История светодиодной лампы – Светодиодные лампы. История и современность. shop220.ru

Светодиодные лампы. История и современность. shop220.ru

  В настоящее время бешеными темпами набирают популярность светодиодные лампы. С каждым днём они становятся всё более востребованными. Попытаемся разобраться с вопросом о том, чем же так хороши эти источники света? Поговорить об из недостатках, конечно же, тоже забывать не будем. Но для начала немного истории появления светодиодных ламп.

                                     История создания светодиодных ламп


  Первое открытие, которое привело к появлению светодиодных ламп, было зафиксировано в 1907г. инженером из Англии Х.Д. Раундом. Причём, сделано это было абсолютно случайно. Раунд заметил, что вокруг детектора, с которым он работал, возникает свечение точечного контакта.

  Дальнейшее развитие светодиоды получили в 1922 г. И серьёзно подошел к этому вопросу советский радиолюбитель 18-ти летний Олег Владимирович Лосев, который после многих экспериментов достиг внушительных положительных результатов. К сожалению этот изобретатель погиб в 1942 г. Но он успел получить четыре патента на практическое применение своих изобретений.

  На основе «эффекта Лосева» в 1951 г. Курт Леговец, при участии физика В. Шокли, произвёл исследования по эффективным материалам для создания данного источника света. Их работа стала фундаментом новой отрасли – оптоэлектроники, появившейся в 1961 г.

  Первые промышленные светодиоды в 1962 г. создал работник компании «Дженерал Электрик» Н. Холоньяк. Это были устройства с желто-зеленым и красным свечением.

  В 70 — е годы ХХ века академиком Ж.И. Алфёровым было открыто явление сверхинжекции в гетеростуктурах. Вследствие этого им были разработаны новые полупроводниковые структуры. Исследования в этой области позволило создать целое направление в науке — гетеропереходы в полупроводниках. За свои труды в развитии физики Алфёров со временем был номинирован на Нобелевскую премию, которую и получил.

  В 1972 Джоржд Крафорд, который учился у Н. Холоньяка в 10-ки раз усовершенствовал красный и красно-оранжевый светодиод, тем самым открыл их жёлтый аналог.

  Чуть позже, в 1993 году Суджи Накамура, работник корпорации «Ничиа», добился высокого значения яркости у светодиода синего цвета, что позволило комбинировать его с другими устройствами и получать оттенки любого света.

  В 2000 — х годах «белые» светодиоды имели уже достаточно хорошую степень яркости для того, чтобы выпускать их в массовом количестве для всего сегмента рынка.

  Теперь поговорим о современных светодиодных лампах — что они из себя представляют, в чём их особенности, где применяют, какими характеристиками они обладают, об их достоинствах и недостатках.

  Светодиодная лампа — это многокомпонентный прибор, при изготовлении которого не используют опасные вещества. За счёт чего он абсолютно безопасен. Конструкция лампы не очень сложная. То, что излучает свет — называют монокристаллом. Устанавливают его в металлической чашечке, которая является отражателем, потом заливают всё пластиком и светодиод готов.

  Основной особенностью светодиодов является хорошая экономичность. При потребляемой мощности в 8 — 10 Вт он работает аналогично классической лампы накаливания, обладающей мощностью 100 Вт. Светодиодное устройство компактно, долговечно и способно на очень длительное время работы.

  В настоящее время светодиодные лампы активно вытесняют другие источники света, во всех областях, где применяют осветительные приборы. К основным характеристикам данных ламп можно отнести светосилу, мощность и спектр свечения. Рассмотрим вопрос о том, из-за чего светодиод оставляет далеко позади всех своих конкурентов.

  Самый главный параметр, который обеспечивает подавляющее превосходство светодиодных ламп над другими источниками освещения — это экономичность и очень низкое энергопотребление. При этом светят подобные лампы не хуже своих аналогов.

  К достоинствам светодиодных ламп относятся, также, долговечность работы, точнее длительный срок безотказной службы и отсутствие бьющихся хрупких элементов в их конструкции.
Данные лампы могут прекрасно работать при достаточно низких температурах, но вот высоких температур они боятся, поэтому устанавливать их в бане или сауне не рекомендуется. Светодиодные лампы совершенно не греются и могут использоваться для подсветки каких-либо предметов.

  Теперь пришло время упомянуть недостатки светодиодных ламп. Основной причиной, по которой многие люди отказываются от скорейшего перевода всех своих домашних осветительных приборов на работу со светодиодными лампами является достаточно высокая стоимость последних. Но на производственных объектах и в офисных центрах уже давно осуществляют замену старых источников света на эти лампы. Это объясняется тем, что по сравнению с квартирой экономия на энергозатратах в таких масштабах окупает стоимость светодиодных ламп достаточно быстро.

  На этом можно подвести определённые итоги. Стоит ли бежать в магазин и закупать светодиодные лампы? Ответ на этот вопрос можно оставить на усмотрение лично каждого. Если не слишком пугает её цена, то установив один раз светодиодную лампу, можно на долго забыть о том, что такое замена сгоревшей лампы. В этом случае останется лишь одна проблема — периодически протирать люстру и светильники от осевшей на них пыли.

  И ещё один момент – не стоит приобретать светодиодную лампу, которая была изготовлена неизвестным производителем и продаётся по довольно низкой цене. Ничего хорошего из этой экономии не получится – лампа очень скоро выйдет из строя.

 

shop220.ru

История создания светодиодной лампы

Имеющая многолетнюю историю лампочка светодиодная является на сегодняшний день самой экономичной и долговечной. Она еще не так доступна для обычного потребителя, как более дешевые источники искусственного света, но впереди ее ждет большое будущее.

Первое сообщение

В начале прошлого века (1907 год) английский изобретатель Генри Раунд впервые обнаружил излучение света от твердотельного диода. Сообщение об этом событии появилось в научных кругах. Раунд исследовал и описал явление электролюминесценции при прохождении тока через полупроводник – соединение карбида кремния и металла. На катоде появлялось свечение трех цветов:

  • оранжевое;
  • желтое;
  • зеленое.

Независимо от Генри Раунда подобные результаты были получены советским ученым.

В лаборатории Лосева

Через 16 лет после первого сообщения Раунда о необычном явлении советский физик Олег Лосев открыл люминесценцию полупроводникового перехода. Во время экспериментов в своей лаборатории в Нижнем Новгороде он заметил свечение в кристаллах из карборунда и стальной проволоки, применявшихся в радиопередатчиках.

