Hxgk5I схема подключения – схема, инструкция и способы подключения

Содержание

однофазные и трёхфазные электродвигатели, возможность подключить

Принципом работы любого электрического двигателя является способность трансформировать электрическую энергию в механическую. Независимо от конструкции, каждая электрическая машина устроена одинаково: в неподвижной части (статор или индуктор) вращается подвижная часть (ротор или якорь). Для продолжительной бесперебойной эксплуатации оборудования необходимо правильное подключение электродвигателя.

Основные разновидности

Электрические двигатели обладают рядом очевидных достоинств. Они гораздо меньше по размеру, чем их тепловые аналоги идентичной мощности. Поэтому они отлично подходят для размещения в общественном электротранспорте или на заводских станках. Во время работы они не вредят окружающей среде выделением продуктов распада и паровыми испарениями.

Электрические двигатели можно разделить на две основных группы:

  1. Двигатели постоянного тока. Применяются для регулируемых электроприводов с эксплуатационными показателями высокого качества, такими как готовность к перезагрузке и вращательная равномерность. Ими оснащают вспомогательные агрегаты экскаваторов, полимерного оборудования, бурильных станков. Электродвигатели массово применяются в электротранспорте. Преобразователи постоянного тока дополнительно подразделяются на коллекторные и вентильные.
  2. Двигатели переменного тока. Являются более дешевыми и долговечными, с простым и надёжным конструкторским решением. Подавляющее большинство бытовой домашней техники укомплектовано этими электродвигателями. В промышленности они применяются в заводских станках, вентиляторах, компрессорах, насосах, лебёдках для поднятия и перемещения груза. По принципу работы эти механизмы делятся на синхронные и асинхронные.

Способы подключения

Электрические двигатели любой конструкции устроены одинаково. В статичной обмотке (статоре) осуществляется вращение ротора. В нём происходит возбуждение магнитного поля, отталкивающее его полюсы от статора. Бесперебойная работа этой конструкции обусловлена правильным подключением электродвигателя, зависящим от используемого вида.

Однофазный асинхронный

Этот двигатель получил такое название потому, что у него всего одна рабочая обмотка. Его мощность может составлять от пяти до десяти киловатт. Рабочая и пусковая обмотки располагаются между собой под прямым углом.

К цепи необходимо подключить фазовращающий элемент. Такая схема подключения однофазного электродвигателя с конденсатором отличается оптимальными пусковыми свойствами. Используя конденсатор, электрический двигатель может быть оснащен следующими видами этого двухполюсника:

  • рабочим;
  • пусковым;
  • рабочим и пусковым.

На практике чаще всего применяется пусковой конденсатор. Применить этот вариант можно, используя реле времени или замкнув электрическую цепь через пусковую кнопку.

В случае выбора схемы подключения электродвигателя 220 В через конденсатор пусковые характеристики заметно ухудшаются. Третий вариант с пусковым и рабочим двухполюсником считается промежуточным.

Коллекторный вариант

Универсальность этого двигателя заключается в том, что он имеет возможность получать энергию от преобразователей переменной или постоянной разновидности тока. Он находит применение в швейных или стиральных машинах, бытовых электрических инструментах.

Однофазные коллекторные двигатели отличаются такими недостатками:

  1. Сложность ремонтных работ, невозможность их самостоятельного проведения.
  2. Высокий уровень шума.
  3. Сложное управление.
  4. Высокая стоимость.

Сначала необходимо убедиться, что параметры электрической сети соответствуют допустимым напряжению и частоте, указанным на корпусе электродвигателя. Система должна быть предварительно обесточена.

Для подключения коллекторного двигателя следует последовательно соединить статор и якорь. Клеммы 2 и 3 необходимо соединить, а 1 и 4 замкнуть в цепь 220 В. Включение без регулятора перепада давления может спровоцировать образование пускового тока значительной мощности, что приведёт к искрению в коллекторе.

