Hxgk5I схема подключения – схема, инструкция и способы подключения

Содержание

однофазные и трёхфазные электродвигатели, возможность подключить

Принципом работы любого электрического двигателя является способность трансформировать электрическую энергию в механическую. Независимо от конструкции, каждая электрическая машина устроена одинаково: в неподвижной части (статор или индуктор) вращается подвижная часть (ротор или якорь). Для продолжительной бесперебойной эксплуатации оборудования необходимо правильное подключение электродвигателя.

Основные разновидности

Электрические двигатели обладают рядом очевидных достоинств. Они гораздо меньше по размеру, чем их тепловые аналоги идентичной мощности. Поэтому они отлично подходят для размещения в общественном электротранспорте или на заводских станках. Во время работы они не вредят окружающей среде выделением продуктов распада и паровыми испарениями.

Электрические двигатели можно разделить на две основных группы:

  1. Двигатели постоянного тока. Применяются для регулируемых электроприводов с эксплуатационными показателями высокого качества, такими как готовность к перезагрузке и вращательная равномерность. Ими оснащают вспомогательные агрегаты экскаваторов, полимерного оборудования, бурильных станков. Электродвигатели массово применяются в электротранспорте. Преобразователи постоянного тока дополнительно подразделяются на коллекторные и вентильные.
  2. Двигатели переменного тока. Являются более дешевыми и долговечными, с простым и надёжным конструкторским решением. Подавляющее большинство бытовой домашней техники укомплектовано этими электродвигателями. В промышленности они применяются в заводских станках, вентиляторах, компрессорах, насосах, лебёдках для поднятия и перемещения груза. По принципу работы эти механизмы делятся на синхронные и асинхронные.

Способы подключения

Электрические двигатели любой конструкции устроены одинаково. В статичной обмотке (статоре) осуществляется вращение ротора. В нём происходит возбуждение магнитного поля, отталкивающее его полюсы от статора. Бесперебойная работа этой конструкции обусловлена правильным подключением электродвигателя, зависящим от используемого вида.

Однофазный асинхронный

Этот двигатель получил такое название потому, что у него всего одна рабочая обмотка. Его мощность может составлять от пяти до десяти киловатт. Рабочая и пусковая обмотки располагаются между собой под прямым углом.

К цепи необходимо подключить фазовращающий элемент. Такая схема подключения однофазного электродвигателя с конденсатором отличается оптимальными пусковыми свойствами. Используя конденсатор, электрический двигатель может быть оснащен следующими видами этого двухполюсника:

  • рабочим;
  • пусковым;
  • рабочим и пусковым.

На практике чаще всего применяется пусковой конденсатор. Применить этот вариант можно, используя реле времени или замкнув электрическую цепь через пусковую кнопку.

В случае выбора схемы подключения электродвигателя 220 В через конденсатор пусковые характеристики заметно ухудшаются. Третий вариант с пусковым и рабочим двухполюсником считается промежуточным.

Коллекторный вариант

Универсальность этого двигателя заключается в том, что он имеет возможность получать энергию от преобразователей переменной или постоянной разновидности тока. Он находит применение в швейных или стиральных машинах, бытовых электрических инструментах.

Однофазные коллекторные двигатели отличаются такими недостатками:

  1. Сложность ремонтных работ, невозможность их самостоятельного проведения.
  2. Высокий уровень шума.
  3. Сложное управление.
  4. Высокая стоимость.

Сначала необходимо убедиться, что параметры электрической сети соответствуют допустимым напряжению и частоте, указанным на корпусе электродвигателя. Система должна быть предварительно обесточена.

Для подключения коллекторного двигателя следует последовательно соединить статор и якорь. Клеммы 2 и 3 необходимо соединить, а 1 и 4 замкнуть в цепь 220 В. Включение без регулятора перепада давления может спровоцировать образование пускового тока значительной мощности, что приведёт к искрению в коллекторе.

Также стоит рассмотреть схему подключения электродвигателя через магнитный пускатель:

  1. Следует удостовериться, что контактная система пускателя выдержит эксплуатационные условия электрического двигателя. Есть восемь категорий величины нагрузочного тока от 6,3 А до 250 A. Величина в этом случае обозначает силу тока, которую в состоянии пропустить через рабочие контакты электромагнитный пускатель.
  2. Катушка управления может быть рассчитана на 36 В, 220 В, 380 В. Следует выбрать вариант 220 вольт.
  3. После сбора схемы электромагнитного пускателя следует подключить силовую часть. На выходе силовых контактов происходит включение электрического двигателя, параллельно присоединяется вход на 220 вольт.
  4. Затем следует подключить кнопки «Стоп» и «Пуск».
  5. На второй вывод электромагнитного пускателя необходимо присоединить «ноль».

Подключение «звездой»

Такой способ подходит для схемы подключения трёхфазного электродвигателя на 380 В. К началу обмоток (С 1, С 2, С 3) подсоединяются фазные проводники (А, В, С) через аппарат коммутации. Концы обмоток необходимо совместить в одной точке.

Такая схема электродвигателя не позволит развить всю его мощность, потому что на каждой обмотке напряжение будет равняться 220 В. Возможность подключить электрический двигатель по схеме «звезда» подтверждается на табличке символом Y.

Эту схема подключения двигателя можно без труда различить в клеммной коробке из-за перемычки, расположенной посреди выводов обмоток.

Соединение «треугольник»

Чтобы трёхфазная электромашина смогла развить максимально предусмотренную мощность, следует применять схему подключения асинхронного двигателя способом «треугольник».

Выводы обмоток необходимо соединить в следующем порядке:

  • С 2 с С 4;
  • С 3 с С 5;
  • С 6 с С 1.