О наблюдении ученый сообщил в прессе. К сожалению, это открытие не стало рождением светодиодной лампочки. В то время никто кроме самого изобретателя не понял значение и возможности электролюминесценции.

Хотя теоретически объяснить открытое явление в то время не представлялось возможным, советский ученый в полной мере оценил уникальность открытия, позволявшего создавать безвакуумные, очень экономичные и быстродействующие источники света. Он запатентовал свое изобретение, назвав его «Световым реле».

Без поддержки со стороны государства Лосев не смог организовать полномасштабные исследования своего открытия. Он продолжал самостоятельно изучать полученные результаты исследований. К сожалению, Лосев умер во время войны в блокадном Ленинграде. Если бы не трагические события истории, возможно, именно Советскому Союзу принадлежала честь производства первых светодиодных ламп.

История исследований электролюминесценции в СССР на этом не закончилась. Выдающийся физик из Беларуси Ж. Алферов защитил в 1970 году диссертацию, тема которой заключалась в исследовании в полупроводниках гетеропереходов. Он получил степень доктора наук, а позднее стал профессором и почетным академиком Российской академии.

Через тридцать лет (2000, Швеция) Алферов получил Нобелевскую премию за прорыв в исследовании полупроводниковых гетероструктур. Его изобретение позволило усовершенствовать светодиоды, увеличив внешний световой поток для красной части видимого спектра излучения.

Начало практического использование светодиода

Американцам принадлежит первенство в изобретении светодиода, имевшего практическое применение. В шестидесятых годах двадцатого столетия Ник Холоньяк сделал первый красный светодиод по заказу компании, занимающейся производством электрических приборов. Это произошло в Иллинойском университете.

Немного раньше американские ученые запатентовали первый инфракрасный светодиод, который был слишком сложно устроен и не нашел практического применения. После этого события разработкой светодиодов занялись в широких масштабах, с целью их использования в промышленности. Были получены лампы, светящиеся желто-зеленым светом. В 1968 году фирмой «Монсанто» была выпущена первая серия таких ламп. Другой компанией в целях рекламы был создан слабосветящийся красным светом дисплей, на котором отображалась информация при помощи работы встроенных красных светодиодов.

Учеником Холонька Джорджем Крафордом был изобретен желтый светодиод. Он по яркости в десять раз превосходил первый красный светодиод его учителя.

Работавший в лаборатории компании «АйБиЭм» Дж. Панков изобрел светодиоды фиолетового и голубого излучения. К сожалению, небольшой срок их службы не позволил применять их в промышленных целях.

Фирма Hewlett Packard в 1976 году выпустила серию оранжево-красных и желто-зеленых светодиодов, которые работали на фосфидах.

Открытие в Японии

К началу двадцать первого века были получены все цвета диапазона, не удавалось создать только синий излучатель. Честь его открытия в девяностых годах двадцатого века принадлежит доктору Накамура из Японии. Благодаря его изобретению недорогого синего светодиода появилась возможность выпускать лампы белого света, который получается в результате сочетания синего, красного и зеленого излучения. Эти лампы нашли широкое применение не только в быту, для освещения помещений, но и в других электроприборах. Появились экраны со светодиодной подсветкой. Компания «Ситизен Электроникс» впервые в 2003 году выпустила СИД модуль, запатентовав технологию.

Ученые из Японии вместе с Судзи Накамуро получили Нобелевскую премию за свое изобретение. А прогресс светодиодных устройств пошел с тех пор ускоренными темпами.

Перспективы

Отживает свое привычная лампочка Ильича с вольфрамовой спиралью в вакуумной колбе. Электроэнергия при ее горении расходуется в основном на нагрев спирали. Поэтому КПД невелик и составляет не более 4%. Замена лампочки происходит довольно часто из-за ограниченного срока службы и быстрого перегорания вольфрамовой спирали.

Немного экономичнее галогенновая лампочка – лампа, в которую добавлен газ. Принцип ее работы позволяет продлить срок службы благодаря возвращению вольфрама на тело накала в особой среде, которой наполнена колба. Повышается также температура внутренней спирали, что позволяет увеличить яркий свет лампочки. Максимальный срок службы галогенных ламп не превышает полутора лет.

Необходимы осветительные приборы не только для того, чтобы сделать светлее квартиры и дома. Лампочка ближнего света в автомобиле помогает в ночное время избежать аварий на дороге. Это может быть галогенная лампа или светодиодный прибор.

Преимущество светодиодных лампочек позволило найти им широкое применений во многих отраслях производства. Электроэнергия в них расходуется очень экономно, так как непосредственно преобразовывается в световой поток, миную необходимость нагрева поверхностей для получения светового потока. Срок службы тоже впечатляет. Горит лампочка более двадцати лет.

Купить светодиодные лампы в Тюмени можно у нас в магазине. Товар в наличии.

xn--72-mlcapvqqpe.xn--p1ai

Кто изобрел светодиод и светодиодные лампы?

Светодиодные лампы нашли применение в создании бытового, рекламного, декоративного, индикаторного и другого освещения. Человек подстраивает это изобретение под свои потребности во многих сферах деятельности. Светодиоды создают излучение для передачи телефонных и интернет сигналов по оптоволоконным кабелям, связывающих пульты управления с контролируемой техникой. LED-кристаллы делают мир ярче и светлее, но кому принадлежит авторство создания «суперсветильников»?

История создания светодиодов

Впервые о свечении твердого кристалла под влиянием тока человечество узнало в начале XX столетия.

1907 — британец Генри Раунд провел эксперименты, в процессе которых заметил цветное свечение при похождении электричества через соединение металла с карбидом кремния (карборундом). Так была открыта электролюминесценция.

1923 – в СССР ученый-физик Олег Лосев пропустил ток через соединение карбида кремния со сталью, и увидел слабый свет в точке соприкосновения карборунда с металлическим сплавом. Несмотря на публикацию в научных источниках, общество не придало значения этому открытию. Позже, в 1927 году, Лосев создал твердотельное «световое реле», работающее от источника питания 10 В.

1961 – следующим шагом в разработке современных ламп стало изобретение инфракрасного светодиода. Открытие сделали сотрудники американского производителя Texas Instruments. Г. Питтман и Р. Байард, которые чуть позже запатентовали свое детище.

1962 – первое применение светодиода на практике в американском гиганте General Electrics. Кристаллы с красным свечением были созданы в Университете Иллинойса Ником Холоньяком.

