Измеритель емкости конденсаторов с защитой – ПРИБОР ДЛЯ ИЗМЕРЕНИЯ ЕМКОСТИ КОНДЕНСАТОРОВ

Измеритель ёмкости

Цифровой измеритель ёмкости.
В электронике довольно часто приходится измерять ёмкость конденсаторов. Особенно это необходимо в импульсных устройствах, где ёмкость довольно высоковольтных конденсаторов может уменьшатся в несколько раз. Также сильно критична ёмкость корректирующих конденсаторов в операционных усилителях. Ну и конечно электролитические конденсаторы, изменяющие свою ёмкость из-за высыхания электролита. Вот для этих целей и необходим такой приборчик.
Пришел в картонной коробочке, правда, почтовым службам удалось сделать из нее лепёшку. Прибор не пострадал. Корпус у него довольно прочный и данное испытание прошёл. Кстати о доставке. Пришёл от Tmart.com очень быстро, правда из шведского филиала.

Это сама коробочка — отреставрирована.

Комплектация прибора.

Внешне выглядит неплохо. Габариты 140*70*30 мм.


Не задней стенке откидной упор для вертикальной установки.

Прибор во включенном состоянии.

С режимом подсветки.

Вес измерителя с батарейкой чуть больше 183 грамм.

Инструкция только на китайском. Привожу назначение некоторых органов управления.

1-Кнопка памяти. При нажатии запоминает последнее измерение.

2- Регулятор установки нуля.

3- Кнопка подсветки.

4-Гнездо для измерения конденсаторов большой ёмкости.

Защищено предохранителем. Но для безопасности прибора всё равно необходимо разряжать конденсаторы перед измерением.

Это внутреннее устройство прибора.

Принцип работы его основан на измерении энергии, накапливаемой в электрическом поле конденсатора.

Для повышения точности измерения частота возбуждающего напряжения на первых диапазонах равна 800 Гц. На диапазоне 20 мкФ снижается до 80 Гц.

На последних диапазонах снижается до 8 Гц.

Измеряет ёмкости от 5 пФ до 20000 мкФ.

Кусочек инструкции с диапазонами и точностью.


Была произведена поверка прибора на точность.

В качестве эталона был использован поверенный цифровой комбинированный прибор ЦК4800. Класс точности 0,2 при измерении ёмкости.


Вот полученные данные на первых семи диапазонах:





Как видим, измеритель ёмкости обладает очень неплохой точностью.

Из минусов -слабоваты контакты подключения батареи.

Иногда пропадает питание. Лечится установкой под контакты губчатых резинок.

Ну а в общем, покупкой доволен.

mysku.ru

Измеритель ёмкости конденсаторов

При ремонте радиоаппаратуры, часто приходится сталкиваться с высохшей емкостью и тогда на помощь приходить схема измерителя С

Тот, кто занимается ремонтом бытовой или промышленной радиоаппаратуры, знает, что исправность конденсаторов удобно проверять без их демонтажа. Однако многие измерители емкости конденсаторов такой возможности не предоставляют. При проектировании же нового измерителя решалась задача создания прибора с широким диапазоном, линейной шкалой и прямым отсчетом, чтобы можно было пользоваться им, как лабораторным.

Помимо этого, прибор должен быть диагностическим, т. е. способным проверять и конденсаторы, зашунтированные р-n переходами полупроводниковых приборов и сопротивлениями резисторов.

Принцип работы прибора таков. На вход дифференциатора, в котором проверяемый конденсатор используется в качестве дифференцирующего, подается напряжение треугольной формы. При этом на его выходе получается меандр с амплитудой, пропорциональной емкости этого конденсатора. Далее детектор выделяет амплитудное значение меандра и выдает постоянное напряжение на измерительную головку.

Амплитуда измерительного напряжения на щупах прибора примерно 50 мВ, что недостаточно для открывания р-n переходов полупроводниковых приборов, поэтому они не оказывают своего шунтирующего действия.

Прибор имеет два переключателя. Переключатель пределов «Шкала» с пятью положениями: 10 мкФ, 1 мкФ, 0,1 мкФ, 0,01 мкФ, 1000 пФ. Переключателем «Множитель» (Х1000, Х100, Х10, Х1) меняется частота измерения. Таким образом, прибор имеет восемь поддиапазонов измерения емкости от 10000 мкФ до 1000 пФ, что практически достаточно в большинстве случаев.