Между проводами в трёхфазных сетях линейное напряжение будет равняться 380 В. С таким вариантом подключения может не справиться проводка, потому что она способствует возникновению пусковых токов. Такое соединение возможно в случае наличия на табличке двигателя значка Δ.

Для полного понимания того, как подключить электродвигатель с 3 проводами, следует знать о комбинированном подключении. В таком случае сперва применяется схема соединения «звездой», затем в рабочем режиме обмотки переключается на «треугольник».

Всегда нужно помнить в процессе работы с электрическими приборами о строгом соблюдении правил техники безопасности. Все действия необходимо производить лишь в режиме обесточенного оборудования.


220v.guru

Подключение однофазного двигателя: схемы, проверка, видео

Чаще всего к нашим домам, участкам, гаражам подведена однофазная сеть 220 В. Потому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В данной статье рассмотрим, как правлильно сделать подключение однофазного двигателя. 

Асинхронный или коллекторный: как отличить

Содержание статьи

Вообще, отличить тип двигателя можно по пластине — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

Так выглядит новый однофазный конденсаторный двигатель

Как устроены коллекторные движки

Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.

Строение коллекторного двигателя

Недостатки колелкторых двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д.. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

Асинхронные

Асинхронный двигатель имеет стартер и ротор, может быть одно и трех фазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

Строение асинхронного двигателя

Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Более точно определить бифолярный или конденсаторный двигатель перед вами можно при помощи измерений обмоток. Если сопротивление вспомогательной обмотки меньше в два раза (разница может быть еще более значительная), скорее всего, это бифолярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

Схемы подключения однофазных асинхронных двигателей

С пусковой обмоткой

Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

  • один с рабочей обмотки — рабочий;
  • с пусковой обмотки;
  • общий.

С этими тремя проводами и работаем дальше — исползуем для подключения однофазного двигателя.

Со всеми этими 

Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно). К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифолярного) через кнопку.

Конденсаторный

При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения  и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

Схемы подключения однофазного конденсаторного двигателя

Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

Схема с двумя конденсаторами

Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

Подбор конденсаторов

Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

  • рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
  • пусковой — в 2-3 раза больше.

Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите конденсатор специальный конденсатор. У них в маркировке присутствует слова Start или  Starting, но можно взять и обычные.

Изменение направления движения мотора

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

Как все может выглядеть на практике

stroychik.ru

Схемы подключения | 2 Схемы

Сборник принципиальных электрических схем подключения электропроводки, ламп, розеток, двигателей и бытовой техники к сети 220 вольт.

Тензодатчик [1-3] преобразует величину деформации в электрический сигнал. Данный прибор был приобретен на Алиэкспресс по цене 1,1$. Датчик имеет размер 34 х 34 мм, толщина …

Всем привет! В этой статье расскажу что делать, если у вас на ноутбуке плохой встроенный микрофон, а отдельного разъёма под микрофон нет. Я столкнулся с …

С весны слушал жалобы домочадцев на люстру, что висит в зале. Сетовали на чрезмерно частое перегорание ламп накаливания, причём в определённых плафонах. Даже пометили эти …

Есть 2 типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Их различие в том, что в бифилярных однофазных двигателях пусковая обмотка работает …

Генератор в автомобилях предназначен для выработки электроэнергии и заряда аккумулятора. При нарушении нормальной работы автомобильного электрогенератора, аккумулятор начинает разряжаться и вскоре авто перестанет заводиться совсем …

Датчик движения — это электронное инфракрасное устройство, которое позволяет обнаруживать присутствие и перемещение человека и помогает коммутировать питание приборов освещения и других электрических приборов. В …

Согласно правил дорожного движения (ПДД), движущееся транспортное средство в светлое время суток должно быть обозначено фарами ближнего света, противотуманными фарами (ПТФ) или дневными ходовыми огнями …

2shemi.ru

Как подключить дренажный насос: электрическая схема подключения

Одним из оптимальных и эффективных решений для борьбы с частым подтоплением цокольных помещений является использование дренажных насосов. Их преимуществом является и то, что подключенный погружной электрический дренажник может использоваться в быту для различных целей. Поэтому нужна правильная схема подключения насоса и правильное его подсоединение в зависимости от условий эксплуатации и решаемых задач.

Рис.1 Дренажные погружные электрические насосы — внешний вид

Содержание статьи:

Область применения

Принцип действия электрического дренажного насоса соответствует центробежным видам, от погружных устройств для забора воды с большой глубины его отличают некоторые конструктивные изменения. Дренажные электрические насосы можно использовать для следующих работ:

  • Откачка воды с любой глубины в случае затопления помещений ниже уровня земли: подвалов, погребов, складов, хранилищ, подземных гаражей.
  • Дренажным насосом можно выкачивать воду из бассейнов, прудов и искусственных водоемов при их загрязнении, с их помощью можно снова быстро заполнить водоем.
  • С помощью дренажника удобно поливать растения на приусадебных участках непосредственно, или наполняя емкости большого объема для дальнейшего капельного полива.
  • Временно использовать вместо глубинного насоса для забора чистой воды, при этом следует учитывать, что КПД дренажного насоса значительно меньше специального электрического насосного оборудования для водоснабжения.
  • Погружным электронасосом удобно откачивать воду из дренажных ям внутри и снаружи зданий в автоматическом режиме — при подключении они начинают качать воду после наполнения ямы до определенного уровня и прекращают работать после ее опорожнения.
  • Дренажным насосным устройством в силу конструктивных особенностей чистят скважины, колодцы и пруды — они работают на большой глубине и способны высасывать грязную воду с крупными фракциями.
  • При необходимости дренажник можно использовать не по его прямому назначению, а в качестве фекального электрического насоса для очистки канализационных, выгребных и стоковых ям от сильно загрязненных отходов. В устройстве нет измельчителя, поэтому подключать его придется через дополнительный фильтр.