Себестоимость первых светодиодов достигала 200$ — огромные деньги для середины XX века. Научно-технический прогресс позволил удешевить производство твердотельных источников света, и с 1968 года крупные корпорации обратили внимание на возможную выгоду от использования таких элементов в своей продукции.

1971 – американец украинского происхождения Жак Панков в лабораторных условиях получает синее излучение от кристаллов. Начинается эра светодиодов, первые массовые партии индикаторов были произведены компанией Monsanto, и использованы в калькуляторах HP.

1972 – ученик Холоньяка Джордж Крафорд улучшает силу света красных светодиодов в 10 раз, и находит способ получить желтое излучение.

Изобретение светодиодной лампы

Несмотря на снижение стоимости, цена на светодиоды оставалась высокой вплоть до 1990-х гг. Исходящие световые лучи были слабоваты, и подходили только для использования в качестве индикаторов. Но в конце прошлого века три сотрудника японской корпорации Nichia Chemical Industries (Хироси Амано, Сюдзи Накамура и Исама Акасаки) сдвинули прогресс с мертвой точки, создав недорогой светодиод с синим свечением. Чуть позже на основе изобретения трех сотрудников Nichia началось массовое производство люминофорных светодиодов с белым свечением. В 2014 году Хироси Амано, Сюдзи Накамура и Исама Акасаки за свое изобретение были удостоены Нобелевской премии.

Благодаря низкой стоимости люминофорных светодиодов и довольно высокому световому потоку, стало возможным массовое производство светодиодных ламп.

Последним шагом на пути к созданию современных светодиодных ламп с высоким световым потоком стало производство первого модуля по технологии COB (Chip-on-Board) в 2003 году компанией Citizen Electronics. Citizen Electronics первыми начали использовать диэлектрический клей для монтажа кристаллов от Nichia на алюминиевую подложку, необходимой для поглощения выделяемого тепла.

Читайте так же

ledjournal.info

История появления светодиодных ламп | RUQRZ.COM


Светоизлучающие диоды и электролюминесценция известны более века. Генри Раунд (Henry Round), британский экспериментатор из лаборатории Маркони, в 1907 году впервые обратил внимание на эмиссию света при работе с кристаллами карбида кремния и контактным детектором (диодом). В опубликованном отчете, посвященном этому открытию, отмечалось, что под воздействием электрического возбуждения из кристалла карбида кремния выходил свет. Раунд особенно отмечал тот факт, что при низком напряжении он видел желтоватый свет, а затем, по мере увеличения напряжения, в различных точках разных кристаллов, желтый, зеленый, оранжевый и синий. Однако, после этого, до середины 1920-х годов, никаких работ, относящихся к случайно открытой Раундом электролюминесценции, в печати больше не появлялось.

В это время, русский экспериментатор Олег Лосев успешно создал светодиод после того, как обнаружил, что используемые в радиоприемниках диоды испускали свет при протекании через них электрического тока. В течение последующих лет он исследовал это явление и опубликовал множество работ, описывающих связь спектров излучения с вольтамперными характеристиками диодов. В 1927 Лосев запатентовал «световое реле». Это была первая ссылка на использование светодиодов в целях коммуникации.

И, хотя Раунд и Лосев сдвинули изучение электролюминесценции с мертвой точки, выбранное ими направление дальнейшего движения оказалось бесполезным для практики. Используемый в точечных диодах карбид кремния в то время был полупроводником с непрямой запрещенной зоной, и, как следствие, неэффективным. Производимый им свет, в лучшем случае, был слаб.

В 1955 Рубин Браунштайн (Rubin Braunstein) из Radio Corporation of America сообщил об инфракрасном излучении, генерируемом простыми диодными структурами, сделанными на основе арсенида галлия, антимонида галлия, фосфида индия и сплавов кремний-германий. Спустя несколько лет, исследователи из Texas Instruments Боб Биард и Гари Питтмен (Bob Biard и Gary Pittman) обнаружили, что под воздействием электрического тока арсенид галлия излучает инфракрасный свет. В 1961 году ими был получен первый патент на инфракрасный светодиод.

Отцы-основатели

В начале 1960-х годов Ник Холоньяк (Nick Holonyak) из General Electric занимался исследованиями комбинаций галлия, мышьяка и фосфида в поисках путей создания туннельных диодов с большей шириной запрещенной зоны. При содействии сослуживца д-ра Роберта Холла (Robert Hall), изобретателя арсенид галлиевого лазера, Холоньяк в 1962 году создал лазер с видимым излучением. Вскоре после этого началось коммерческое внедрение первых светодиодов видимого (красного) спектра.

Холоньяк стал профессором Иллинойского университета в 1963 году. Именно там у него учился аспирант М. Джордж Крэфорд (M. George Craford), который в 1972 году изобрел желтый светодиод, а яркость красных и красно-оранжевых сумел увеличить на порядок.

Усилиями Крэфорда и Холоньяка компания Monsanto, в которой ранее служил Крэфорд, смогла впервые организовать массовое производство светодиодов видимого спектра, а также, семисегментных индикаторов на их основе. Первые стали применяться в лабораторном и электронном оборудовании, вторые — в коммерческих приборах, таких как телевизоры, радиоприемники, телефоны, калькуляторы и часы.

Заметно снизить себестоимость производства светодиодов удалось в середине 1970-х компании Fairchild Optoelectronics. Разработчики компании впервые использовали планарную технологию изготовления полупроводниковых кристаллов, изобретенную доктором Жаном Эрни (Jean Hoerni) из фирмы Fairchild Semiconductor. Комбинация этой уникальной, используемой и по сей день, технологии и новых методов упаковки позволила пионеру оптоэлектроники Томасу Брандту (Thomas Brandt) и группе его сотрудников намного снизить производственные затраты и, одновременно, повысить надежность их светодиодов.

В 1976, Т.П. Пиэрсолл (T.P. Pearsall) изобрел уникальный полупроводниковый материал, длина волны излучения которого была специально оптимизирована для передачи по оптоволокну. На базе этого материала им был создан первый сврхяркий высокоэффективный светодиод.

Арсенид галлия-алюминия (GaAlAs) стал широко использоваться как полупроводниковый материал в середине 1980-х годов. Он позволил поднять яркость светодиодов, уменьшить рассеиваемую мощность и повысить гибкость использования за счет появления возможности импульсного питания и мультиплексирования. А это, в свою очередь, расширило список возможных применений светодиодов, добавив в него сканеры штрих-кодов, системы волоконно-оптической связи и медицинское оборудование.