Генератор треугольных колебаний собран на ОУ микросхемы DA1.1, DA1.2, DA1.4 (рис. 1). Один из них, DA1.1, работает в режиме компаратора и формирует сигнал прямоугольной формы, который поступает на вход интегратора DA1.2. Интегратор преобразует прямоугольные колебания в треугольные. Частота генератора определяется элементами R4, С1—С4. В цепи обратной связи генератора стоит инвертор на ОУ DA1.4, который обеспечивает автоколебательный режим. Переключателем SA1 можно устанавливать одну из частот измерения (множитель): 1 Гц (Х1000), 10 Гц(х100), 100 Гц(х10), 1 кГц(х1).

 

Скачать схему

Рис. 1

ОУ DA2.1 — повторитель напряжения, на его выходе сигнал треугольной формы амплитудой около 50 мВ, который и используется для создания измерительного тока через проверяемый конденсатор Сх.

Так как емкость конденсатора измеряется в плате, на нем может находиться остаточное напряжение, поэтому для исключения повреждения измерителя параллельно его щупам подключены два встречно-параллельных диода моста VD1.

ОУ DA2.2 работает как дифференциатор и выполняет роль преобразователя ток — напряжение. Его выходное напряжение: Uвых=(R12…R16)•Iвх=(R12…R16)Cх•dU/dt. Например, при измерении емкости 100 мкФ на частоте 100 Гц получается: Iвх=Сх•dU/dt=100•100 мВ/5 мс=2мА, Uвых= R16•Iвх=1 кОм•мА=2 В.

Элементы R11, С5—С9 необходимы для устойчивой работы дифференциатора. Конденсаторы устраняют колебательные процессы на фронтах меандра, которые делают невозможным точное измерение его амплитуды. В результате на выходе DA2.2 получается меандр с плавными фронтами и амплитудой, пропорциональной измеряемой емкости. Резистор R11 также ограничивает входной ток при замкнутых щупах или при пробитом конденсаторе. Для входной цепи измерителя должно выполняться неравенство: (3…5)СхR11<1/(2f).

Если это неравенство не выполнено, то за половину периода ток Iвх не достигает установившегося значения, а меандр — соответствующей амплитуды, и возникает погрешность в измерении. Например, в измерителе, описанном в [1], при измерении емкости 1000 мкФ на частоте 1 Гц постоянная времени определяется как Cх•R25=1000 мкФ•910 Ом=0,91 с. Половина же периода колебаний Т/2 составляет лишь 0,5 с, поэтому на данной шкале измерения окажутся заметно нелинейными.

Синхронный детектор состоит из ключа на полевом транзисторе VT1, узла управления ключом на ОУ DA1.3 и накопительного конденсатора С10. ОУ DA1.2 выдает управляющий сигнал на ключ VT1 во время положительной полуволны меандра, когда его амплитуда установлена. Конденсатор С10 запоминает постоянное напряжение, выделенное детектором.

С конденсатора С10 напряжение, несущее информацию о величине емкости Сх, через повторитель DA2.3 подается на микроамперметр РА1. Конденсаторы С11, С12 — сглаживающие. С движка переменного резистора калибровки R22 снимается напряжение на цифровой вольтметр с пределом измерения 2 В.

Источник питания (рис. 2) выдает двухполярные напряжения ±9 В. Опорные напряжения образуют термостабильные стабилитроны VD5, VD6. Резисторами R25, R26 устанавливают необходимую величину выходного напряжения. Конструктивно источник питания объединен с измерительной частью прибора на общей монтажной плате.


Рис. 2

В приборе использованы переменные резисторы типа СПЗ-22 (R21, R22, R25, R26). Постоянные резисторы R12—R16 — типа С2-36 или С2-14 с допустимым отклонением ±1 %. Сопротивление R16 получено соединением последовательно нескольких подобранных резисторов. Сопротивления резисторов R12—R16 можно использовать и других типов, но их надо подобрать с помощью цифрового омметра (мультиметра). Остальные постоянные резисторы — любые с мощностью рассеяния 0,125 Вт. Конденсатор С10 — К53-1 А, конденсаторы С11—С16 — К50-16. Конденсаторы С1, С2 — К73-17 или другие металлопленочные, СЗ, С4 — КМ-5, КМ-6 или другие керамические с ТКЕ не хуже М750, их необходимо также подобрать с погрешностью не более 1 %. Остальные конденсаторы — любые.