Принцип действия и схема дренажного насоса

Рис.2 Устройство и внешний вид дренажника

Погружной электронасос имеет простую конструкцию, основным элементом которой является помещенный в корпус электродвигатель с рабочим колесом на валу. С подключением электродвигателя колесо начинает вращаться и втягивает воду через центральное отверстие около его оси, далее жидкость за счет центробежной силы выталкивается через выходной патрубок. Для защиты от попадания крупных фракций устройство оснащено диафрагмированным фильтром, сверху корпуса имеется отверстие для подвешивания на трос. Типовой дренажник всегда имеет встроенный в корпус поплавковый выключатель, автоматизирующий режим его работы.

Схема подключения и правила эксплуатации

Рис. 3 Электрическая схема соединения проводов в дренажных насосах

Схема подключения дренажного насоса при отсутствии вилки или в случае необходимости в удлинении провода не вызовет проблем даже у домохозяйки. Все стандартные провода имеют цветовую маркировку, соответствующую их назначению, достаточно просто соединить провода одного цвета.

Рис. 4. Схема соединения с отдельным пусковым устройством

Перед подключением дренажного электронасоса и установкой его на глубину полезно соблюдать следующие правила:

  • Если мы подключаем насосный аппарат первый раз, то перед работой следует изучить параметры дренажника и характеристики питающей сети на предмет совместимости — это будет способствовать его надежному подключению к сети и заземлению.
  • Подключение погружного насоса без реле защиты от перегрева к электрической сети следует производить через защитный автомат, с номинальным током срабатывания не более его максимального значения для электронасоса.
  • Глубинный дренажник, имеющий электрическую схему со встроенным тепловым реле, можно подключать в электрическую сеть напрямую. При этом может возникнуть ситуация, когда дренажный насос перегрелся при интенсивной нагрузке и отключился — в этом случае необходимо дать ему время остыть.

Рис. 5 Как подключить дренажный насос — схема подключения

  • Глубинные электронасосы имеют кабель с длиной, рассчитанной так, чтобы их глубина погружения соответствовала длине электрического шнура. Если кабель поврежден или возникла необходимость в его замене, запрещается его ремонтировать любыми способами или менять самостоятельно. Эту работу необходимо доверить опытным специалистам, которые обеспечат полную герметизацию соединения.
  • При остановке в насосах может происходить обратный отток воды из напорной магистрали в источник водозабора — это может привести к наполнению емкости и повторному включению устройства. Схема подключения погружного насоса для устранения этого эффекта должна включать в себя обратный клапан, который подключается к насосу на выходе.
  • При работе с глубинным дренажным насосом необходимо следить, чтобы дебит емкости с откачиваемой водой не позволял ему постоянно включаться и отключаться — это приводит к его перегреву и остановке.

Рис. 6 Дренажная насосная автоматика

В дренажной насосной помпе имеется встроенный поплавковый выключатель и во многих случаях реле защиты от перегрева, поэтому их установка и подключение не требуют сложной автоматики. В схеме подключения дренажника в напорный трубопровод дополнительно монтируются вентиль и обратный клапан, предотвращающие обратный отток жидкости.

Советуем почитать: Фильтр грубой очистки воды перед счетчиком

Возможно вам также будет интересно почитать:

Пользуясь сайтом oBurenie.ru вы автоматически соглашаетесь с политикой конфиденциальности для использования любых доступных средств коммуникации таких как: комментарии, чат, форма обратной связи и т.д.

oburenie.ru

Схема подключения, подбор и расчёт пускового конденсатора

 

Выход из строя конденсаторов в цепи компрессора кондиционеров случается не так уж и редко. А зачем вообще нужен конденсатор и для чего он там стоит?

Бытовые кондиционеры небольшой мощности в основном питаются от однофазной сети 220 В. Самые распространённые двигатели которые применяют в кондиционерах такой мощности- асинхронные со вспомогательной обмоткой, их называют двухфазные электродвигатели или конденсаторные.

В таких двигателях две обмотки намотаны так, что их магнитные полюсы расположены под углом 90 град. Эти обмотки отличаются друг от друга количеством витков и номинальными токами, ну соответственно и внутренним сопротивлением. Но при этом они рассчитаны так что при работе они имеют одинаковую мощность.

В цепь одной из этих обмоток, её производители обозначают как стартовую(пусковую), включают рабочий конденсатор, который постоянно находится в цепи. Этот конденсатор ещё называют фазосдвигающим, так как он сдвигает фазу и создаёт круговое вращающееся магнитное поле. Рабочая или основная обмотка подключена напрямую к сети.

 

Схема подключения пускового и рабочего конденсатора

 

Рабочий конденсатор постоянно включён в цепь обмотки  через  него протекает ток равный току в рабочей обмотке. Пусковой конденсатор подключается на время запуска компрессора — не более 3 секунд (в современных кондиционерах используется только рабочий конденсатор, пусковой не используется)

 

 

Расчёт ёмкости и напряжения рабочего конденсатора

 

Расчёт сводится к подбору такой емкости, чтобы при номинальной нагрузке было обеспечено круговое магнитное поле, так как при значении ниже или выше номинального магнитное поле изменяет форму на эллиптическое, а это ухудшает рабочие характеристки двигателя и снижает пусковой момент. В инженерных справочниках приведена формула для расчёта ёмкости конденсатора:

 

Ср= Isinφ/2πf U n2

 

I и sinφ –ток и сдвиг фаз между напряжением и током в цепи при вращающемся магнтном поле без конденсатора

f- частота переменного тока

U – напряжение питания

n- коэффициент трансформации обмоток , определяется как соотношение витков обмоток с конденсатором и без него.

Напряжение на конденсаторе рассчитывается по формуле

 

Uc= U√(1+n2)

 

Uc -рабочее напряжение конденсатора

U — напряжение питания двигателя

n — коэффициент трансформации обмоток

Из формулы видно, что рабочее напряжение фазосдвигающего конденсатора выше напряжения питания двигателя.