Также стоит рассмотреть схему подключения электродвигателя через магнитный пускатель:

  1. Следует удостовериться, что контактная система пускателя выдержит эксплуатационные условия электрического двигателя. Есть восемь категорий величины нагрузочного тока от 6,3 А до 250 A. Величина в этом случае обозначает силу тока, которую в состоянии пропустить через рабочие контакты электромагнитный пускатель.
  2. Катушка управления может быть рассчитана на 36 В, 220 В, 380 В. Следует выбрать вариант 220 вольт.
  3. После сбора схемы электромагнитного пускателя следует подключить силовую часть. На выходе силовых контактов происходит включение электрического двигателя, параллельно присоединяется вход на 220 вольт.
  4. Затем следует подключить кнопки «Стоп» и «Пуск».
  5. На второй вывод электромагнитного пускателя необходимо присоединить «ноль».

Подключение «звездой»

Такой способ подходит для схемы подключения трёхфазного электродвигателя на 380 В. К началу обмоток (С 1, С 2, С 3) подсоединяются фазные проводники (А, В, С) через аппарат коммутации. Концы обмоток необходимо совместить в одной точке.

Такая схема электродвигателя не позволит развить всю его мощность, потому что на каждой обмотке напряжение будет равняться 220 В. Возможность подключить электрический двигатель по схеме «звезда» подтверждается на табличке символом Y.

Эту схема подключения двигателя можно без труда различить в клеммной коробке из-за перемычки, расположенной посреди выводов обмоток.

Соединение «треугольник»

Чтобы трёхфазная электромашина смогла развить максимально предусмотренную мощность, следует применять схему подключения асинхронного двигателя способом «треугольник».

Выводы обмоток необходимо соединить в следующем порядке:

  • С 2 с С 4;
  • С 3 с С 5;
  • С 6 с С 1.

Между проводами в трёхфазных сетях линейное напряжение будет равняться 380 В. С таким вариантом подключения может не справиться проводка, потому что она способствует возникновению пусковых токов. Такое соединение возможно в случае наличия на табличке двигателя значка Δ.

Для полного понимания того, как подключить электродвигатель с 3 проводами, следует знать о комбинированном подключении. В таком случае сперва применяется схема соединения «звездой», затем в рабочем режиме обмотки переключается на «треугольник».

Всегда нужно помнить в процессе работы с электрическими приборами о строгом соблюдении правил техники безопасности. Все действия необходимо производить лишь в режиме обесточенного оборудования.


220v.guru

Подключение однофазного двигателя: схемы, проверка, видео

Чаще всего к нашим домам, участкам, гаражам подведена однофазная сеть 220 В. Потому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В данной статье рассмотрим, как правлильно сделать подключение однофазного двигателя. 

Асинхронный или коллекторный: как отличить

Содержание статьи

Вообще, отличить тип двигателя можно по пластине — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

Так выглядит новый однофазный конденсаторный двигатель

Как устроены коллекторные движки

Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.

Строение коллекторного двигателя

Недостатки колелкторых двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д.. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

Асинхронные

Асинхронный двигатель имеет стартер и ротор, может быть одно и трех фазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

Строение асинхронного двигателя

Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Более точно определить бифолярный или конденсаторный двигатель перед вами можно при помощи измерений обмоток. Если сопротивление вспомогательной обмотки меньше в два раза (разница может быть еще более значительная), скорее всего, это бифолярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

Схемы подключения однофазных асинхронных двигателей

С пусковой обмоткой

Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

  • один с рабочей обмотки — рабочий;
  • с пусковой обмотки;
  • общий.

С этими тремя проводами и работаем дальше — исползуем для подключения однофазного двигателя.

Со всеми этими 

Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно). К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифолярного) через кнопку.

Конденсаторный

При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения  и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

Схемы подключения однофазного конденсаторного двигателя

Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

Схема с двумя конденсаторами

Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

Подбор конденсаторов

Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

  • рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
  • пусковой — в 2-3 раза больше.

Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите конденсатор специальный конденсатор. У них в маркировке присутствует слова Start или  Starting, но можно взять и обычные.

Изменение направления движения мотора

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

Как все может выглядеть на практике

stroychik.ru

Схемы подключения | 2 Схемы

Сборник принципиальных электрических схем подключения электропроводки, ламп, розеток, двигателей и бытовой техники к сети 220 вольт.