Переключатели SA1, SA2 — П2Г-3 5П2Н. В конструкции допустимо применить транзистор КП303 (VT1) с буквенными индексами А, Б, В, Ж, И. Транзисторы VT2, VT3 стабилизаторов напряжения могут быть заменены другими маломощными кремниевыми транзисторами соответствующей структуры. Вместо ОУ К1401УД4 можно использовать К1401УД2А, но тогда на пределе «1000 пФ» возможно появление ошибки из-за смещения входа дифференциатора, создаваемого входным током DA2.2 на R16.

Трансформатор питания Т1 имеет габаритную мощность 1 Вт. Допустимо использовать трансформатор с двумя вторичными обмотками по 12 В, но тогда необходимо два выпрямительных моста.

Для настройки и отладки прибора потребуется осциллограф. Неплохо иметь частотомер для проверки частот генератора треугольных колебаний. Нужны будут и образцовые конденсаторы.

Прибор начинают настраивать с установки напряжений +9 В и -9 В с помощью резисторов R25, R26. После этого проверяют работу генератора треугольных колебаний (осциллограммы 1, 2, 3, 4 на рис. 3). При наличии частотомера измеряют частоту генератора при разных положениях переключателя SA1. Допустимо, если частоты отличаются от значений 1 Гц, 10 Гц, 100 Гц, 1 кГц, но между собой они должны отличаться точно в 10 раз, так как от этого зависит правильность показаний прибора на разных шкалах. Если частоты генератора не кратны десяти, то необходимой точности (с погрешностью 1 %) добиваются подбором конденсаторов, подключаемых параллельно конденсаторам С1—С4. Если емкости конденсаторов С1—С4 подобраны с необходимой точностью, можно обойтись без измерения частот.

Рис. 3

Далее проверяют работу ОУ DA1.3 (осциллограммы 5, 6). После этого устанавливают предел измерения «10 мкФ», множитель — в положение «Х1» и подключают образцовый конденсатор емкостью 10 мкФ. На выходе дифференциатора должны быть прямоугольные, но с затянутыми, сглаженными фронтами колебания амплитудой около 2 В (осциллограмма 7). Резистором R21 выставляют показания прибора — отклонение стрелки на полную шкалу. Цифровой вольтметр (на пределе 2 В) подключают к гнездам XS3, XS4 и резистором R22 выставляют показание 1000 мВ. Если конденсаторы С1 — С4 и резисторы R12 — R16 точно подобраны, то показания прибора будут кратными и на других шкалах, что можно проверить с помощью образцовых конденсаторов.

Измерение емкости конденсатора, впаянного в плату с другими элементами, обычно получается достаточно точным на пределах 0,1 — 10 000 мкФ, за исключением случаев, когда конденсатор зашунтирован низкоомной резистивной цепью. Так как его эквивалентное сопротивление зависит от частоты Хс=1/wС, то для уменьшения шунтирующего действия других элементов устройства необходимо увеличивать частоту измерения с уменьшением емкости измеряемых конденсаторов. Если при измерении конденсаторов емкостью 10 000 мкФ, 1000 мкФ, 100 мкФ, 10 мкФ использовать соответственно частоты 1 Гц, 10 Гц, 100 Гц, 1 кГц, то шунтирующее действие резисторов скажется на показании прибора при параллельно включенном резисторе сопротивлением 300 Ом (ошибка около 4 %) и меньше. При измерении конденсаторов емкостью 0,1 и 1 мкФ на частоте 1 кГц ошибка в 4 % будет из-за влияния параллельно включенного резистора уже сопротивлением 30 и 3 кОм соответственно.

На пределах 0,01 мкФ и 1000 пФ конденсаторы целесообразно проверять все-таки с отключением шунтирующих цепей, так как измерительный ток мал (2 мкА, 200 нА). Стоит, однако, напомнить, что надежность конденсаторов небольшой емкости заметно выше благодаря конструкции и более высокому допустимому напряжению.

Иногда, например, при измерении некоторых конденсаторов с оксидным диэлектриком (К50-6 и т. п.) емкостью от 1 мкФ до 10 мкФ на частоте 1 кГц появляется погрешность, связанная, по всей видимости, с собственной индуктивностью конденсатора и потерями в его диэлектрике; показания прибора оказываются меньшими. Поэтому бывает целесообразно производить измерения на более низкой частоте (например, в нашем случае на частоте 100 Гц), хотя при этом шунтирующие свойства параллельных резисторов будут сказываться уже при большем их сопротивлении.

