К элементам стабилизации высокочастотного преобразователя относятся вторичная обмотка III трансформатора Т1, выпрямитель D6, С6, оптопа­ра PC 1 и ограничитель ZD3.

ПараметрВходнойВыходной
Напряжение, В-100…-240+48
Ток, А0,50,38
Частота, Гц50…60D.C.
Мощность, ВА41…58
Габариты, мм96x53x28

Элементы стабилизации нагрузоч­ной сети включают оптопару РС1, ста­билитроны ZD2, ZD3, регулируемый стабилитрон SPR1 с цепями коррекции R12.C12, D8, R14, С7.

Нагрузочная цепь включает выпря­митель на элементах D7, С8, R6, С17, ZD1 и высокочастотные фильтры L1, L2.

Использование термистора ТН1 по­нижает вероятность выхода из строя предохранителя F1 при первоначальном заряде конденсатора С2.

Звездочками на принципиальной схеме указаны элементы, номинал и/или тип которых установлен автором самостоятельно.

Элементы принципиальной схемы

В адаптере реализована идея сокра­щения тепловыделения устройства пу­тем уменьшения габаритов и сокраще­ния общего количества дискретных элементов. Поэтому в схеме использо­ван ряд компонентов (диоды, резисторы, конденсаторы), выполненных по техно­логии SMD. Среди них элементы R11А, R11В низкочастотной сети, резисторы R1, R1A, R1B, R3 выпрямителя низкоча­стотной сети. Кроме того, в схеме приме­нены и другие SMD-компоненты: конден­саторы, диоды, стабилитроны.

Микросхема преобразователя IC1 типа TOP244YN содержит:

  • встроенный мощный высоко­вольтный выходной MOSFET- транзистор;
  • ШИМ-контроллер;
  • схему защиты от ошибок функ­ционирования;
  • дополнительные цепи управле­ния [1].

Резистор R21 задает уровень токово­го ограничения в цепи стока ключевого транзистора, что позволяет уменьшать размеры импульсного трансформатора без насыщения во время запуска и пере­хода в нагруженное состояние.

Резисторами R20, R20A, R20B вы­вод 2 микросхемы присоединен к ли­нии высокого напряжения низкочастот­ной цепи. Эта цепь является чувствительным элементом к перена­пряжению, понижению напряжения по линии питания и осуществляет прямое управление формированием выходно­го импульса при сокращении длитель­ности цикла его формирования. Типо­вое значение сопротивления этой цепи порядка 2 МОм, в данной схеме используется, из-за ограничения максимального постоянного на­пряжения на каждом из них, три последовательно соединенных SMD-резистора по 665 кОм каждый.

Выходной выпрямитель адаптера образован сверхбыстродействующим диодом D7 типа ER504, с допустимым максимальным прямым током до 5,0 А, а также фильтрующим конденсатором С8 и индуктивностями L1, L2.

В цепи регулировки выходного напряжения ис­пользуется оптопара РС1 совместно с элемента­ми ZD15, R8 и SPR1. Высокоскоростной двойной диод D6 в одном корпусе и конденсатор С6 — вы­прямитель и сглаживающий фильтр, подключен­ные к обмотке III обмотке. Напряжение с них ис­пользуется для стабилизации выходного напряжения адаптера совместно с сигналом, по­ступающим через цепь ZD15R8. Конденсатор С6 сохраняет напряжение постоянным при перехо­дах от малой к полной нагрузке источника пита­ния. Цепочка R4C4, а также элементы R12, С12 обеспечивают замкнутый цикл обратной связи при накоплении энергии в рабочей обмотке трансформатора Т1.

Ремонт и типовые неисправности

Для ремонта поврежденного адаптера необхо­димо извлечь монтажную плату из склеенного пластмассового корпуса. Для этого корпус необ­ходимо распилить ножовочным полотном по мес­ту стыковки половинок.

Ремонт начинают с внешнего осмотра монтаж­ной платы, в результате которого выявляют явно поврежденные радиоэлементы и наличие трещин в монтажных пайках.

Следующий шаг основан на измерениях без включения адаптера в электросеть.