Тензодатчик [1-3] преобразует величину деформации в электрический сигнал. Данный прибор был приобретен на Алиэкспресс по цене 1,1$. Датчик имеет размер 34 х 34 мм, толщина …

Всем привет! В этой статье расскажу что делать, если у вас на ноутбуке плохой встроенный микрофон, а отдельного разъёма под микрофон нет. Я столкнулся с …

С весны слушал жалобы домочадцев на люстру, что висит в зале. Сетовали на чрезмерно частое перегорание ламп накаливания, причём в определённых плафонах. Даже пометили эти …

Есть 2 типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Их различие в том, что в бифилярных однофазных двигателях пусковая обмотка работает …

Генератор в автомобилях предназначен для выработки электроэнергии и заряда аккумулятора. При нарушении нормальной работы автомобильного электрогенератора, аккумулятор начинает разряжаться и вскоре авто перестанет заводиться совсем …

Датчик движения — это электронное инфракрасное устройство, которое позволяет обнаруживать присутствие и перемещение человека и помогает коммутировать питание приборов освещения и других электрических приборов. В …

Согласно правил дорожного движения (ПДД), движущееся транспортное средство в светлое время суток должно быть обозначено фарами ближнего света, противотуманными фарами (ПТФ) или дневными ходовыми огнями …

2shemi.ru

Как подключить дренажный насос: электрическая схема подключения

Одним из оптимальных и эффективных решений для борьбы с частым подтоплением цокольных помещений является использование дренажных насосов. Их преимуществом является и то, что подключенный погружной электрический дренажник может использоваться в быту для различных целей. Поэтому нужна правильная схема подключения насоса и правильное его подсоединение в зависимости от условий эксплуатации и решаемых задач.

Рис.1 Дренажные погружные электрические насосы — внешний вид

Содержание статьи:

Область применения

Принцип действия электрического дренажного насоса соответствует центробежным видам, от погружных устройств для забора воды с большой глубины его отличают некоторые конструктивные изменения. Дренажные электрические насосы можно использовать для следующих работ:

  • Откачка воды с любой глубины в случае затопления помещений ниже уровня земли: подвалов, погребов, складов, хранилищ, подземных гаражей.
  • Дренажным насосом можно выкачивать воду из бассейнов, прудов и искусственных водоемов при их загрязнении, с их помощью можно снова быстро заполнить водоем.
  • С помощью дренажника удобно поливать растения на приусадебных участках непосредственно, или наполняя емкости большого объема для дальнейшего капельного полива.
  • Временно использовать вместо глубинного насоса для забора чистой воды, при этом следует учитывать, что КПД дренажного насоса значительно меньше специального электрического насосного оборудования для водоснабжения.
  • Погружным электронасосом удобно откачивать воду из дренажных ям внутри и снаружи зданий в автоматическом режиме — при подключении они начинают качать воду после наполнения ямы до определенного уровня и прекращают работать после ее опорожнения.
  • Дренажным насосным устройством в силу конструктивных особенностей чистят скважины, колодцы и пруды — они работают на большой глубине и способны высасывать грязную воду с крупными фракциями.
  • При необходимости дренажник можно использовать не по его прямому назначению, а в качестве фекального электрического насоса для очистки канализационных, выгребных и стоковых ям от сильно загрязненных отходов. В устройстве нет измельчителя, поэтому подключать его придется через дополнительный фильтр.

Принцип действия и схема дренажного насоса

Рис.2 Устройство и внешний вид дренажника

Погружной электронасос имеет простую конструкцию, основным элементом которой является помещенный в корпус электродвигатель с рабочим колесом на валу. С подключением электродвигателя колесо начинает вращаться и втягивает воду через центральное отверстие около его оси, далее жидкость за счет центробежной силы выталкивается через выходной патрубок. Для защиты от попадания крупных фракций устройство оснащено диафрагмированным фильтром, сверху корпуса имеется отверстие для подвешивания на трос. Типовой дренажник всегда имеет встроенный в корпус поплавковый выключатель, автоматизирующий режим его работы.

Схема подключения и правила эксплуатации

Рис. 3 Электрическая схема соединения проводов в дренажных насосах

Схема подключения дренажного насоса при отсутствии вилки или в случае необходимости в удлинении провода не вызовет проблем даже у домохозяйки. Все стандартные провода имеют цветовую маркировку, соответствующую их назначению, достаточно просто соединить провода одного цвета.