В пособиях по расчёту приводят приближённое вычисление – 70-80 мкФ ёмкости конденсатора на 1 кВт мощности электродвигателя, а номинал напряжения конденсатора для сети 220 В обычно ставят — 450 В.

Также параллельно к рабочему конденсатору подключают пусковой конденсатор на время пуска, примерно на три секунды, после чего срабатывает реле и отключает пусковой конденсатор. В настоящее время в кондиционерах схемы с дополнительным пусковым конденсатором не применяют.

В более мощных кондиционерах используют компрессоры с трёхфазными асинхронными двигателями, пусковые и рабочие конденсаторы для таких двигателей не требуются.

 

Проверка и замена пускового/рабочего конденсатора

masterxoloda.ru

Коллекторный двигатель переменного тока: схема подключения


Коллекторные двигатели переменного тока достаточно широко применяются как силовые агрегаты бытовой техники, ручного электроинструмента, электрооборудования автомобилей, систем автоматики. Схема подключения двигателя, а также его устройство напоминают схему и устройство электродвигателя постоянного тока с последовательным возбуждением.

Область применения таких моторов обусловлена их компактностью, малым весом, легкостью управления, сравнительно невысокой стоимостью. Наиболее востребованы в этом производственном сегменте электродвигатели малой мощности с высокой частотой вращения.

ОГЛАВЛЕНИЕ

  • Особенности конструкции и принцип действия
  • Упрощенная схема подключения
  • Управление работой двигателя
  • Преимущества и недостатки
  • Типичные неисправности

Особенности конструкции и принцип действия

По сути, коллекторный двигатель представляет собой достаточно специфичное устройство, обладающее всеми достоинствами машины постоянного тока и, в силу этого, обладающее схожими характеристиками. Отличие этих двигателей состоит в том, что корпус статора мотора переменного тока для снижения потерь на вихревые токи выполняется из отдельных листов электротехнической стали. Обмотки возбуждения машины подключаются последовательно для оптимизации работы в бытовой сети 220в.

Могут быть как одно-, так и трехфазными; благодаря способности работать от постоянного и переменного тока называются ещё универсальными. Кроме статора и ротора конструкция включает щеточно-коллекторный механизм и тахогенератор. Вращение ротора в коллекторном электродвигателе возникает в результате взаимодействия тока якоря и магнитного потока обмотки возбуждения. Через щетки ток подается на коллектор, собранный из пластин трапецеидального сечения и является одним из узлов ротора, последовательно соединенного с обмотками статора.

В целом принцип работы коллекторного мотора можно наглядно продемонстрировать с помощью известного со школы опыта с вращением рамки, помещенной между полюсами магнитного поля. Если через рамку протекает ток, она начинает вращаться под действием динамических сил. Направление движения рамки не меняется при изменении направления движения тока в ней.

Последовательное подсоединение обмоток возбуждения дает большой максимальный момент, но появляются большие обороты холостого хода, способные привести к преждевременному выходу механизма из строя.

Упрощенная схема подключения

Типовая схема подключения может предусматривать до десяти выведенных контактов на контактной планке. Ток от фазы L протекает до одной из щеток, затем передается на коллектор и обмотку якоря, после чего проходит вторую щетку и перемычку на обмотки статора и выходит на нейтраль N. Такой способ подключения не предусматривает реверс двигателя вследствие того, что последовательное подсоединение обмоток ведет к одновременной замене полюсов магнитных полей и в результате момент всегда имеет одно направление.

Направление вращения в этом случае можно изменить, только поменяв местами выхода обмоток на контактной планке. Включение двигателя «напрямую» выполняется только с подсоединенными выводами статора и ротора (через щеточно-коллекторный механизм). Вывод половины обмотки используется для включения второй скорости. Следует помнить, что при таком подключении мотор работает на полную мощность с момента включения, поэтому эксплуатировать его можно не более 15 секунд.

Наши читатели рекомендуют!
Для экономии на платежах за электроэнергию наши читатели советуют «Экономитель энергии Electricity Saving Box». Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

загрузка…

Управление работой двигателя

На практике используются двигатели с различными способами регулирования работы. Управление коллекторным мотором может осуществляться с помощью электронной схемы, в которой роль регулирующего элемента выполняет симистор, «пропускающий» заданное напряжение на мотор. Симистор работает, как быстросрабатывающий ключ, на затвор которого приходят управляющие импульсы и открывают его в заданный момент.

В схемах с использованием симистора реализован принцип действия, основанный на двухполупериодном фазовом регулировании, при котором величина подаваемого на мотор напряжения привязана к импульсам, поступающим на управляющий электрод. Частота вращения якоря при этом прямо пропорциональна приложенному к обмоткам напряжению. Принцип работы схемы управления коллекторным двигателем упрощенно описывается следующими пунктами:

  • электронная схема подает сигнал на затвор симистора;
  • затвор открывается, по обмоткам статора течет ток, придавая вращение якорю М двигателя;
  • тахогенератор преобразует в электрические сигналы мгновенные величины частоты вращения, в результате формируется обратная связь с импульсами управления;
  • в результате ротор вращается равномерно при любых нагрузках;
  • реверс электродвигателя осуществляется с помощью реле R1 и R

Помимо симисторной существует фазоимпульсная тиристорная схема управления.

Преимущества и недостатки

К неоспоримым достоинствам таких машин следует отнести:

  • компактные габариты;
  • увеличенный пусковой момент; «универсальность» — работа на переменном и постоянном напряжении;
  • быстрота и независимость от частоты сети;
  • мягкая регулировка оборотов в большом диапазоне с помощью варьирования напряжения питания.