Однако оставались нерешенными некоторые проблемы, связанные с первыми GaAlAs светодиодами, а именно — единственная длина волны излучения (660 нм) и значительная деградация светоотдачи, существенно большая, в сравнении со светодиодами, выпускавшимися по традиционной, на то время, технологии. К 1987 году компания Hewlett Packard усовершенствовала технологию GaAlAs све- тодиодов настолько, что их яркость стала достаточной для замены автомобильных габаритных огней и стоп-сигналов. Это была знаменательная веха в истории светодиодов, когда впервые в светотехнических приложениях появилась возможность замены ламп накаливания светодиодами.

В конце 1980-х — начале 1990-х годов появился и стал использоваться более эффективный полупроводник — фосфид алюминия- галлия-индия (AlGalnP). Благодаря возможности управления шириной запрещенной зоны, новый материал позволил значительно уменьшить деградацию светоотдачи и расширить цветовой диапазон. Отныне зеленые, желтые, оранжевые и красные светодиоды стали изготавливаться по одной и той же технологии.

А что насчет синего?

Теперь недоставало только чистого синего светодиода. Первые эксперименты в попытке создать такой прибор были выполнены Жаком Панковом (Jacques Pankove) в лабораториях RCA в середине 1970-х, однако результаты оказались более чем скромными. Была очевидна необходимость дополнительных исследований.

В конце 1980-х служащие университета Нагои Исаму Акасаки (Isamu Akasaki) и Ироси Амано (Hiroshi Amano) совершили важный прорыв в технологии выращивания эпитаксиальных структур нитрида галлия и легирования p-примесями. Результаты своих исследований они принесли в компанию Nichia Corporation, чтобы в 1993 году, используя нитрид индия-галлия, продемонстрировать первый ярко-синий светодиод. Этим открытием завершилось формирование RGB триады цветов, и потребовалось совсем немного времени, чтобы мы смогли увидеть на улицах полноцветные вывески и экраны.

В 1995 году в лаборатории Кардиффского университета Альберто Барбьери (Alberto Barbieri) занимался проблемами повышения эффективности и надежности высокоэффективных светодиодов, и с успехом продемонстрировал впечатляющие результаты, достигнутые при использовании прозрачных контактов на светодиодах из алюминия-галлия-индия-фосфида/арсенида галлия (AlGalnP/GaAs). Последние достижения в области синих светодиодов, в совокупности с усовершенствованиями, сделанными Барбьери, быстро привели к появлению первых высокоэффективных белых светодиодов, в которых смешение желтого излучения люмино- форного покрытия с синим излучением кристалла дают результирующее свечение, кажущееся белым.

Глядя в будущее

В течение двух последних десятилетий популярность и диапазон использования светодиодов росли экспоненциально. Сегодня, благодаря их эффективности и долгосрочной надежности, с ними связывают главные решения будущего в области светотехники. Но исследования продолжаются, и имеются все признаки того, что мы станем свидетелями новых открытий, которые сделают светодиоды еще более мощными, надежными и дешевыми.

Jeffrey Bausch

Что еще почитать по теме:

www.ruqrz.com

История светодиодных ламп

Светодиодное освещение с каждым годом набирает всё больше популярности, вытесняя из бытового использования лампы накаливания и люминесцентные лампы. Главными критериями, из которого люди выбирают светодиоды, являются низкое энергопотребление и долгий срок службы.

Как всё началось?

А началось всё… с ошибки, в далёком 1907 году. Именно за ошибку в расчётах принял инженер из Англии Генри Раунд свечение вокруг диодного контакта, когда тот находился под напряжением.  Исследователь даже не принял этого всерьёз, хотя внёс данный факт в отчёт.

Через полтора десятка физик Лосев из СССР заинтересовался своеобразным свечением, появляющемся на стыке соединения контактов диодов из карборунда. Хотя он не постиг природы феномена, результаты его исследований были опубликованы по всему миру, но не нашли тогда области применения.

Далее были американцы. В середине 20 века Рубином Браунштейном открывает диоды из арсенида галлия, способные к излучению инфракрасных лучей, а Роберт Бьярд с Гари Питманом запатентовали инфракрасный диод. Так как инфракрасные лучи не видны человеку, то использование такого вида освещения не представлялось возможным.

Светодиоды – людям!

Впервые полноценный светодиод, который заработал в видимом диапазоне, был разработан коллективом учёных под руководством «отца светодиодов». Такой эпитет за своё изобретение получил Ник Холоньяк — американский профессор, трудившийся в компании «General Electric» в 1962 году. Однако, эти маломощные светодиоды производили свет только на низких красных частотах спектра.

В 1993 году был создан яркий синий светодиод — это произошло благодаря идее японского учёного Сюдзи Накамура из корпорации «Nichia Corporation».Тогда он выдвинул идею о бытовом применении светодиодного освещения. Существование синих и высокоэффективных светодиодов, привело к разработке первого «белого светодиода», в котором было использовано люминофорное покрытие для частичного преобразования излучаемого синего света, на красные и зелёные частоты, что создавало свет, кажущийся белым. Исаму Акасаке, Хироси Амано и, собственно, сам Накамура в 2014 году получили Нобелевскую премию по физике за то, что изобрели синий светодиод.

Светодиодные лампы сегодня

Начало 2007 года отметилось выпуском первых таких ламп для обыкновенных патронов E27 и E14. Сначала, они имели световой поток всего в 300 лм, что соответствовало бытовой лампе накаливания мощностью 30 Вт, угол рассеивания света — 120 (у ламп накаливания — 330).

С 2010 года светодиодные лампы стали также доступны с тёплым белым светом.

В конце 2011 года было объявлено о том, что фирма «Panasonic» достигла угла рассеивания около 300 градусов, а в 2015 — до 350 градусов. В дополнение к недостаточной яркости для многих задач, сначала они имели голубой («холодный») цвет света, который часто подвергался критике.

С тех пор, на рынке ещё появились волоконные светодиодные лампы, изготовленные с прозрачной стеклянной колбой и смоделированные наподобие привычных нам ламп накаливания с одиночными нитями, но с десятками отдельных светодиодов.

Массовое производство с каждым годом делает светодиодное освещение более доступным всем категориям людей. С 2008 года постепенно стоимость светодиодных ламп упала более чем на 90%.­­­­­­­­­­­­

complekt-house.ru

Что такое светодиод? История развития, интересные факты, перспективы

Во всех наших статьях мы стараемся доносить информацию до читателей и покупателей магазина в максимально доступной форме, старательно избегая малопонятных обывателю терминов и описания физико-химических процессов. Так мы попробуем поступить и сейчас, поскольку, подкованные в научных дисциплинах читатели без труда смогут найти в Интернете информацию по данной теме на гораздо более научном языке.