Рис. 4. Схема соединения с отдельным пусковым устройством

Перед подключением дренажного электронасоса и установкой его на глубину полезно соблюдать следующие правила:

  • Если мы подключаем насосный аппарат первый раз, то перед работой следует изучить параметры дренажника и характеристики питающей сети на предмет совместимости — это будет способствовать его надежному подключению к сети и заземлению.
  • Подключение погружного насоса без реле защиты от перегрева к электрической сети следует производить через защитный автомат, с номинальным током срабатывания не более его максимального значения для электронасоса.
  • Глубинный дренажник, имеющий электрическую схему со встроенным тепловым реле, можно подключать в электрическую сеть напрямую. При этом может возникнуть ситуация, когда дренажный насос перегрелся при интенсивной нагрузке и отключился — в этом случае необходимо дать ему время остыть.

Рис. 5 Как подключить дренажный насос — схема подключения

  • Глубинные электронасосы имеют кабель с длиной, рассчитанной так, чтобы их глубина погружения соответствовала длине электрического шнура. Если кабель поврежден или возникла необходимость в его замене, запрещается его ремонтировать любыми способами или менять самостоятельно. Эту работу необходимо доверить опытным специалистам, которые обеспечат полную герметизацию соединения.
  • При остановке в насосах может происходить обратный отток воды из напорной магистрали в источник водозабора — это может привести к наполнению емкости и повторному включению устройства. Схема подключения погружного насоса для устранения этого эффекта должна включать в себя обратный клапан, который подключается к насосу на выходе.
  • При работе с глубинным дренажным насосом необходимо следить, чтобы дебит емкости с откачиваемой водой не позволял ему постоянно включаться и отключаться — это приводит к его перегреву и остановке.

Рис. 6 Дренажная насосная автоматика

В дренажной насосной помпе имеется встроенный поплавковый выключатель и во многих случаях реле защиты от перегрева, поэтому их установка и подключение не требуют сложной автоматики. В схеме подключения дренажника в напорный трубопровод дополнительно монтируются вентиль и обратный клапан, предотвращающие обратный отток жидкости.

Советуем почитать: Фильтр грубой очистки воды перед счетчиком

Возможно вам также будет интересно почитать:

Пользуясь сайтом oBurenie.ru вы автоматически соглашаетесь с политикой конфиденциальности для использования любых доступных средств коммуникации таких как: комментарии, чат, форма обратной связи и т.д.

oburenie.ru

Схема подключения, подбор и расчёт пускового конденсатора

 

Выход из строя конденсаторов в цепи компрессора кондиционеров случается не так уж и редко. А зачем вообще нужен конденсатор и для чего он там стоит?

Бытовые кондиционеры небольшой мощности в основном питаются от однофазной сети 220 В. Самые распространённые двигатели которые применяют в кондиционерах такой мощности- асинхронные со вспомогательной обмоткой, их называют двухфазные электродвигатели или конденсаторные.

В таких двигателях две обмотки намотаны так, что их магнитные полюсы расположены под углом 90 град. Эти обмотки отличаются друг от друга количеством витков и номинальными токами, ну соответственно и внутренним сопротивлением. Но при этом они рассчитаны так что при работе они имеют одинаковую мощность.

В цепь одной из этих обмоток, её производители обозначают как стартовую(пусковую), включают рабочий конденсатор, который постоянно находится в цепи. Этот конденсатор ещё называют фазосдвигающим, так как он сдвигает фазу и создаёт круговое вращающееся магнитное поле. Рабочая или основная обмотка подключена напрямую к сети.