При этом необходимо проверить сопротивле­ние элементов, наиболее подверженных полом­кам. К ним относятся: предохранитель F1, терми­стор ТН1, мост BD1, переход сток-исток (D-S) выходного транзистора микросхемы IC1, цепь га­шения «хвоста» импульса. При этом предохрани­тель F1 должен иметь нулевое сопротивление, а остальные элементы — конечное ненулевое со­противление. Элементы, которые содержат полу­проводники, проверяются в прямом и обратном состоянии. При этом в исправном состоянии пря­мое сопротивление полупроводникового радио­элемента гораздо меньше обратного. Проверка может осуществляться непосредственно на плате.

Если предварительный осмотр и измерения не дали никаких результатов, следует перейти к про­верке под напряжением. В этом случае необходи­мо соблюдать аккуратность при измерениях, по­скольку ряд элементов находится под высоким напряжением, а малые размеры контактных площа­док требуют тщательного подбора необходимых для измерения инструментов. При отсутствии на пряжения +48 В на выходе адаптера осуществляют проверку напряжения на входе, на конденсаторе С2, при этом напряжение должно соответствовать примерно +300 В. В случае исправной оптопары РС1 и отсутствия напряжения +48 В следует произ­вести замену микросхемы IC1. При дальнейшем по­иске неисправности следует проверять выходные цепи: диоды D6, D7, трансформаторТ1. Наилучшая проверка осуществляется методом замены заведо­мо исправным элементом.

Рекомендации по возможным заменам элементов

Предохранитель F1 в адаптере выполнен в ке­рамическом корпусе, потому при его неисправно­сти следует подбирать для его замены аналогич­ный по номиналу и по размерам. Возможно, следует в качестве альтернативы рассмотреть вариант вертикальной установки предохранителя в стеклянном корпусе того же номинала.

Термистор ТН1 выбирают по сопротивлению в холодном состоянии, которое не должно превышать 10 Ом и он должен быть рассчитан на ток в 1,7 А.

В качестве выпрямительного моста BD1 предпо­лагается выбор любого моста, обеспечивающего прямой ток 2,0 А и обратное напряжение 600 В.

Наиболее сложным в подборе элементов заме­ны является микросхема IC1 TOP244YN (рис.4). В качестве элементов замены предлагается приме­нять микросхемы той же серии, но имеющие больший порядковый номер и те же габаритные размеры, которые рассчитаны на большую мощ­ность при работе в закрытом корпусе адаптера, т.е. микросхемы типа TOP245YN-TOP250YN.

Рис. 4

Для замены используемого в адаптере 7VS1 ти­па P6KE200A рекомендуются TVS-диоды SM-BJ170, SA170A такого же типа.

Диод D6 BAV70, представляющий два диода в одном корпусе с общим катодом, можно заменять его полным аналогом CMPD 2838. Диод D7 ER504 может быть заменен, например, диодом типа FR504, имеющим аналогичные параметры.

Литература

  1. ТОР242-250. OPSwitch-GX Family. Extended Power, Design Flexible, EcoSmart, Integrated Off-line Switcher/Alldatasheet.com.
  2. Кадуков A. TVS-диоды- полупроводниковые приборы для ограничения опасных перена­пряжений в электрических цепях / http://kazus.ru/.

Автор: Дмитрий Кучеров, г. Киев

Возможно, вам это будет интересно:

meandr.org

Один из примеров ремонта блока питания

Должен сказать сразу, исходную поломку я исправил, но в результате ничего не вышло.
Но кому интересно почитать о нюансах и методах ремонта, то думаю они найдут для себя что-то интересное и полезное.

Ситуация. На объекте было два больших кондиционера, после близкого попадания молнии оба вышли из строя. Одну плату кто-то смог отремонтировать, вторую после неудачного ремонта принесли мне.
В случае удачного ремонта я в таком случае обычно выставляю двукратный ценник за свою работу, так как ремонтировать после кого-то гораздо сложнее и я сегодня покажу почему.
Исходно плата выглядела подобным образом. Не удивляйтесь, что на плате нет входного фильтрующего конденсатора, он подключается на проводах, для этого на плате установлен разъем. В кондиционерах такое бывает довольно часто.

Но больше меня расстроил вид снизу. Любой ремонт начинается не с попытки включения, а с внешнего осмотра. Никогда не пытайтесь включить блок питания не осмотрев его предварительно, это важно!

На плате видны следы пайки, вид несколько жутковатый. Именно по этому я не люблю ремонтировать устройства после вмешательства другого мастера, так как непонятно что стояло изначально и что вообще делалось. Но попробуем разобраться.