Что такое светодиод?

Светодиод — это полупроводниковый прибор, трансформирующий электроток в видимое свечение. У светодиода есть общепринятая аббревиатура — LED (light-emitting diode), что в дословном переводе на русский язык означает «светоизлучающий диод». Светодиод состоит из полупроводникового кристалла (чип) на подложке, корпуса с контактными выводами и оптической системы. Непосредственно излучение света происходит от этого кристала, а цвет видимого излучения зависит от его материала и различных добавок. Как правило, в корпусе светодиода находится один кристалл, но при необходимости повышения мощности светодиода или для излучения разных цветов возможна установка нескольких кристаллов.

В светодиоде, в отличие от привычной лампы накаливания или люминесцентной лампы (ее еще называют «энергосберегающей»), электроток трансформируется в видимый свет. В теории, такое преобразование можно выполнить вообще без, так называемых, «паразитных» потерь электроэнергии на нагрев. Это связано с тем, что при грамотно спроектированном теплоотводе светодиод нагревается очень слабо. Светодиод излучает свет в узком спектре, его цвет «чист», что особенно ценно применительно к дизайнерскому освещению. Ультрафиолетовые и инфракрасные излучения, как правило, отсутствуют.
 

История развития светодиода

В 1907 году британский инженер-экспериментатор Генри Джозеф Раунд (на фото слева) впервые обнаружил едва заметное излучение, испускаемое карбидокремниевыми кристаллами, вследствие неизвестных в то время электронных превращений.

В 1923 году в Нижнем Новгороде, молодой российский ученый Олег Лосев (на фото справа) также зафиксировал это свечение при проведении радиотехнических лабораторных опытов с полупроводниковыми детекторами, но интенсивность обнаруженных свечений была крайне низкой и Российское научное сообщество не придало этому событию должного значения. Через несколько лет Олег Лосев провел целенаправленные исследования этого феномена и углублялся в их изучение вплоть до своей смерти — Олег Лосев ушел из жизни в блокадном Ленинграде зимой 1942 года в возрасте 38 лет. До начала войны Олег Лосев активно публиковал результаты своих изысканий в немецкий научных изданиях, где открытый им эффект посчитали сенсационным и назвали его именем ученого — «Losev Licht». Природа этого излучения окончательно стала понятна только в 1948 после изобретения транзистора и появления теории «p-n-перехода», являющейся научной основой функционирования известных ныне полупроводников. 

В 1962 году группа ученых из Университета Иллинойса (США), которой руководил Ник Холоньяк (на фото слева), продемонстрировала работу первого светодиода, что стало знаковым событием и именно этот момент многие специалисты считают открытием привычного нам светодиода. В этом же году Ник Холоньяк создал первые «красные» светодиоды, которые уже можно было применять в промышленности. 

В 1972 были открыты полупроводниковые излучатели зеленого и желтого цвета. Их яркость постепенно увеличивалась и в 1990 году уже составляла 1 люмен.

Суджи Накамура (на фото справа) — инженер малоизвестной тогда японской фирмы Nichia (Ничиа) в 1993 году получил первый синий сверхъяркий светодиод. После этого, почти моментально были созданы светодиодные RGB (Red-Green-Blue) устройства, поскольку эти три цвета (зеленый, синий, красный) в своем сочетании сделали возможным создать любой цвет, даже белый. Этот момент стал настоящим прорывом и первые светодиоды белого цвета «увидели свет» в 1996 г., что явилось сильнейшим толчком к развитию отрасли.

К 2005 году яркость светодиода достигла значения 100 лм/Вт и продолжает увеличиваться. Были сконструированы так-называемые многоцветные светодиоды, а повышение яркости и надежности всех компонентов светодиодных ламп позволило начать конкуренцию с энергосберегающими (люминесцентными) и лампами накаливания. У нас есть интересная статья на эту тему, где сравниваются разные типы ламп.

С 2008-2009 годов стартовало активное применение светодиодных источников света в бытовых светильниках и чуть позднее с ростом светоотдачи — в уличном освещении. В 2012-2013 годах из-за многократного роста объемов производства их стоимость начала снижаться, что привело к стремительному повышению интереса со стороны потребителей.
 

Яркость светодиода

Яркость светодиода зависит от силы тока (измеряемой в амперах), который через него проходит. Однако, силу тока нельзя увеличивать без ограничений, так как кристалл перегреется и выйдет из строя. Именно по этой причине конструкция светодиодных ламп относительно сложна и дорога в производстве. Но прогресс не стоит на месте и ежегодно ведущие производители светодиодов добиваются роста светового потока своих светодиодов на 20-30%, что с точки зрения скорости прогресса, весьма впечатляющие цифры. Постоянному совершенствованию подвергаются конструкции и материалы элементов светодиодных ламп. 

По силе света светодиоды делятся на три основные группы:
— светодиоды ультравысокой яркости, мощностью от 1W (Ultra-high brightness LEDs) – сотни канделл;
— светодиоды высокой яркости, мощностью до 20 mW (High brightness LEDs) – сотни и тысячи милликанделл;
— светодиоды стандартной яркости (Standard brightness LEDs) – десятки милликанделл.

Яркость свечения светодиодов очень хорошо поддается регулированию или «диммированию» при использовании так называемого метода широтно-импульсной модуляции, для чего необходим специальный управляющий блок, встроенный в лампу. Однако, на сегодняшний день (2013-2014 года) не все продаваемые светодиодные лампы диммируются, что делает их немного дешевле и этот момент надо учитывать при покупке. Именно поэтому, перед приобретением светодиодных ламп мы настоятельно рекомендуем прочитать нашу статью «Как выбрать светодиодную лампу».
 

Основные типы светодиодов

Существует два основных типа светодиодов: индикаторные и осветительные.

Индикаторные светодиоды — не яркие, маломощные и оттого дешевые в производстве светодиоды, используемые в качестве световых индикаторов в различных электронных приборах, подсветке дисплеев компьютеров, ЖК-телевизоров, приборных панелей автомобиля и многих других устройств.

Осветительные светодиоды отличаются высокой мощностью и яркостью, что позволяет использовать их в производстве бытовых и промышленных лампах и светильниках.