Недостатком этих двигателей принято считать использование щеточно-коллекторного перехода, который обуславливает:

  • снижение долговечности механизма;
  • искрение между и коллектором и щетками;
  • повышенный уровень шумов;
  • большое количество элементов коллектора.

Типичные неисправности

Наибольшего внимания к себе требует щеточно-коллекторный механизм, в котором наблюдается искрение даже при работе нового двигателя. Сработанные щетки следует заменить для предотвращения более серьезных неисправностей: перегрева ламелей коллектора, их деформации и отслаивания. Кроме того, может произойти межвитковое замыкание обмоток якоря или статора, в результате которого происходит значительное падение магнитного поля или сильное искрение коллекторно-щеточного перехода.

Избежать преждевременного выхода из строя универсального коллекторного двигателя может грамотная эксплуатация устройства и профессионализм изготовителя в процессе сборки изделия.

electricvdele.ru

Правильное подключение микроконтроллера

Подробности
Категория: Микроконтроллеры
Опубликовано 07.09.2016 10:17
Автор: Admin
Просмотров: 1668

На первый взгляд вроде бы простая тема, но многие начинающие радиолюбители которые только начали изучать микроконтроллеры довольно часто задают одни и те же вопросы. К примеру, как подключить светодиод, как обработать события нажатия клавиш, для чего нужны выводы AGND и AREF, AVCC. И раз эти вопросы так часто задают, то тема еще не понятна или не полностью раскрыта и имеет смысл дать исчерпывающий ответ на вопрос «Как правильно подключить микроконтроллер?».

Питание микроконтроллера

Микроконтроллеры в зависимости от модели и серии питаются от напряжения величиной от 1.8 до 5 Вольт. Все микроконтроллеры AVR работают от напряжения в 5 Вольт. Поэтому можно считать что практически у всех микроконтроллеров напряжение питания 5 В, плюсовой вывод на микроконтроллере обозначается как Vcc. Нулевой вывод или еще его называют земля корпус, минусовой вывод обозначается как GND. Если взять блок питания от компьютера то черный провод это GND, а красный это +5 В это и есть Vcc. Если питаем от батареек то минус батарее это GND а плюс это Vcc. Главное чтобы напряжение питания с батареек было в диапазоне напряжения микроконтроллера, это интервал можно посмотреть в документации на МК. 

На пример:

 • Operating Voltages

  • –1.8 — 5.5V (ATtiny2313V)
  • –2.7 — 5.5V (ATtiny2313)

• Speed Grades

  • –ATtiny2313V: 0 — 4 MHz @ 1.8 — 5.5V, 0 — 10 MHz @ 2.7 — 5.5V
  • –ATtiny2313: 0 — 10 MHz @ 2.7 — 5.5V, 0 — 20 MHz @ 4.5 — 5.5V 

Operating Voltage это как раз и есть тот диапазон напряжения в котором возможно нормальная работа МК. Существуют низковольтные серии (ATtiny2313V) у которой минимальное напряжение заметно ниже. 

Speed Grades это максимально возможные частоты работы МК в зависимости от напряжения которое к нему подвели. Здесь видно, чем ниже напряжение тем меньше максимальная работа МК.

Для того чтобы нам МК начал работать то на него достаточно подать напряжение в 5 В. Как и говорилось ранее один провод кидаем на Vcc а другой на землю — к выводу GND. Некоторые микроконтроллеры имеют несколько выводов Vcc и также несколько GND. Это сделано не для того чтобы вам было делать печатные платы и удобства монтажа а для того чтобы подвести напряжение к камню равномерно, т.е. равномерно запитать весь кристалл. Это делается для того чтобы внутренний линии кристалла не перегружались. К примеру вы взяли МК с квадратным корпусов TQFP у него выводы Vcc и GNВ находятся со всех сторон. С одной стороны вы подвели питание, т.е. задействовали всего лишь 2 вывода питания а с другой  стороны вы подключили на порты кучу светодиодов и взяли и зажгли их разом. Получается что внутренние линии МК перегружены, в результате камень офигеф от такой нагрузки выходит из строя. Поэтому если у контроллера есть несколько выводов питания то запитать нужно все выводы Vcc и GND.

Помимо выводов предназначенных для питания МК есть еще выводы AGND и AVCC — это выводы питания АЦП (аналого-цифрового преобразователя). АЦП это довольно точный измеритель напряжения, по этой причине его можно запитать через фильтры. Для того чтобы помехи которые довольно часто бывают в цепях питания не влияли на результаты измерения. По этой причине в некоторых схемах производят разделение земли, а на вывод AVCC подается напряжение через фильтрующий дроссель. А если вы не планируете пользоваться АЦП и вам не нужны точные измерения, то на AVCC можно подать те же +5 В что и на Vcc, а вывод AGND подключить к земле. Подключать выводы AVCC и GND нужно обязательно!

Ahtung!

В микроконтроллере Atmega8 есть одна ошибка на уровне топологии чипа — выводы VCC и AVCC связаны друг с другом на уровне кристалла и между ними сопротивление 5 Ом. К примеру, в чипах Atmega16 и Atmega168 выводы VCC и AVCC связаны между собой и их сопротивление составляет порядка десяток МОм. В документации по этому поводу ничего не сказано. Поддержка Atmel на это ответила что в чипе есть недочет и выводы VCC и AVCC соединенны между собой внутри камня. По этой причине ставить фильтрующий дроссель на AVCC для ATmega8 нет смысла, но запитывать вывод AVCC нужно в любом случае.

Схема подключения микроконтроллера AVR

 

Эта упрощенная схема подключения микроконтроллера так сказать необходимы минимум для запуска контроллера, по хорошему лучше добавить несколько внешних элементов. Провод показанный пунктиром от источника питания к БП необязателен. Если ты питаешь МК от внешнего источника то это провод лишний. Но лучше питать всю схему от одного источника — так больше вероятность того что все прошьется успешно. Для учебных целей схема подключения питания самый раз, светодиодиком там помигать или еще чего.