1. Видно что был заменен ШИМ контроллер и оптопара. Кстати, здесь применен ШИМ контроллер, которому не нужна добавочная обмотка на трансформаторе, это очень удобно, я сам такие использую, но когда снимал видео на эту тему, то забыл про них.
Также видно что пытались менять стабилитрон (слева), и выпаяли второй стабилитрон (справа).
2. Следы пайки весьма удручают. Я понимаю когда плата имеет такой вид после демонтажа компонента, но после монтажа такое недопустимо.
3. Также видно, что перепаивали диодный мост, а рядом демонтировали резистор, номинал неизвестен.
4. Здесь также следы пайки. Но удивило то, что выпаивали входной двухобмоточный дроссель, зачем — загадка. ТАкой дроссель без проблем прозванивается в плате.

Как я говорил, самое главное — предварительный осмотр, часто он позволяет узнать причину поломки и методы ее решения еще до включения паяльника или тестера. Скажем так, примерно 70-80% случаев можно увидеть глазами, без приборов. Ну по крайней мере в блоках питания 🙂
Около трансформатора видны следы разряда и соответственно металлизации платы вызванной вследствие этого.

Выпаиваем трансформатор и видим, что была дуга между двумя контактами. Так как в процессе горения дуги происходит распыление металла контактов, то плата покрыта тонким слоем металлизации.

Визуальный осмотр показал, что у трансформатора отгорели провода к средним контактам. Высвобождаем остатки при помощи ножа, затем залуживаем их. После этого берем пару кусочков проволоки и припаиваем контакты.

Часто после таких поломок бывает межвитковое КЗ. Подключаю трансформатор к измерителю индуктивности и вижу что индуктивность первичной обмотки около 1.3мГн. Примерно похоже на реальное. Для примера на втором фото я закоротил вторичную обмотку, видно что индуктивность значительно снизилась.

Но не спешите паять трансформатор на место. Как я уже говорил, в процессе горения дуги происходит испарение металла с контактов, в данном случае с провода обмотки. Этот металл оседает на текстолите и скорее всего будет проводить ток, в лучшем случае Бп просто бахнет, в худшем станет небезопасным.
Кстати, у кондиционеров иногда блок питания не имеет гальванической развязки с сетью, потому в данном случае проблема может быть только в том, что придется ремонтировать Бп еще раз.

В любом случае тщательно вычищаем плату, а заодно очищаем отверстия для установки компонентов.

Первое включение всегда делаем через лампу накаливания. Светодиодные, КЛЛ и т.п. применять нельзя.
Мощность лампы обычно выбирают исходя из мощности блока питания. Для маломощных блоков (10-40 Ватт) достаточно лампы 15-25 Ватт, для БП мощностью 40-100 Ватт применяют лампу 40 Ватт и т.д.
У меня при первом запуске с лампой 15 Ватт она начала моргать в такт со срабатыванием реле на плате, после замены лампы на 25 Ватт все стало нормально, видимо у платы велико собственное потребление.
Да, нагрузку при такой проверке не подключают, блок питания проверяется на холостом ходу.

В процессе выяснилось, что происходит сильный нагрев стабилизатора 5 Вольт. В итоге я его выпаял из платы и к сожалению повредил в процессе и потом заменил на обычную 7805.

Обычно я эту проверку провожу до ремонта БП, но в данном случае я поступил неправильно, сначала отремонтировав блок питания, а только потом начав проверять остальное. Выпаяв микросхему стабилизатора я подал в точку его выхода напряжение 5 Вольт. Выяснилось что плата потребляет 200мА, собственно потому стабилизатор и перегревался отключая при этом выход.
Диагноз — выход из строя микроконтроллера, так как у него был самый большой нагрев, а судя по тому, что был применен стабилизатор 78L05, который имеет максимальный ток в 100мА, и при этом его ставят с запасом а на фото мы видим что плата потребляет в 2 раза больше, то в данном случае вывод однозначен.
Вместо положенных 50-70мА потребление в 3-4 раза больше.

Дальше я просто решил хоть немного довести свою работу до конца, хотя по большому счету особого смысла это не имело, так как микроконтроллера у меня все равно не было.
Но я просто решил показать как следует поступать если все таки все остальное цело, ведь блок питания то отремонтирован.