 

Схема подключения пускового и рабочего конденсатора

 

Рабочий конденсатор постоянно включён в цепь обмотки  через  него протекает ток равный току в рабочей обмотке. Пусковой конденсатор подключается на время запуска компрессора — не более 3 секунд (в современных кондиционерах используется только рабочий конденсатор, пусковой не используется)

 

 

Расчёт ёмкости и напряжения рабочего конденсатора

 

Расчёт сводится к подбору такой емкости, чтобы при номинальной нагрузке было обеспечено круговое магнитное поле, так как при значении ниже или выше номинального магнитное поле изменяет форму на эллиптическое, а это ухудшает рабочие характеристки двигателя и снижает пусковой момент. В инженерных справочниках приведена формула для расчёта ёмкости конденсатора:

 

Ср= Isinφ/2πf U n2

 

I и sinφ –ток и сдвиг фаз между напряжением и током в цепи при вращающемся магнтном поле без конденсатора

f- частота переменного тока

U – напряжение питания

n- коэффициент трансформации обмоток , определяется как соотношение витков обмоток с конденсатором и без него.

Напряжение на конденсаторе рассчитывается по формуле

 

Uc= U√(1+n2)

 

Uc -рабочее напряжение конденсатора

U — напряжение питания двигателя

n — коэффициент трансформации обмоток

Из формулы видно, что рабочее напряжение фазосдвигающего конденсатора выше напряжения питания двигателя.

В пособиях по расчёту приводят приближённое вычисление – 70-80 мкФ ёмкости конденсатора на 1 кВт мощности электродвигателя, а номинал напряжения конденсатора для сети 220 В обычно ставят — 450 В.

Также параллельно к рабочему конденсатору подключают пусковой конденсатор на время пуска, примерно на три секунды, после чего срабатывает реле и отключает пусковой конденсатор. В настоящее время в кондиционерах схемы с дополнительным пусковым конденсатором не применяют.

В более мощных кондиционерах используют компрессоры с трёхфазными асинхронными двигателями, пусковые и рабочие конденсаторы для таких двигателей не требуются.

 

Проверка и замена пускового/рабочего конденсатора

masterxoloda.ru

Коллекторный двигатель переменного тока: схема подключения


Коллекторные двигатели переменного тока достаточно широко применяются как силовые агрегаты бытовой техники, ручного электроинструмента, электрооборудования автомобилей, систем автоматики. Схема подключения двигателя, а также его устройство напоминают схему и устройство электродвигателя постоянного тока с последовательным возбуждением.

Область применения таких моторов обусловлена их компактностью, малым весом, легкостью управления, сравнительно невысокой стоимостью. Наиболее востребованы в этом производственном сегменте электродвигатели малой мощности с высокой частотой вращения.

ОГЛАВЛЕНИЕ

  • Особенности конструкции и принцип действия
  • Упрощенная схема подключения
  • Управление работой двигателя
  • Преимущества и недостатки
  • Типичные неисправности

Особенности конструкции и принцип действия

По сути, коллекторный двигатель представляет собой достаточно специфичное устройство, обладающее всеми достоинствами машины постоянного тока и, в силу этого, обладающее схожими характеристиками. Отличие этих двигателей состоит в том, что корпус статора мотора переменного тока для снижения потерь на вихревые токи выполняется из отдельных листов электротехнической стали. Обмотки возбуждения машины подключаются последовательно для оптимизации работы в бытовой сети 220в.

Могут быть как одно-, так и трехфазными; благодаря способности работать от постоянного и переменного тока называются ещё универсальными. Кроме статора и ротора конструкция включает щеточно-коллекторный механизм и тахогенератор. Вращение ротора в коллекторном электродвигателе возникает в результате взаимодействия тока якоря и магнитного потока обмотки возбуждения. Через щетки ток подается на коллектор, собранный из пластин трапецеидального сечения и является одним из узлов ротора, последовательно соединенного с обмотками статора.

В целом принцип работы коллекторного мотора можно наглядно продемонстрировать с помощью известного со школы опыта с вращением рамки, помещенной между полюсами магнитного поля. Если через рамку протекает ток, она начинает вращаться под действием динамических сил. Направление движения рамки не меняется при изменении направления движения тока в ней.

Последовательное подсоединение обмоток возбуждения дает большой максимальный момент, но появляются большие обороты холостого хода, способные привести к преждевременному выходу механизма из строя.

Упрощенная схема подключения

Типовая схема подключения может предусматривать до десяти выведенных контактов на контактной планке. Ток от фазы L протекает до одной из щеток, затем передается на коллектор и обмотку якоря, после чего проходит вторую щетку и перемычку на обмотки статора и выходит на нейтраль N. Такой способ подключения не предусматривает реверс двигателя вследствие того, что последовательное подсоединение обмоток ведет к одновременной замене полюсов магнитных полей и в результате момент всегда имеет одно направление.