Вывод AREF это вход опорного напряжения АЦП, туда подается напряжение относительно которого будет считать АЦП. Можно использовать внутренний источник опорного напряжения величиной в 2.56 В либо использовать напряжение AVCC. На вывод AREF рекомендуется подключать конденсатор, это улучшает качество опорного напряжения АЦП и как в следствии правильность измерения АЦП. На входе в AVCC установлен дроссель и конденсатор между AVcc и GND. Также между выводами GND и VCC ставят керамический конденсатор номиналов в 100 нФ как можно ближе к выводам питания микросхемы — он сглаживает краткие импульсы помехи, которые получаются в результате работы самих микросхем. Также между выводами VCC и GND устанавливают конденсатор емкость в 47 мкФ для сглаживания более сильных бросков напряжения.

 Вывод сброса

В МК AVR есть внутренняя схема сброса и вывод reset внутри уже подтянут сопротивлением в 100 кОм к выводу Vcc. Но этой подтяжки не хватает, получается что микроконтроллер «выход» в сброс от незначительного потенциала на выводе. К примеру от прикосновения пальцем вывода RST, а иногда от случайного касания самой платы. Поэтому имеет смысл дополнительно подтянуть этот вывод резистором в 10 кОм. Меньшее значение резистора лучше не брать, потому что если вы используйте внутрисхемный программатор то он не сможет пересилить подтяжку и прошить микроконтроллер. Поэтому значение в 10 кОм в самый раз.

Схема сброса микроконтроллера

 

После того как схема вклчючена, изначально конденсатор C12 разряжен и напряжение на RST почти равно нулю и в результате микроконтроллер не запускается. Получается что ему после запуска схемы постоянный сброс. С течением времени происходит заряд конденсатора через резистор, после того как он заряжится на выводе RST появится логическая единица МК запустится. Ну а скнопкой всю понятно она разряжает конденсатор и происходит перезапуск микроконтроллера.

 Задержку перед стартом МК легко посчитать по формуле как T=R*C при данных значения получается приблизительно одна секунда. Для чего эта задержка? — спросите вы. А для того чтобы МК не запускался раньше времени чем все устройства на плате запитаются в перейдут в установившийся режим работы. К примеру, в старых МК (AT89C51) если нет такой цепочки которая делает изначальный сброс, то МК мог вообще не запуститься.

В МК AVR такую задержку перед стартом можно сделать программно чтобы он подожда секунду и потом только запускался. Поэтому можно обойтись и без конденсатора. А кнопку можно оставить — на свое усмотрение. 

 Тактирование микроконтроллеров

Тактовый генератор это своего рода сердце микроконтроллера. По кажлому «тику» или импульсу тактового генераора происходи какая нибудь операция — передаются какие либо данные по шинам и регистрам, работают таймеры, переключаются порты ввода/вывода. Чем больше тактовая частота тем больше энергии нужно микрокнтроллеру.

Импульсы формируются тактовым генератором с определенной скоростью (частотой). Сам генерато может быть как может быть как внутренний так и внешний. Все это гибко настраивается. 

 

Микроконтроллер можно тактировать от:

  • внутреннего генератора с внутренней задающей RC цепочкой. При таком тактировании никакой обвязки не нужно. К выводам XTAL1 и XTAL2 можно ничего не подключать, их можно использовать как обычные порты ввода/вывода. Внутренний RC генератор можно настроить на 4 значения частоты;
  • внутреннего генератора с внешней задающей RC цепочкой. Тактирование аналогично предидущему способоу, только вот задающая RC цепочка находится не внтури МК, а снаружи, такая схема позволяет изменять частоту прямо на ходу. Изменение задающей частоты происходит путем изменения значения сопротивления;
  • внутреннего с внешним задающим кварцем. В этом случае снаружи МК цепляют кварцевый резонатор с небольшой обвязкой кварца из двухконденсаторов. Если используется кварц(резонатор) с частотой менее 1 МГц то конденсаторы можно и не ставить.
  • внешнего генератора. Это когда импульсы поступают на вход МК от внешнего генератора. Такое тактирование применяют когда нужно чтобы несколько независимых микроконтроллера работали синхронно от одного генератора.

 У каждого способа тактирование есть свои достоинства. Если мы используем внутренюю или внешнюю RC цепочку то у нее есть один недостаток — » плавание частоты в зависимости от температуры. И мы не можем максимально развить максимальную частоту. Если использовать кварц то он занимает 2 ножки микроконтроллера. На кварце можно развить максимальную частоту. Частота тактирования микроконтроллера зависит от того какой кварц мы подключили.

Посмотреть способы тактирования МК можно в даташите System Clock and Clock Options. Если в кратце, то выбор способа тактирования осуществлятеся путем выставления определенных Fuse битов. Но если вы пока еще не ознакомились с ними, то лучше пока туда не лезть и использовать выбранный по умолчанию способ тактирование. По умолчанию в МК выбран внутренний генератор. Если не правильно выставить Fuse биты можно «залочить» МК и он превратиться в мертвеца и вернуть его к жизни будет совсем не просто, но все же возможно.

Подключаем к микроконтроллеру кнопки и светодиоды

Микроконтроллер если к нему не подкючены какие либо внешние устройства не представляет собой ничего интересного, кусок кремния который тикает там что то себе под нос! Друго дело когда мы может что то понажимать, объяснить ему что «мол вот я нажал кнопку давай делай что нибудь!» а он нам в ответ может что включить, пропищать и как то с реагировать. 