Выше я писал, что на плате не хватало одного стабилитрона, он стоял в цепи стабилизации напряжения. Какое напряжение я узнал сразу, эта цепь питала реле, на которых было указано — 12 Вольт.
Я поставил стабилитрон 9.1 Вольта, но выяснилось что это много и напряжение было 16 Вольт вместо 12. Ничего страшного в этом нет, но лучше заменить на другой. Я потом поставил стабилитрон 6.2 Вольта, и напряжение все пришло в норму.

Затем я выпаял панельки, в которые были вставлены ШИМ контроллер и оптрон, так как панели в высоковольтных цепях не приветствуются.
Процедура проста, выпаиваем панельки (или старые микросхемы), очищаем отверстия, тщательно промываем плату, устанавливаем новые компоненты, промываем плату еще раз.

Снизу я также немного навел порядок. Обычно после ремонта, особенно если это кондиционер, увлажнитель (или осушитель) воздуха, стиральная машинка, я покрываю плату защитным лаком, так как у таких устройств возможно попадание влаги. Использую лак — Пластик-70, у него есть преимущество, его можно смыть ацетоном. Если хотите сделать «на века», используйте лак — Уретан.

На этом собственно все. Сегодня я дал немного теории, а заодно показал что можно отремонтировать блок питания, но в итоге не отремонтировать устройство, жаль 🙁

Ну и конечно видео, на этот раз о применении лампочки при ремонте и диагностике поломок блоков питания.
Кратко:
1. Если лампе непрерывно светит, то скорее всего замыкание во входных цепях, например диодный мост, входные конденсаторы, силовой транзистор.
2. Если светит в пол накала, то скорее всего пробит один из диодов диодного моста.
3. Если моргает с частотой 0.5-2Гц, то похоже не проблемы во вторичной цепи иШИМ контроллер перезапускается. ТАкже иногда подобное бывает при проблемах в цепи питания ШИМ контроллера.

www.kirich.blog

СХЕМА ЭЛЕКТРОННОГО ТРАНСФОРМАТОРА ДЛЯ ГАЛОГЕННЫХ ЛАМП

   В настоящее время импульсные электронные трансформаторы благодаря малым размерам и весу, низкой цены и широкому асортименту, широко применяются в массовой аппаратуре. Благодаря массовому производству, электронные трансформаторы стоят в несколько раз дешевле обычных индуктивных трансформаторов на железе аналогичной мощности. Хотя электронные трансформаторы разных фирм могут иметь отличающиеся конструкции, схема практически одна и та-же.


   Возьмём для примера стандартный электронный трансформатор маркированный 12V 50Ватт, который используется для питания настольного светильника. Принципиальная схема будет такая:

   Схема электронного трансформатора работает следующим образом. Напряжение сети выпрямляется с помощью выпрямительного моста до полусинусоидаьльного с удвоенной частотой. Элемент D6 типа DB3 в документации называется «TRIGGER DIODE”, — это двунаправленный динистор в котором полярность включения значения не имеет и он используется здесь для запуска преобразователя трансформатора. Динистор срабатывает во время каждого цикла, запуская генерацию полумоста. Открытие динистора можно регулировать. Это можно использовать например для функции регулировки яркости подключенной лампы. Частота генерации зависит от размера и магнитной проводимости сердечника трансформатора обратной связи и параметров транзисторов, обычно составляет в пределах 30-50 кГц.

   В настоящее время начался выпуск более продвинутых трансформаторов с микросхемой IR2161, которая обеспечивает как простоту конструкции электронного трансформатора и уменьшение числа используемых компонентов, так и высокими характеристиками. Использование этой микросхемы значительно увеличивает технологичность и надежность электронного трансформатора для питания галогенных ламп. Принципиальная схема приведена на рисунке.

   Особенности электронного трансформатора на IR2161:
Интеллектуальный драйвер полумоста; 
Защита от короткого замыкания нагрузки с автоматическим перезапуском ;
Защита от токовой перегрузки с автоматическим перезапуском ;
Качание рабочей частоты для снижения электромагнитных помех ;
Микромощный запуск 150 мкА;
Возможность использования с фазовыми регуляторами яркости с управлением по переднему и заднему фронтам ;
Компенсация сдвига выходного напряжения увеличивает долговечность ламп;
Мягкий запуск, исключающий токовые перегрузки ламп.