Направление вращения в этом случае можно изменить, только поменяв местами выхода обмоток на контактной планке. Включение двигателя «напрямую» выполняется только с подсоединенными выводами статора и ротора (через щеточно-коллекторный механизм). Вывод половины обмотки используется для включения второй скорости. Следует помнить, что при таком подключении мотор работает на полную мощность с момента включения, поэтому эксплуатировать его можно не более 15 секунд.

Наши читатели рекомендуют!
Для экономии на платежах за электроэнергию наши читатели советуют «Экономитель энергии Electricity Saving Box». Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

загрузка…

Управление работой двигателя

На практике используются двигатели с различными способами регулирования работы. Управление коллекторным мотором может осуществляться с помощью электронной схемы, в которой роль регулирующего элемента выполняет симистор, «пропускающий» заданное напряжение на мотор. Симистор работает, как быстросрабатывающий ключ, на затвор которого приходят управляющие импульсы и открывают его в заданный момент.

В схемах с использованием симистора реализован принцип действия, основанный на двухполупериодном фазовом регулировании, при котором величина подаваемого на мотор напряжения привязана к импульсам, поступающим на управляющий электрод. Частота вращения якоря при этом прямо пропорциональна приложенному к обмоткам напряжению. Принцип работы схемы управления коллекторным двигателем упрощенно описывается следующими пунктами:

  • электронная схема подает сигнал на затвор симистора;
  • затвор открывается, по обмоткам статора течет ток, придавая вращение якорю М двигателя;
  • тахогенератор преобразует в электрические сигналы мгновенные величины частоты вращения, в результате формируется обратная связь с импульсами управления;
  • в результате ротор вращается равномерно при любых нагрузках;
  • реверс электродвигателя осуществляется с помощью реле R1 и R

Помимо симисторной существует фазоимпульсная тиристорная схема управления.

Преимущества и недостатки

К неоспоримым достоинствам таких машин следует отнести:

  • компактные габариты;
  • увеличенный пусковой момент; «универсальность» — работа на переменном и постоянном напряжении;
  • быстрота и независимость от частоты сети;
  • мягкая регулировка оборотов в большом диапазоне с помощью варьирования напряжения питания.

Недостатком этих двигателей принято считать использование щеточно-коллекторного перехода, который обуславливает:

  • снижение долговечности механизма;
  • искрение между и коллектором и щетками;
  • повышенный уровень шумов;
  • большое количество элементов коллектора.

Типичные неисправности

Наибольшего внимания к себе требует щеточно-коллекторный механизм, в котором наблюдается искрение даже при работе нового двигателя. Сработанные щетки следует заменить для предотвращения более серьезных неисправностей: перегрева ламелей коллектора, их деформации и отслаивания. Кроме того, может произойти межвитковое замыкание обмоток якоря или статора, в результате которого происходит значительное падение магнитного поля или сильное искрение коллекторно-щеточного перехода.

Избежать преждевременного выхода из строя универсального коллекторного двигателя может грамотная эксплуатация устройства и профессионализм изготовителя в процессе сборки изделия.

electricvdele.ru

Схема подключения и настройка температурного реле ТР-100

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

В сегодняшней статье я расскажу Вам про подключение и настройку цифрового температурного реле ТР-100 от Новатек Электро.

Реле ТР-100 предназначено для измерения температуры и выдачи сигналов при выходе ее за установленные значения.

Область применения реле может быть самой широкой и разнообразной. Вот например, в моем случае реле ТР-100 применяется для измерения и контроля температуры трехфазного сухого трансформатора ТСЛ 10/0,4 (кВ) мощностью 1000 (кВА).

Напомню, что трансформатор ТСЛ имеет обмотки с литой изоляцией с естественным воздушным охлаждением и его максимальная температура не должна превышать значения, указанные в руководстве по эксплуатации на трансформатор, в зависимости от класса нагревостойкости его изоляции. В данном случае трансформатор имеет класс нагревостойкости F, а температура его нагрева не должна превышать 145°С.