Исторически из-за небольшой яркости и мощности светодиоды применялись только для индикации. Чтобы сделать их пригодными для освещения, необходимо было прежде всего научиться изготавливать светодиоды с белым светом, что, как мы писали выше, произошло только в 90-х годах двадцатого века, а также значительно увеличить светоотдачу, чего в свою очередь, удалось добиться только в двухтысячных годах.
 

Долговечность и старение светодиодов

Светодиод механически прочен и надежен — даже при нынешнем развитии технологий, его срок эксплуатации в системе освещения теоретически может достигать ста тысяч часов, что примерно в 100 раз больше среднего срока эксплуатации обычной лампы накаливания и примерно в 10 раз больше, чем у энергосберегающих (люминесцентных) ламп. Однако, срок службы светодиода может быть разным и напрямую зависит от типа светодиода, силы подаваемого на него тока, охлаждения кристалла (чипа) светодиода, состава и качества кристалла, компоновки элементов и сборки в целом. Именно поэтому срок службы у осветительных светодиодов короче, чем у маломощных индикаторных. В бытовом смысле, старение светодиода связано в большей степени со снижением его яркости и в меньшей — с изменением цвета видимого излучения. Сам процесс старения начинает быть заметным по истечение нескольких десятков тысяч часов и происходит достаточно медленно, т.е. резкого угасания светодиода не происходит.

Однако, все вышесказанное относится исключительно к качественным продуктам от производителей с именами мировой величины. Проблема в том, что большинство российских светодиодных ламп построено на ультра-дешевых китайских светодиодах и других комплектующих, что сказывается на потребительских свойствах продуктов. Чаще всего это проявляется в том, что указанные на упаковке характеристики мощности, светового потока и срока службы очень сильно завышены. Именно по этой причине мы рекомендуем покупать лампы известных брендов.

Наибольшему старению подвержены как раз белые светодиоды, применяемые в освещении. Как мы уже писали ранее, светодиодов с белым светом пока не изобрели и белый свет получается за счет наложения структуры кристаллов, на которую нанесен люминофор (специальный состав). При этом люминофор ухудшает тепловые характеристики светодиода и срок его службы сокращается. Тем не менее, на сегодняшний день, светодиодные лампы по заявлениям ведущих производителей будут работать без ухудшения своих характеристик от 30 до 50 тысяч часов, что при их непрерывной работе составляет минимум 3,5 года. Если учесть, что по статистике лампа включена не более 3-х часов в сутки, то этот срок увеличивается минимум до 30 лет! Такие цифры впечатляют!
 

Сфера применения светодиодов. Перспективы развития.

Сферу применения светодиодов в качестве источников света можно описать одним словом — повсеместно: в уличном, промышленном, автотранспортном и бытовом освещении. При подготовке этой статьи мы планировали перечислить сферы применения, но начав составления перечня, поняли, что в этом нет смысла, так как придется перечислять все. Потом мы попробовали идти от обратного — где сейчас пока еще не применяют светодиоды в качестве источников света и пришли к выводу, что примеров этому нет. Все крупные Компании переводят освещение своих производственных и офисных помещений на светодиодное. Те, кто пока не делает — планируют это сделать в самое ближайшее время и ждут еще большего снижения цен. Основных причин такого массового перехода две: экономический эффект и безвредность для человека и экологии планеты в целом.

По мнению большинства специалистов отрасли, стоимость светодиодных ламп, как бытовых, так и специальных будет снижаться и весьма сильно. По разным оценкам, от 10 до 20% в год в течение последующих нескольких лет. Ежегодно, световой поток самого производительного светодиода каждого из мировых брэндов возрастает на 20-30%.

Светодиодная лампа абсолютно безопасна для использования в жилых и рабочих помещениях. В отличие от ламп накаливания и люминесцентных («энергосберегающих») ламп, она не содержит стекло (за редким исключением) и опасные вещества, такие как ртуть и свинец. Лампа не наносит вреда экологии и не требует специальной утилизации. В наше время это особенно важно: экологические требования всех развитых стран постоянно меняются в сторону уменьшения вреда здоровью людей и экосистеме планеты в целом. При этом всячески стимулируется развитие технологий энергосбережения. В подавляющем большинстве стран Евросоюза и в США продажа ламп накаливания уже запрещена, а продажи люминесцентных ламп стремительно снижаются. На этом фоне «светлое» будущее систем освещения на основе светодиодов видится весьма отчетливо. 

Лампы накаливания и галогенные лампы уходят в прошлое. Объемы производства падают в разы год от года. Люминесцентные (энергосберегающие) лампы также по всем параметрам проигрывают светодиодным и их объем производства также снижается. Причины победного шествия светодиодных технологий настолько очевидны, что не возникает ни малейшего сомнения, что другие типы ламп скоро просто вымрут или останутся в узких сегментах рынка.


    

 

svetlix.ru

Сага о светодиодных лампах. Часть 1 — история и терминология / Habr

Этой статьей я хотел бы начать серию публикаций, посвященных приборам, которые человечество применяет для освещения. Как явствует из заголовка, основное внимание планируется уделить светодиодным лампам, их сравнению и рассказу о том, почему одни лампы получаются хорошими, а другие — плохими, сопровождаемому наглядными примерами того и другого. Да-да, все верно — планируются замеры, распиливания и раскручивания. Однако прежде чем начинать что-то мерять и сравнивать, всегда полезно немного погрузиться в историю вопроса и поговорить о том, что же и зачем надо мерять.

Прежде всего я, как и обещал, предлагаю погрузиться в историю. Тем не менее, поскольку копаться в пыли веков — занятие на любителя, я спрятал эту часть под спойлер.Погрузиться в историю освещения.В деле создания искусственных источников света человечество прошло долгий путь – от костров, факелов и плошек с маслом до лампы Арганда, от лампы Арганда к классической керосиновой лампе, и, в конце концов, к электрическому освещению, символом и основным представителем которого по праву является лампа накаливания. Фактически, лампа накаливания была абсолютно господствующим прибором бытового освещения более ста лет, с того момента, как в начале двадцатого века она стараниями Эдисона приобрела современный вид. К слову, вопреки расхожему мнению, Эдисон не изобретал ее — поместить нагреваемое током тело в стеклянную колбу с бескислородной атмосферой первым догадался Лодыгин, и именно ему принадлежат патенты как на собственно лампу накаливания, так и на использование в качестве тела накала тугоплавких металлов, в частности, вольфрама (US Patent No. 575002), который применяется в лампочках и по сей день. Гений же Эдисона состоял в том, что он смог довести идеи всех, работавших над проблемой электрического освещения ранее, до коммерческого применения, приносящего реальную прибыль; именно благодаря ему лампа накаливания из лабораторного прибора стала повсеместным, привычным и удобным источником света.