   Входной резистор R1 (0,25ватт) – своеобразный предохранитель. Транзисторы типа MJE13003 прижаты к корпусу через изоляционную прокладку металлической пластинкой. Даже при работе на полную нагрузку транзисторы греются слабо. После выпрямителя сетевого напряжения отсутствует конденсатор, сглаживающий пульсации, поэтому выходное напряжение электронного трансформатора при работе на нагрузку представляет собой прямоугольные колебания 40кГц, модулированные пульсациями сетевого напряжения 50Гц. Трансформатор Т1 (трансформатор обратной связи) – на ферритовом кольце, обмотки подключенные к базам транзисторов содержат по пару витков, обмотка, подключенная к точке соединения эмиттера и коллектора силовых транзисторов – один виток одножильного изолированного провода. В ЭТ обычно используются транзисторы MJE13003, MJE13005, MJE13007. Выходной трансформатор на ферритовом Ш-образном сердечнике. 


   Чтоб задействовать электронный трансформатор в импульсном источнике питания, нужно подключить на выход выпрямительный мост на ВЧ мощных диодах (обычные КД202, Д245 не пойдут) и конденсатор для сглаживания пульсаций. На выходе электронного трансформатора ставят диодный мост на диодах КД213, КД212 или КД2999. Короче нужны диоды с малым падением напряжения в прямом направлении, способные хорошо работать на частотах порядка десятков килогерц. 


   Преобразователь электронного трансформатора без нагрузки нормально не работает, поэтому его нужно использовать там, где нагрузка постоянна по току и потребляет достаточный ток для уверенного запуска преобразователя ЭТ. При эксплуатации схемы надо учитывать, что электронные трансформаторы являются источниками электромагнитных помех, поэтому должен ставиться LC фильтр, предотвращающий проникновение помехи в сеть и в нагрузку.


   Лично я использовал электронный трансформатор для изготовления импульсного источника питания лампового усилителя. Так-же представляется возможным питать ими мощные УНЧ класса А или светодиодные ленты, которые как раз и предназначены для источников с напряжением 12В и большим выходным током. Естественно подключение такой ленты производится не напрямую, а через токоограничительный резистор или с помощью коррекции выходной мощности электронного трансформатора.

   Форум по электронным трансформаторам

   Обсудить статью СХЕМА ЭЛЕКТРОННОГО ТРАНСФОРМАТОРА ДЛЯ ГАЛОГЕННЫХ ЛАМП




radioskot.ru

AC-DC Adaptor — Систематизированная полезная информация

AC-DC Adaptor — Систематизированная полезная информация — KenotronTVJump to content Если вам нравится наша работа — поддержите нас!

AVL68    927

  • Профессионал
  • Мастер
  • 927
  • 702 posts
  • Город : Нарьян-Мар
  • Род занятий: Ремонт бытовой техники
  • Программатор: RT809F, RT809H
  • Осциллограф: НЕТ

TROCIK    255

  • Мастер
  • Мастер
  • 255
  • 280 posts
  • Город : Комсомольск на Днепре
  • Род занятий: Радиолюбитель с 11 лет
  • Программатор: RT809… Postal
  • Осциллограф: UTD2102CEL, С1-112

AVL68    927

  • Профессионал
  • Мастер
  • 927
  • 702 posts
  • Город : Нарьян-Мар
  • Род занятий: Ремонт бытовой техники
  • Программатор: RT809F, RT809H
  • Осциллограф: НЕТ

AVL68    927

  • Профессионал
  • Мастер
  • 927
  • 702 posts
  • Город : Нарьян-Мар
  • Род занятий: Ремонт бытовой техники
  • Программатор: RT809F, RT809H
  • Осциллограф: НЕТ

AVL68    927

  • Профессионал
  • Мастер
  • 927
  • 702 posts
  • Город : Нарьян-Мар
  • Род занятий: Ремонт бытовой техники
  • Программатор: RT809F, RT809H
  • Осциллограф: НЕТ

AVL68    927

  • Профессионал
  • Мастер
  • 927
  • 702 posts
  • Город : Нарьян-Мар
  • Род занятий: Ремонт бытовой техники
  • Программатор: RT809F, RT809H
  • Осциллограф: НЕТ

letunov45    218

  • Общительный
  • Участники
  • 218
  • 238 posts
  • Город : Курган
  • Род занятий: Радиомеханник
  • Программатор: CH-341A; Postal-2, Postal3 AVR, Proman и др.
  • Осциллограф: C1-49

AVL68    927

  • Профессионал
  • Мастер
  • 927
  • 702 posts
  • Город : Нарьян-Мар
  • Род занятий: Ремонт бытовой техники
  • Программатор: RT809F, RT809H
  • Осциллограф: НЕТ