Вот внешний вид реле ТР-100 и его габаритные размеры (90х139х63 мм).

Реле ТР-100 устанавливается на стандартной DIN-рейке, причем в любом пространственном положении, и имеет универсальное питание, находящееся в пределах от 24 (В) до 260 (В), причем как переменного, так и постоянного напряжения.

Основные технические характеристики реле ТР-100:

Характеристики контактов выходных реле:

  • 10 (А) при переменном напряжении 250 (В) и cosφ=1
  • 3 (А) при постоянном напряжении 30 (В) и cosφ=1

В моем примере реле подключено к дифференциальному автомату АД12 (SF6) с номинальным током 16 (А) и током утечки 30 (мА), к которому помимо реле подключена еще и розетка (XS1). А вообще, для индивидуального питания реле ТР-100 необходим автомат с номинальным током 1 (А) или 2 (А).

К данному реле можно подключить до 4 датчиков температуры. В качестве датчиков температуры в моем примере используются резистивные платиновые датчики РТ100 с номинальным сопротивлением 100 (Ом) при 0°С.

Датчики устанавливаются в верхней части обмоток НН каждой фазы трансформатора, т.е. всего на трансформаторе установлено 3 температурных датчика РТ100, кабели от которых выведены к реле ТР-100.

Кабели от датчиков должны быть изготовлены из экранированного кабеля типа витая пара (или тройка) и иметь одинаковую длину, а экраны кабелей должны быть обязательно заземлены.

В данном примере применены трехжильные кабели, правда вот заземление экранов монтажники почему-то не выполнили. В общем как всегда, придется самому за ними все доделывать, т.е. разделать кабели и заземлить их экраны. Кстати, это не единственная не доработка поставщика данной КТПН. Помимо этого, есть еще ряд замечаний, о которых я расскажу в самое ближайшее время.

Датчики к реле можно подключить, как по двухпроводной схеме, так и по трехпроводной. В моем случае используется трехпроводная схема подключения датчиков температуры, т.к. при двухпроводной схеме длина кабелей ограничена 5 метрами. При трехпроводной схеме расстояние кабелей может достигать вплоть до 100 метров.

На каждый канал подключается кабель от температурных датчиков. По возможности, определите для себя откуда проложен тот или иной кабель, чтобы ориентироваться на случай перегрева обмоток трансформатора.

Например, кабель от датчика обмотки фазы А подключен к первому каналу следующим образом:

  • красная жила — на клемму (22)
  • две белых жилы — в любом порядке, соответственно, на клеммы (23) и (24)

Остальные кабели подключаются аналогично, только на второй и третий каналы.

При повышении температуры обмоток трансформатора сопротивление датчиков увеличивается. Сигнал от датчиков температуры преобразуется в электрический сигнал и передается на наше цифровое температурное реле ТР-100.

Кстати, нередко для подобных целей применяется реле Т154 от TecSystem, но не в этот раз.

Для правильной защиты нашего сухого трансформатора от перегрева и исключения выхода его из строя, рекомендуется использовать 3 пары выходных контактов:

  • включение вентиляторов охлаждения (уставка срабатывания реле 100°С, возврат 90°С)
  • сигнализация перегрева обмоток (уставка 135°С)
  • отключение нагрузки трансформатора (145°С)

Температурное реле ТР-100 как раз таки имеет 4 выходных реле, что удовлетворяет вышеприведенным рекомендациям.

Но в моем случае контакты выходных реле никуда использоваться не будут. Согласно проекта, в КТПН не предусмотрена система вентиляции, а также не проложены контрольные кабели для выдачи сигналов при перегреве трансформатора. В таком случае оперативный персонал будет производить ежедневные осмотры данного трансформатора и контролировать температуру его нагрева по дисплею реле ТР-100.

Тем не менее я расскажу вкратце про выходные реле. Как я уже говорил, ТР-100 имеет 4 выходных реле:

  • К1 — расцепление
  • К2 — тревога
  • К3 — вентиляция
  • К4 — отказ

Реле К1 (расцепление), К2 (тревога) и К3 (вентиляция) включаются только при достижении заданной уставки. Уставки каждого реле (Alr, trP и FAn) настраиваются индивидуально.