(Источник картинки)

Несмотря на появление люминесцентных газоразрядных ламп ближе к середине двадцатого века (знакомые всем белые трубки) можно с уверенностью сказать, что за последние сто лет в бытовом освещении не произошло существенных перемен. В домашних условиях классические газоразрядные лампы так и не прижились, поскольку требовали гораздо более сложной, громоздкой, дорогой и порой надоедливо гудящей схемы включения, а при запуске мигали. Конечно, они обеспечивали существенную по сравнению с лампами накаливания экономию энергии, но в быту комфорт важнее экономии… К слову, в некоторых случаях их применение было невозможно и на производстве – поскольку газоразрядной лампе практически не присуща инерция, в классической схеме включения она на самом деле не горит непрерывно, а включается и выключается сто раз в секунду. Казалось бы, что плохого? Ведь человеческий глаз достаточно инерционен, чтобы не замечать этого. Тем не менее, иногда это может быть просто опасно из-за так называемого стробоскопического эффекта: при определенном соотношении частот мерцания и вращения детали, например, на токарном станке, последняя может казаться неподвижной или вращающейся гораздо медленнее истинной скорости. В частности, если за один полупериод сети деталь будет делать полный оборот, при каждой вспышке лампы глаз будет видеть ее в одном и том же положении, а человеку будет казаться, что она неподвижна. Очевидно, чем может окончиться такая ошибка. Именно по этой причине светильники местного освещения рабочей зоны, которые можно наблюдать на станках, никогда не содержат газоразрядных ламп (ГОСТ 12.2.009-99).


(Wikipedia)

Конечно, современная схемотехника в состоянии решить все перечисленные проблемы (и достаточно успешно решает их в «сберегайках»). Однако к тому моменту, как это стало возможно, в мире освещения произошло событие, сравнимое с изобретением лампы накаливания – были изобретены и доведены до промышленного производства белые светодиоды.

Первое известное сообщение об излучении света твердотельным полупроводниковым прибором датируется 1907-м годом, когда Генри Раунд наблюдал свечение нетеплового характера при прохождении тока через контакт металла и карбида кремния; позже, в 1923-м году, Олег Лосев независимо пришел к тем же результатам и создал то, что уже можно было назвать светодиодом. Оба исследователя вполне оценили масштабы своих открытий, однако уровень науки того времени не позволил продвинуться дальше по пути применения обнаруженных эффектов для освещения. Первый светодиод, который смог покинуть лабораторию, был изобретен Ником Холоньяком в 1962-ом году. Тем не менее, до освещения было еще очень далеко – излучаемый свет был неярок и ограничивался красным и оттенками оранжевого.

Со временем ученые существенно улучшили характеристики светодиодов – расширили набор возможных цветов свечения вплоть до зеленого, повысили светоотдачу и яркость кристаллов. Но настоящий прорыв произошел в 1994-ом году, когда Сюдзи Накамура изобрел синий светодиод, подходящий для промышленного производства. Только тогда впервые стало возможно получить белое свечение, скомбинировав уже существующие красные и зеленые со свежеизобретенными синими кристаллами. Вскоре (в 1996-ом году) был изобретен и классический на сегодня белый светодиод – синий кристалл, покрытый люминофором, переизлучающим часть энергии синего света в желтой области. Именно так работают современные осветительные светодиоды – смешение синего света от синего кристалла и желтого от люминофора дает белый свет.


(Источник картинки)

Итак, будем считать, что исторический ликбез проведен. Теперь поговорим о том, какие же параметры есть у светодиодных ламп и зачем их надо мерять, ведь, казалось бы, светодиоды — чистый идеал освещения: долговечны, практически не нагреваются в отличие от ламп накаливания, почти не содержат вредных веществ в отличие от газоразрядных ламп; лучшие их экземпляры превосходят в эффективности газоразрядные лампы, худшие – как минимум гораздо эффективнее сравнимых ламп накаливания.

Однако понятно, что идеалов не бывает. У светодиодов тоже есть свои особенности, делающие технику их применения отдельным инженерным миром. Например, лампа накаливания совершенно спокойно работает при температурах в тысячи градусов – светодиоды очень требовательны к охлаждению: часто заявляемый срок службы в сотни тысяч часов (для сравнения – у лампочки накаливания около тысячи) достигается только при практически комнатной рабочей температуре, или, как минимум, чрезвычайно щадящем режиме. Эффективность светодиодов тоже зависит от качества их охлаждения. Как и газоразрядные трубки, светодиоды нельзя включить в сеть просто так – им нужна особая схема-драйвер, от качества которой напрямую зависит общее качество лампы. Отдельная проблема – обеспечение совместимости с традиционными светильниками. Геометрия лампы накаливания чужда светодиодам – охлаждение (в котором лампа накаливания не нуждалась) часто затруднено; ограниченность объема предъявляет серьезные требования и к габаритам драйвера, что тоже отражается на характеристиках.

Одним словом, природа светодиодов принуждает искать различные компромиссы при создании светильника на их основе. Поиск устойчивого идеала конструкции, для лампы накаливания завершившийся в первой половине двадцатого века, в случае светодиодов еще идет; потому сейчас на рынке одинаково часто встречаются как действительно хорошие продукты, так и явно неудачные модели. При этом, если с лампами накаливания все было просто, то светодиодные лампы обладают большим количеством характеристик, некоторые из которых незаметны «на глаз», а то и вовсе неочевидны для неискушенного человека, но при этом напрямую определяют качество лампы.

В целом, параметры светодиодных ламп можно разделить на две группы: световые и электрические. Внимание ко второй группе объясняется тем, что компактные люминесцентные и светодиодные лампы идеологически гораздо ближе к стиральным машинам, блендерам, бритвам и прочей более-менее сложной бытовой технике, чем к «просто лампочкам». С лампами накаливания все понятно – электрически это просто сопротивление, потому и долго мерять ничего не надо, все и так ясно. В интересующем нас случае мы, напротив, имеем дело с некоторой хитрой схемой, в конечном итоге вносящей ощутимый вклад в общую эффективность; потому игнорировать электрические параметры здесь никак нельзя.

К световым параметрам прежде всего относится полный световой поток лампы ([total] luminous flux). Если по-простому, характеризует, сколько же света она излучает в целом во все стороны. Параметр это интересный и полезный, однако надо сказать, что простому смертному он мало что поясняет. Измеряется поток в идеально сферическом фотометре (правда, не в вакууме), и потому к поведению лампы в обычном светильнике имеет несколько опосредованное отношение. Самое ценное для нас применение оного – сравнение разных ламп по светоотдаче (о которой далее). Единица измерения – люмен (lm).