AVL68    927

  • Профессионал
  • Мастер
  • 927
  • 702 posts
  • Город : Нарьян-Мар
  • Род занятий: Ремонт бытовой техники
  • Программатор: RT809F, RT809H
  • Осциллограф: НЕТ

AVL68    927

  • Профессионал
  • Мастер
  • 927
  • 702 posts
  • Город : Нарьян-Мар
  • Род занятий: Ремонт бытовой техники
  • Программатор: RT809F, RT809H
  • Осциллограф: НЕТ

AVL68    927

  • Профессионал
  • Мастер
  • 927
  • 702 posts
  • Город : Нарьян-Мар
  • Род занятий: Ремонт бытовой техники
  • Программатор: RT809F, RT809H
  • Осциллограф: НЕТ

AVL68    927

  • Профессионал
  • Мастер
  • 927
  • 702 posts
  • Город : Нарьян-Мар
  • Род занятий: Ремонт бытовой техники
  • Программатор: RT809F, RT809H
  • Осциллограф: НЕТ

AVL68    927

  • Профессионал
  • Мастер
  • 927
  • 702 posts
  • Город : Нарьян-Мар
  • Род занятий: Ремонт бытовой техники
  • Программатор: RT809F, RT809H
  • Осциллограф: НЕТ

AVL68    927

  • Профессионал
  • Мастер
  • 927
  • 702 posts
  • Город : Нарьян-Мар
  • Род занятий: Ремонт бытовой техники
  • Программатор: RT809F, RT809H
  • Осциллограф: НЕТ

LiVan    1,140

  • Администратор
  • Administrators
  • 1,140
  • 4,523 posts
  • Website URL: https://kenotrontv.ru/
  • Город : Ростов на Дону
  • Род занятий: Администратор
  • Программатор: EZP2010, Postal, RT809H, UFPI
  • Осциллограф: OWON SDS7102V

AVL68    927

  • Профессионал
  • Мастер
  • 927
  • 702 posts
  • Город : Нарьян-Мар
  • Род занятий: Ремонт бытовой техники
  • Программатор: RT809F, RT809H
  • Осциллограф: НЕТ

AVL68    927

  • Профессионал
  • Мастер
  • 927
  • 702 posts
  • Город : Нарьян-Мар
  • Род занятий: Ремонт бытовой техники
  • Программатор: RT809F, RT809H
  • Осциллограф: НЕТ

kenotrontv.ru

Принципиальная схема кондиционера

Как и любое другое техническое устройство, кондиционер имеет принципиальную схему, на которой указаны все его составляющие, а также коммуникации — то есть соединения между ними.

Условно кондиционер можно разделить на две функциональные части:

  • холодильный контур
  • электрическая часть

Основную функцию — охлаждение, осуществляет холодильный контур, а вот всеми его компонентами управляет электрическая схема (электронная).

В данной статье мы рассмотрим схемы неинверторных кондиционеров.

 

Схема холодильного контура

Ниже размещена схема холодильного контура кондиционера. 

Схема взята не из учебника, а из сервисной документации производителя, поэтому и обозначения приведены на английском языке.

Compressor — компрессор, «сердце кондиционера». Компрессор сжимает хладагент и прокачивает его по контуру.

Heat exchanger — теплообменник,

  • outdoor unit — внешнего блока, то есть конденсатор, охлаждает сжатый фреон ниже температуры конденсации
  • indoor unit — внутреннего блока — испаритель, в нём рабочее вещество испаряется, опуская температуру

Expansion valve — расширительный вентиль

По-другому ТРВ — терморегулирующий вентиль. Обеспечивает подачу необходимого количества хладагента.

В простых кондиционерах его роль выполняет капиллярная трубка, без всякой регулировки, в инверторных системах — электронный расширительный вентиль.

2-Way valve — двухходовой вентиль, то есть обычная задвижка, с двумя положениями — открыто и закрыто

3-Way valve — трёхходовой клапан, в кондиционере это сервисный порт, к которому подключается шланг манометрического манометра для измерения давления или заправки.

4-Way valve — четырёхходовой клапан, обеспечивает реверс хладагента для работы кондиционера в режиме обогрева

Strainer — фильтр, на данной схеме это фильтр-осушитель, так как установлен перед ТРВ (и после, так как система может работать в режиме реверса и хладагент меняет направление движения).