ЛИТЕРАТУРА

1. Кучин С. Прибор для измерения емкости. — Радио, 1993, № 6, с. 21 — 23.
2. Болгов А. Испытатель оксидных конденсаторов. — Радио, 1989, № 6, с. 44.

РАДИО №4, 1998

shemu.ru

Измеритель емкости конденсаторов своими руками

Измеритель емкости конденсаторов своими руками

Измеритель емкости конденсаторов своими руками — ниже представлена схема и описание как не прилагая больших усилий можно самостоятельно изготовить прибор для тестирования емкости конденсаторов. Такое устройство очень может пригодится при покупке емкостей на радиоэлектронном рынке. С его помощью без проблем выявляется некачественный или бракованный элемент накопления электрического заряда. Принципиальная схема данного ESRа, как его обычно называю большинство электронщиков, ничего сложного из себя не представляет и собрать такой аппарат может даже начинающий радиолюбитель.

Причем измеритель емкости конденсаторов не предполагает для его сборки длительного времени и больших денежных затрат, на изготовление пробника эквивалентного последовательного сопротивления уходит буквально два-три часа. Также не обязательно бежать в магазин радиотоваров — наверняка у любого радиолюбителя найдутся неиспользованные детали подходящие для этой конструкции. Все, что вам потребуется для повторения данной схемы — это мультиметр практически любой модели, только желательно, что бы был цифровой и с десяток деталей. Каких то переделок или модернизации цифрового тестера производить не нужно, все что необходимо с ним сделать — это припаять выводы деталей к необходимым площадкам на его плате.

Принципиальная схема устройства ESR:

Перечень элементов необходимых для сборки измерителя:

Один из главных компонентов прибора — это трансформатор, который должен иметь соотношением витков 11\1. Ферритовый кольцевой сердечник М2000НМ1-36 К10х6х3, который нужно предварительно обмотать изолирующим материалом. Затем намотать первичную обмотку на него, располагая витки по принципу — виток к витку, при этом заполняя всю окружность. Вторичную обмотку также необходимо выполнять с равномерным распределением по всему периметру. Примерное количество витков в первичной обмотки для кольца К10х6х3 будет 60-90 витков, а вторичка должна быть в одиннадцать раз меньше.

Диод D1 использовать можно практически любой кремневый с обратным напряжением не менее 40v, если вам не особо нужна супер точность в измерениях, то вполне подойдет КА220. Для более точного определения емкости придется поставить диод с небольшим падением напряжения в варианте прямого включения — Шоттки. Защитный супрессорный диод D2 должен быть рассчитан на обратное напряжение от 28v до 38v. Транзистор маломощный кремневый p-n-p проводимости: например КТ361 или его аналог.

Измерение величины ЭПС выполнять в диапазоне напряжения 20v. Во время подключении коннектора внешнего измерителя, ESR-приставка к мультиметру сразу же переходит в режим работы тестирования емкости. При этом будет визуально отображено на приборе показание около 35v в диапазоне проверки 200v и 1000v (это в зависимости от использования супрессорного диода). В случае исследования емкости на 20 вольтах, показание будет отображено как «выход за границу измерения». Когда коннектор внешнего измерителя отсоединяется, то и ЭПС-приставка моментально переключается на режим работы как обыкновенного мультиметра.

Заключение

Принцип работы устройства — для начала работы прибора нужно включить в сеть адаптер, при этом происходит включение измерителя ЭПС, когда отключили ESR, то мультиметр автоматически переходит в режим выполнения штатных функций. Чтобы сделать калибровку аппарата нужно подобрать постоянный резистор, так чтобы соответствовало шкале. Для наглядности картина ниже:

При замыкании щупов на шкале мультиметра будет отображено 0.00- 0.01, это показание означает погрешность прибора в диапазоне измерения до 1 Ом.

usilitelstabo.ru

Цифровой измеритель ёмкости

С помощью данного измерителя ёмкости можно легко измерить любую ёмкость от единиц пФ до сотен мкФ. Существует несколько методов измерения емкости. В данном проекте используется интеграционный метод.

 

Главное преимущество использования этого метода в том, что измерение основано на измерении времени, что может быть выполнено на МК довольно точно. Этот метод очень подходит для самодельного измерителя ёмкости, к тому же он легко реализуем на микроконтроллере.