Для того чтобы подключить нашу всеми любимую кнопку нам нужно сначала выбрать ножку на которую мы его будем цеплять. Один конец кнопки мы кидаем на землю а другой к ножке МК. Сам вывод к которому подключения кнопка нужно настроить на вход с включением внутренних подтягивающих резисторов (PORTx=1 DDRx=0). Получается что если кнопка не нажата то входе будет высокий уровень напряжения через подтягивающий резистор. Если мы считаем это значения через PINx то он будет возвращать 1. Если мы нажимаем кнопку то вывод подтягивается к земле и напряжение на нем становится равным нулю, PINx возвращает 0. По этому значению мы и определяем нажата ли кнопка или нет.

 В дополнении к внутреннему подтягивающему резистору можно подключить еще внешний резистор (на схеме показан пунктиром). Дело в том что внутренняя подтяжка слабовата порядка 100 кОм. Поэтому наведенное на этом выводе какое либо напряжение может привести к ложному срабатыванию. Довольно часто эти внутренние сопротивление сгорают от каких либо наводок. Микроконтроллер работает как и работал только вот без этой подтяжки. Поэтому рекомендуется ставить свою внешнюю подтяжку сопротивлением в 10 кОм. Таким образом можно подстраховатся даже, даже если внутреняя сгорела то у вас все будет работать должным образом.

 Для того чтобы подключить светодиод можно использовать две схемы подключения порт-земля и порт-питание. В первом случае для того чтобы зажечь светодиод нужно на вывод к которому подключили светодиод подать высокий уровень (логическую единицу). Для второго случае когда светодиод подключен к выводу Vcc нужно наоборот подать другой уровень низкий (логический ноль). Для микрокнтроллеров абсолютно неть разницы куда вы будете подключать светодиод к земле или к Vcc. Можно применять как одну так и другую схему подключения светодиода к микрокнтроллеру AVR в зависимости от разводки печатной платы. Программно разницы тоже особо нет.

Сначала нам нужно настроить порт на выход для этого в регистр DDRx запичываем 1. Далее записываем в порт PORTx нужный нам уровень высокий или низкий.

Светодиод к выводам МК нужно цеплять черех резистор. Максимальный ток вывода МК порядка 20-30 мА. А для нормального свечения светодиода нужно 3…15 мА. А когда мы подклчаем светодиод с низким прямым сопротивлением, то мы можем его в лучшем случае просто спалить, а в худшем спалить сам вывод микроконтроллера. Поэтому ток через светодиод нужно ограничивать подключаю последовательно светодиоду сопротивление.

Напряжение на ноге микроконтроллера около 5 В. Для нормального горения светодиода нужно что на нем падение напряжения было приблизительно 2.5 В. Получается что такое же напряжение должно быть и ограничивающем сопротивлении 5-2.5=2.5. Предположим что ток протекающий через диод 5 мА. Знаем ток в цепи и падение напряжения на резисторе находим по закону Ома требуемое сопротивление резистора R=U/I=2.5/5e-3=500 Ом. Ближайшее значение 510 Ом, но можно взять и другие хоть от 220 Ом до 1 кОм. Гореть светодиод будет хорошо.

 

Если вы захотели подключить несколько светодиодов, то вам нужно вешать сопротивление на каждый светодиод. Если установить всего один общий резистор на все светодиоды то каждый светодиод получит меньше тока, а если уменьшить сопротивление резистора для того чтобы все горели в нормальный «накал» то в случае зажигания всего лишь одного светодиода он может выйти из строя либо сгорит порт.

Иногда бывают такие случаи когда мы установили микрокнтроллер, памяти нам хватает и быстродействие на высоте, но вот с ножками беда-не хватает нам ног для установки дополнительных устройст, кнопок или потребителей. Многие видят выход только в одном-установкой другого камня с большим числом ног. Но не каждый знает что есть несколько приемов как можно программно сэкономить на железе.

Это прием заключается в том что мы динамически меняем назначение выводов с течением времени. К примеру какой либо вывод работает на шину, а вслучае когда нам шина не нужна, то этот вывод мы можем использовать для других нужд. Например мы обрабатывать события нажатия кнопки. Переключения между назначением вывода происхоид сотни или даже тысячу раз в секунду и тем самым создается впечатление что одни вывод работает сразу двум назначения.

Но при такой программной реализации вывода порта нужно следовать определенным правилам:

Те назначения котоые вы планируете применять не должны друг другу мешать. Их нужно разделить таким образом чтобы одна функция (смежная) не изменяла результат работы другой функции (проверяемой).

Например, допустим у нас есть один вывод к которому мы подключили какой либо датчик либо кнопку. С датчика может придти сигнал 0 или 1, а в активном режиме Hi-Z в случае когда на датчик не послали сигнал Enable. А при нажатии на копку придет сигнал 0,

Основную часть времени МК установлен на вход Hi-Z и мы получаем сигнал с датчика на него же подан сигнал enable. Если нам нужно узнать состояние кнопки, то мы убираем enable и его выходы становятся в режим Hi-Z и нам не мешают. Далее мы переводим вывод МК в редим Pull-Up и опрашиваем нет ли у нас на входе вывода нуля — это сигнла нажатой кнопки. После того как мы это проверили мы снова переводим МК в Hi-Z и отправляем сигнал enable на датчик. Эта последовательность действий повторяется несколько раз в секунду.

При таком способе подключения могут возникнуть противоречия

Логическое противоречие

На линии может быть 0 в двух случаях от подключенного датчика и от нажатой кнопки. Если нажать кнопку то показания датчика исказятся, поэтому нужно знать когда происходит опрос датчика и в этот момент не нажимать кнопку. А для того чтобы те данные которые идут с датчика не принять за сигнал нажатия кнопки в тот интервал времени когда мы опрашиваем датчик, мы просто не опрашиваем кнопку.