Его задача не допустить попадание влаги в тонкий канал ТРВ — так как влага его закупорит, не давая пройти хладагенту. 

Muffler — глушитель

Стрелками указано направление движения фреона по контуру:

  • сплошной стрелкой — в режиме охлаждения
  • пунктирной стрелкой — в режиме нагрева

Также в более сложных и совершенных кондиционерах устанавливают:

  • датчики давления
  • отделители жидкого хладагента
  • линии перепуска 
  • системы инжекции (впрыска) в компрессор
  • маслоотделители

 

Схема мульти сплит системы

Мульти сплит система — это кондиционер имеющий один внешний блок и несколько внутренних

 

В этом случае добавляются ещё несколько внутренних блоков, а также:

Distributor — распределитель, который расщепляет поток хладагента и направляет его в несколько внутренних блоков.

В схеме также присутствуют элементы, которые используются не только в мульти системах:

Receiver tank — ресивер.

Ресивер имеет несколько предназначений — защита от гидроудара компрессора, слив фреона при ремонте и т.д.

В данном случае это линейный ресивер, который не допускает попадание газообразного фреона в ТРВ

  

Электрическая схема кондиционера

 Схема электрических соединений внешнего блока сплит системы:

 Terminal — клеммная колодка для подключения межблочного кабеля для соединения с внутренним блоком.

N — электрическая нейтраль

2 — подача питания на компрессор с платы управления внутреннего блока

3 — подача питания на двигатель вентилятора для работы на 1-ой скорости

4 — подача питания на двигатель вентилятора для работы на 2-ой скорости

5 — подача питания на привод четырёхходового клапана для переключения в режим обогрева

Компрессор

C — common — общий вывод обмоток компрессора

R — runningрабочая обмотка компрессора

S — startingфазосдвигающая обмотка двигателя компрессора, стартовая

Internal overload protector — внутренняя защита от перегрузки

Compressor Capacitior — электрический конденсатор, в данном случае рабочий (бывают ещё и пусковые, в настоящее время в кондиционерах не используются)

Fan motor — двигатель, мотор вентилятора

Thermal protector — защита от перегрева, обычно ставится непосредственно на обмотки двигателя и при превышении температуры разрывает цепь.

Fan motor Capacitior — рабочий конденсатор двигателя вентилятора

SV — solenoid valve — электромагнитный клапан, приводящий в действие механизм четырёхходового клапана.

 

Схема внутреннего блока кондиционера:

 Клеммная колодка

На клеммной колодке кроме межблочных соединений находятся и зажимы для подключения питания (питание может подводиться и наоборот — к внешнему блоку)

L, N — электрическая линия и нейтраль однофазного питания

Filter Board — плата фильтра, уменьшает уровень помех в сети питания

Control Board — плата управления — управляет всеми устройствами, получает данные со всех датчиков, выполняет терморегуляцию, выводит информацию для пользователя на дисплей, выполняет самодиагностику.

Main relay — главное реле — силовое реле, подающее напряжение на компрессор.

Display board — модуль индикации, может представлять из себя линейку светодиодов, которые показывают наличие питания, выбранный режим, код ошибки или дисплей, на котором выводится ещё и температура.

Thermistor — термистор, терморезистор, датчик температуры

Room temp. — датчик температуры воздуха в комнате

Pipe temp. — датчик температуры трубки теплообменника, испарителя

Датчики температуры ещё могут находиться в:

    • пульте управления — для поддержания температуры в точке нахождения пульта (например ,режим «I Feel»).
    • на входе, выходе и в средней точки испарителя

Step motor — шаговый двигатель,

Применяется для открывания жалюзийной решётки, шторки, закрывающей вентилятор

За один шаг его вал отклоняется на небольшой угол, таким образом получается очень точно контролировать положение вала. 

Drain pump motor — дренажный насос, встроенный только у кассетных кондиционеров

Float switch — поплавковый датчик уровня конденсата, только для кассетных кондиционеров

 

 

Где взять схему моего кондиционера?

Схемы кондиционера могут отличаться для каждой конкретной модели — где-то могут быть детали, которых нет в приведённых схемах (например датчики или защитные приборы), или наоборот, некоторых деталей не будет.

Для каждой модели кондиционера производитель выпускает сервисную документацию (Service Manual) для ремонтников, обслуживающего и инженерного персонала. В ней находятся не только схемы, но и коды ошибок, способы устранения поломок.