Реле К4 (отказ) находится всегда во включенном положении и отключается при снятии напряжения питания с ТР-100 или при неисправности температурных датчиков. Во втором случае, индикаторы «расцепление», «тревога» и «отказ» будут мигать, а ошибка на дисплее будет символизировать характер неисправности датчиков (Fcc — замыкание датчика, Foc — обрыв датчика).

На лицевой панели реле ТР-100 расположены индикаторы включения всех выходных реле, а также индикаторы подключения к ПК и номера каналов отображения температуры. Помимо индикаторов, на лицевой панели расположены кнопки управления, с помощью которых происходит управление и задание параметров реле.

У реле ТР-100 имеется два режима управления параметрами:

  • режим просмотра
  • режим изменения (программирования)

Надеюсь, что по кнопкам управления Вам все понятно из выше прикрепленного изображения, единственное добавлю, что для входа в режим настройки параметров необходимо нажать и удержать кнопку «Меню» около 7 секунд. Кстати, для доступа к настройке можно установить пароль, изменив параметр PAS (см. таблицу ниже). Тогда каждый раз при входе в режим настройки, нужно будет вводить заданный пароль.

Ниже я приведу таблицу с настраиваемыми параметрами реле ТР-100, взятую из руководства по эксплуатации. По этим таблицам все вполне наглядно и информативно понятно, чтобы самостоятельно произвести настройку реле должным образом. В таблице указаны параметры, их обозначение (мнемоника), пределы регулирования, заводская установка и действия, за которое отвечает тот или иной параметр.

Чуть выше я говорил, что согласно проекта, в КТПН не предусмотрена система вентиляции, а также не проложены контрольные кабели для выдачи сигналов на отключение трансформатора при перегреве его обмоток. Поэтому практически все параметры я оставил без изменений (заводские настройки), отключив лишь режим работы вентиляции (FAn).

В остальном заводские настройки мне полностью подходили по количеству задействованных каналов, типу подключенных температурных датчиков (РТ100), режиму индикации с поочередным 4-секундным интервалом отображения температуры каналов, действие прибора при неисправности датчиков и т.д.

Да, кстати, реле ТР-100 фиксирует максимальную температуру по каждому каналу, которую можно посмотреть в соответствующих параметрах cn1, cn2, cn3 и cn4. Для этого необходимо зайти в меню, пролистать с помощью кнопок управления, например, до параметра  максимальной температуры канала 1 (cn1) и нажать «Меню». Если Вы хотите сбросить зафиксированную температуру, то можно нажать на «Ввод», правда для этого необходимо зайти не в режим просмотра, а в режим изменения настроек реле.

Реле ТР-100 можно подключать к ПК или прочим устройствам по интерфейсу RS-485 (протокол MODBUS RTU).

Программу можно скачать с официального сайта Новатек Электро. С помощью программы можно дистанционно посмотреть текущее состояние реле и выполнить его настройки:

  • посмотреть и настроить уставки тревоги, расцепления и вентиляции
  • посмотреть текущую и максимальную температуры каналов, а также произвести сброс максимальных температур
  • посмотреть график изменения (легенду) температуры каждого канала
  • посмотреть индикаторы состояния аварий, а также настроить звуки (есть библиотека) и запуск приложений при авариях
  • настроить задержку включения выходных реле

Адреса регистров настраиваемых параметров hex приведены в выше размещенных таблицах. Дополнительные регистры и их предназначение приведены в таблице ниже.

Вот например, ТР-100 можно перевести в режим удаленного управления его выходными реле, установив параметр rSA в положение «2», а в регистрах 0х200 — 0х206 перезаписать значение «0» на «1». При этом, если связь ПК-реле будет утеряна больше заданного таймаута (параметр rSL), то управление выходными реле передается автоматически ТР-100.

А в завершении статьи, предлагаю Вам посмотреть видеоролик по подключению и настройке реле ТР-100:

P.S. На этом, пожалуй, все. Если есть вопросы по настройке или подключению температурного реле ТР-100, то задавайте их в комментариях. Всем спасибо за внимание, до новых встреч.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


zametkielectrika.ru