Электрическое противоречие

Если с датчика поступает высокий уровень и мы нажимаем кнопку, то на одном выводе у нас сразу встретятся 0 и 1,Vcc и GND. В результате у нас датчик «заснет вечным сном» а кнопка как жили так и будет. Программым методом это противоречие не решить, а определить можно ли нажимать кнопку или нет в определенный момент времени на глаз просто не возможно, и в каком месте сейчас выполняется программа тоже не узнать. Электрическое противоречие можно решить только схемотехническим путем. Нам нужно в цепь где у нас кнопка добавить резистор. Значение резистора определяется через максимальтный ток самого низковольтного вывода (датчика или ножки).

К примеру если у нас на выводе васит датчик у которого вывод может дать не больше чем 10 мА. То нам нужно чтобы ток через датчик не был больше этой величины в случае нажатия кнопки. При напряжении в 5 В получаем сопротивление в 510 Ом. Таким образом даже если у нас с датчика идет высокий уровень, и в этот момент времени нажимается кнопка то ничего страшного не произойдет и датчик не сгорит и искажения уровня сигнала тоже не произойдет.

Примеры использования нескольких функций на одной ножке

Разъем ISP в некоторых схемах занимает 3 вывода микроконтроллера MOSI,MISO,SCK. У меня практически все платы имеют такой разъем и в него у меня вставлен программатор. Во время отладки платы я прошиваю МК по несколько раз. И это очень удобно, мне не приходится каждый раз когда мне нужно прошить МК его вытаскивать втавлять в колодку программатора и далее обратно.

На эти три разъема можно подключить, к примеру кнопки. И мониторить их состояние в прогамме. Самое главное не нажимать эти кнопочки во время заливки прошивки в микроконтроллер. Также с целью экономии выводов на эти выводы можно прицепить светодиоды. Правда если использовать программатор Громова то он может не корректно сработать. А если использовать программатор USBasp то проблем возникнуть не должно. В процесе прошивки светодиоды на выводах MOSI,MISO,SCK будут забавно моргать:)

В общем на эти вывод можно цеплять не только кнопки и светодиоды ну и что нибудь другое. Главное чтобы это устройство в процессе прошивки не начало чудить. К примеру если на этих вывода у вас находится релюшка которая управляет большой нагрузкой, то в процессе прошивки реле просто офигеет от потока данных как и высоковольтная нагрузка. В общем нужно понимать как это работает и не цеплять на эти выводы что попало. Можно подклчить символьный LCD дисплей типа HD44780 который использует шинный интерфейс для работы (схема ниже)

 

Установленные резисторы по 10 кОм отделяют линию программатора от основной схемы. Резисторы ограничивают возможные другие уровни от дисплея на выводах ISP разъема, программатор их пересиливает и шьет микрокнтроллер. А на работу дисплея эти резисторы особоне не оказывают влияния.

Подключение двух светодиодов на один вывод

В данной схеме два светодиода подкючены на одну ножку порта, такая схема позволяет упростить печатную плату, не придется тажить еще одну шину к каждому светодиоду. Для того чтобы зажечь верхний сетодиод нужно на вывод Pxy подать логический 0, а для того чтобы зажечь нижний то подать высокий уровень. Если мы хотим зажечь сразу оба светодиода та нам нужно перевести вывод МК в режим Hi-Z как будто его нет, в этом случае появится сквозной ток через оба светодиода и они оба загорят. Или можно бысто зажигать то один то другой, визуально они будут оба гореть. Минус схемы в том что погасить сразу два диода нельзя.

Подключение двух светодиодов по схема PORT-PORT

В это схеме ничего сложного нет — меняя состояние выводов то в 1 то в 0 мы меняем напрявление тока включает то идин то другой диод. Для того чтобы погасить оба светодиода то нам нужно подать сразу на оба вывода либо высокое состояние 11 либо низкое это 00. Для того чтобы зажечь сразу два светодиода нам нужно сделать динамическую индикацию, быстро меняя состония обеих ножек с высокого на низкий. Если взять 3 вывода и использовать тот же принцип смены состояния ножек то можно подключить шесть светодиодов.

В данной схеме кнопки опрашиваются поочередно. Один вывод подтягивает внутренее сопротивление а другая дает 0. Нажатие кнопки дает 0 на подтянутом выводе а это фиксирует программа, таким образом,меняя роли выводов опрашивается каждая кнопка. Если у нас используется 6 выводов, то действуем по следующей схеме: одну ножку подтягиваем, другую делаем нулем а из третьей делаем состояние Hi-Z. Но тут тоже есть один минус. Допустим мы хотим опросить кнопку «В». Для этого верхнюю линию подтягиваем, среднюю делаем нулем, а нижнюю не задействуем в процессе или выставляем ее в стостоянии Hi-Z. Далее если мы нажмем на копку «B» то верхняя линия подтянится к нулю и программа поймет что нажата именно кнопка «B». В том случае если одновременно будут нажаты кнопки «E» и кнопка «Б» то верхняя линия такжн подтяница к 0 и программа поймет что была нажата кнопка «В», хотя мы ее не нажимали. 

К минусам такой схемы можно отнести не правильная обработка событый нажатия кнопок в случае одновременного нажатия нескольких кнопок.

Схема подключения кнопки с светодиода к одному выводу

Эта схема работает также в динамическом режиме.Для того чтобы отобразить состояние светодиода мы можем подать 0 — диод горит, либо перевести вывод в состояние Hi-Z — диод не горит. А для того чтобы опросить кнопку нам нужно временно на несколько микросекунд перевести вывод в режим входа с подтягом и опрашивать кнопку. В том случае когда горит светодид т.е. на выводе высокий уровень, то нажимать кнопку нельзя, в противном случае сгорит порт а это нам совершенно не нужно.

Оригинал статьи: www.easyelectronics.ru

Добавить комментарий

radio-magic.ru