Итак, для нахождения схемы кондиционера необходимо:

  • выписать точную модель оборудования
  • найти сервис мануал в разделе «Техническая документация»
  • можно воспользоваться поиском по сайту или в интернете
  • получить информацию у производителя, дистрибьютора

Но даже если вы не нашли информацию по необходимому оборудованию, можно воспользоваться другой из этой серии, либо вообще от другого производителя, так как схемные решения очень схожи.

Также можно создать тему на профессиональном форуме, коллеги обязательно помогут Вам!

masterxoloda.ru

Поиск fap026 в таможенной базе:


10226050/080613/0022060
Получатель: ООО «ВЛВ»
ТН ВЭД: 8504909900: преобразователей.статических.прочие
ЧАСТИ ПРЕОБРАЗОВАТЕЛЕЙ **************** ******************* ******* **************** ***** ***** ****** **************** *** ** *** *** ** **** **** ******* ***********

10226050/040413/0012304
Получатель: ООО «ВЛВ»
ТН ВЭД: 8504909900: преобразователей.статических.прочие
ЧАСТИ ПРЕОБРАЗОВАТЕЛЕЙ **************** ******************* ******* **************** ***** ***** ****** **************** ****** ** *** *** ** **** **** ******* ***********

10226050/090413/0012944
Получатель: АО НАУЧНО-ПРОИЗВОДСТВЕННОЕ ОБЪЕДИНЕНИЕ ЦИФРОВЫЕ ТЕЛЕВИЗИОННЫЕ СИСТЕМЫ
ТН ВЭД: 8504403009: используемые.с.телекоммуникационной.аппаратурой,.вычислительными.машинами.и.их.блоками.прочие
1-БЛОК ПИТАНИЯ(ЭЛЕКТРОННЫЙ ******************* ****** ********* ********* **** ************ *************** *********** *** **** *********** ********* ***** ******* **** * ********** *** *** ********************* **** ******* *** ********** ******* **** ***************** ****

10226050/130313/0008865
Получатель: ООО «ВЛВ»
ТН ВЭД: 8504909900: преобразователей.статических.прочие
ЧАСТИ АДАПТЕР ******* **************** ***** ***** ****** **************** **** ** *** *** ** **** **** ******* ***********

10226050/060213/0003466
Получатель: ООО «ВЛВ»
ТН ВЭД: 8504909900: преобразователей.статических.прочие
ЧАСТИ ПРЕОБРАЗОВАТЕЛЕЙ **************** ******************* ******* **************** ***** ***** ****** **************** **** ** *** *** ** **** **** ******* ***********

10226050/200213/0005690
Получатель: ООО «ВЛВ»
ТН ВЭД: 8504909900: преобразователей.статических.прочие
ЧАСТИ ПРЕОБРАЗОВАТЕЛЕЙ **************** ******************* ******* **************** ***** ***** ****** **************** ****** ** *** *** ** **** **** ******* ***********

10226040/290113/0000629
Получатель: АО НАУЧНО-ПРОИЗВОДСТВЕННОЕ ОБЪЕДИНЕНИЕ ЦИФРОВЫЕ ТЕЛЕВИЗИОННЫЕ СИСТЕМЫ
ТН ВЭД: 8504403009: используемые.с.телекоммуникационной.аппаратурой,.вычислительными.машинами.и.их.блоками.прочие
БЛОК ПИТАНИЯ(ЭЛЕКТРОННЫЙ ******************* ****** ********* ********* **** ************ *************** *********** *** **** *********** ********* ***** ******* **** * ********** *** *** ********************* **** ******* *** ********** ******* **** ***************** ****

10226050/240113/0001663
Получатель: ООО «ВЛВ»
ТН ВЭД: 8504909900: преобразователей.статических.прочие
ЧАСТИ ПРЕОБРАЗОВАТЕЛЕЙ **************** ******************* ******* **************** ***** ***** ****** **************** ***** ** *** *** ** **** **** ******* ***********

10226050/240113/0001666
Получатель: ООО «ВЛВ»
ТН ВЭД: 8504909900: преобразователей.статических.прочие
ЧАСТИ ПРЕОБРАЗОВАТЕЛЕЙ **************** ******************* ******* **************** ***** ***** ****** **************** ****** ** *** *** ** **** **** ******* ***********

ved-import.com