С точки зрения пользователя гораздо более интересен такой параметр, как освещенность (illuminance) – показатель того, насколько ярко лампа что-то освещает. На самом деле это, конечно, не относится к характеристикам самой лампы, а зависит в том числе и от конструкции светильника, расстояния от него до освещаемой поверхности, расположения этой самой поверхности и прочего, вроде коэффициента отражения окружающих предметов. Поэтому как-либо обобщить его сложно. Измеряется освещенность в люксах (lux, lx). Уровни освещенности нормируются санитарными правилами и нормами.

Световая отдача (luminous efficacy) – важный параметр, световой КПД лампы. Показывает, сколько света лампа выдает на один Ватт потребляемой мощности. Измеряется в люменах на Ватт. Абсолютный теоретический предел световой отдачи равен 683 лм/Вт. Правда, эта цифра справедлива только для монохроматического источника зеленого цвета. Для источника белого света, который, разумеется, с позиций общего освещения интересен более всего, теоретический максимум составляет около 240 лм/Вт.

Цветовая температура (CT, CCT – [correlated] color temperature) – если по простому, показывает оттенок излучаемого света, от красноватого до синеватого. Измеряется в Кельвинах. Надписи на упаковках ламп «2700K», «4200K», «6500K» — это про нее. Почему цвет измеряется в единицах температуры? Смысл в следующем: если нагреть абсолютно черное (неотражающее) тело до указанной температуры, то оно будет светиться таким же цветом, как и тот световой прибор, на котором написаны эти цифры.

Цветовая температура 2700 — 3000 Кельвин соответствует классическому оттенку ламп накаливания. Лампы накаливания, к слову, и не дают в этом смысле особого выбора – свет в них получается в результате настоящего нагревания, а нагреть вольфрам до температуры более примерно трех тысяч Кельвин не получится — при 3700K он уже плавится, а нить накаливания в процессе работы все же должна сохранять достаточную механическую прочность. В светодиодных и люминесцентных лампах процесс получения света не связан с нагреванием непосредственным образом, потому возможно получение любого оттенка.

Для справки, цветовая температура около 4200K соответствует утреннему солнцу, а за 6500K принят стандартный дневной свет.

Коррелированная цветовая температура – термин, применяемый к источникам с линейчатым спектром (газоразрядные лампы), к которым классическое определение цветовой температуры, строго говоря, неприменимо. В смысле восприятия глазом означает то же самое.

Вообще, выбор цветовой температуры ламп для домашнего освещения – вопрос субъективный. Можно только порадоваться, что современные технологии дают нам возможность выбирать.

Индекс цветопередачи (CRI, color rendering index) – показывает, насколько цвета, наблюдаемые в свете искусственного источника освещения, будут близки к тем, которые мы наблюдаем при свете солнца. Измеряется в относительных единицах либо процентах; идеальное значение, соответствующее солнечному свету, – 100% или 1. Этот параметр – пожалуй самый субьективный из объективных параметров освещения. Тестируется он на специально определенных цветах, некоторые из которых имеют поэтичные описания вроде «цвет увядшей розы». Если говорить о его практической значимости, то дело вот в чем: наверняка многим знакомо ощущение, что лампа светит вроде как ярко, но при этом совершенно «не освещает». Именно за это отвечает индекс цветопередачи. В целом можно сказать, что все, у чего CRI выше 80%, будет именно освещать, а не просто светить.

Вообще же цветовая температура и индекс цветопередачи – субъективные по восприятию параметры. Так что тут просто надо пробовать и остановиться на том, что больше нравится.

Пульсации светового потока – из-за того, что напряжение в сети переменное, лампы могут мерцать. Низкочастотные пульсации плохи по многим причинам, одна из которых – упоминавшийся в «исторической» части стробоскопический эффект. Разумеется, производители всеми силами стараются сделать световой поток светильника как можно более равномерным. Измеряются пульсации светового потока в процентах; на пульсации также существуют санитарные нормы.

На этом со световыми параметрами ламп можно закончить и перейти к электрическим характеристикам. Из них наибольший интерес представляют КПД схемы управления и коэффициент мощности.

С КПД схемы управления все понятно – можно поставить в лампу самые лучшие светодиоды на свете, но свести все их преимущества в ноль схемой стабилизации тока, расходующей больше мощности, чем сами излучатели. Имеряется КПД, как известно, в процентах, вычисляется как отношение мощности на выходе к мощности на входе. Идеальное значение, разумеется, 100%.

Коэффициент мощности, «косинус фи» (PF, power factor) – более тонкая материя. Скажем так, он показывает, насколько разумно и аккуратно устройство распоряжается сетевой энергией. Дело в том, что, как уже говорилось, современная продвинутая лампа – это не резистор, потребление тока оной носит сложный характер; при этом потребляемый ток часто не совпадает по форме и фазе с сетевым напряжением. Не вдаваясь (пока что) в подробности скажу, что это приводит к хитрым эффектам, которые в глобальном масштабе могут доставить много головной боли энергетическим компаниям. По простому – чем больше коэффициент мощности, тем лучше. Измеряется он в процентах или относительных единицах, идеальное значение – 100% или 1. Единичный коэффициент мощности имеет простое сопротивление без емкостных и индуктивных составляющих. Для сети это самая дружелюбная нагрузка. Предельное значение коэффициента мощности, которое еще можно считать приличным, составляет 0,8 (ГОСТ 13109-97).

В целом, перечисленные параметры можно считать основными численными характеристиками, описывающими качество светильника. Конечно, сюда еще стоит добавить такие категории, как качество исполнения а также красота и «правильность» схемотехники, но это уже чисто субъективные соображения, которые, вообще говоря, находят некоторое отражение и в объективных параметрах. Кроме того, конкретно для светодиодных ламп необходимо оценивать и качество охлаждения, поскольку оно непосредственно сказывается на эффективности и сроке службы.

На этом пока что все. Если у читателей обнаружится интерес к предложенной мной тематике, то в следующих статьях мы оценим, как параметры, конструкция и схемотехника некоторых распространенных светодиодных ламп соотносятся с вечными идеалами.

Примечание

В связи с обилием в статье цифр и фактов, отдельно отмечу, что все утверждения, источник которых не указан явно, взяты из Википедии (англоязычной либо русскоязычной).

habr.com