Принцип работы измерителя ёмкости

Явления, происходящие при изменении состояния схемы называются переходными процессами. Это одно из фундаментальных понятий цифровых схем. Когда ключ на рисунке 1 разомкнут, конденсатор заряжается через резистор R, и напряжение на нём изменятся как показано на рисунке 1b. Соотношение определяющее напряжение на конденсаторе имеет вид:

Величины выражены в СИ единицах, t секунды, R омы, C фарады. Время за которое напряжение на конденсаторе достигнет значения VC1 , приближенно выражается следующей формулой:

Из этой формулы следует, что время t1 пропорционально емкости конденсатора. Следовательно, ёмкость может быть вычислена из времени зарядки конденсатора.

Схема

Для измерения времени зарядки, достаточно компаратора и таймера микроконтроллера, и микросхемы цифровой логики. Вполне разумно использовать микроконтроллер AT90S2313 (современный аналог — ATtiny2313). Выход компаратора используется как триггер TC1. Пороговое напряжение устанавливается резисторным делителем. Время зарядки не зависит от напряжения питания. Время зарядки определяется формулой 2, следовательно оно не зависит от напряжения питания т.к. соотношение в формуле VC1/E определяется только коэффициентом делителя. Конечно, вовремяизмерениянапряжениепитаниядолжнобытьпостоянно.

Формула 2 выражает время зарядки конденсатора от 0 вольт. Однако с напряжением близким к нулю сложно работать из-за следующих причин:

  • Напряжение не падает до 0 Вольт. Для полной разрядки конденсатора необходимо время. Это приведет к увеличению времен иизмерения.
  • Необходимо время между стартом зарядки и запуском таймера. Это вызовет погрешность измерения. Для AVRэто не критично т.к. на это необходим всего один такт.
  • Утечка тока на аналоговом входе. Согласно даташиту AVR, утечка тока возрастает при напряжении на входе близком к нулю вольт.

Для предотвращения данных сложностей использовано два пороговых напряжения VC1(0.17 Vcc) и VC2(0.5 Vcc). Поверхность печатной платы должна быть чистой для минимизации токов утечки. Необходимое напряжение питания микроконтроллера обеспечивается DC-DCпреобразователем,работающего от 1.5VAA батарейки. Вместо DC-DC преобразователя, желательно использовать 9V батарейку и преобразователь 78L05, желательно также не выключать BOD, иначе могут возникнуть проблемы с EEPROM.

 

Калибровка

При первом включении устройства, на семисегментных индикаторах загорится значение ёмкости в несколько пФ (паразитная ёмкость). Необходимо провести калибровку устройства. Для этого необходимо два конденсатора 1nF и 100nF сдопуском ±1%.

Для калибровки нижнего диапазона: С помощью кнопки SW1. Затем, соедините pin #1 и pin #3 на разъёме P1, вставьте конденсатор 1nF и нажмите SW1.

Для калибровки верхнего диапазона: Замкните pin #4 и #6 разъёма P1, вставьте конденсатор на 100nFи нажмите SW1.

Надпись «E4» при включении означает, что калибровочное значение в EEPROM не найдено.

Использование

Автоматическое определениедиапазона

Зарядка начинается через резистор 3.3М. Если напряжение на конденсаторе не достигнет 0.5 Vccменее чем за 130 mS (>57nF), происходит разрядка конденсатора и новая зарядка, но уже через резистор 3.3кОм. Если напряжение на конденсаторе не достигает 0.5 Vccза 1 секунду (>440µF),надпись «E2». Когда время замерено, происходит вычисление и отображение ёмкости. Последний сегмент отображает диапазон измерения (pF, nF, µF).

Зажим

В качестве зажима можно использовать часть какого-нибудь сокета. При измерении малых ёмкостей (единицы пикофарад) использование длинных проводов нежелательно.

 

Схема Elm-Chan`а, http://elm-chan.org/works/cmc/report.html — описание на английском.

Спасибо, htscooter! Он прислал печатную плату в SprintLayout 5.0 и фотки.

Спасибо, maxim, за прошивку для ATtiny2313.

 

radioded.ru

Измеритель емкости | RigExpert

Обнаружив в интернете статью Digital Capacitance Meter, я захотел собрать этот измеритель. Однако под рукой не оказалось микроконтроллера AT90S2313 и светодиодных индикаторов с общим анодом. Зато были ATMEGA16 в DIP-корпусе и четырехразрядный семисегментный жидкокристаллический индикатор. Выводов микроконтроллера как раз хватало на то, чтобы подключить его к ЖКИ напрямую. Таким образом, измеритель упростился всего до одной микросхемы (на самом деле, есть и вторая – стабилизатор напряжения), одного транзистора, диода, горстки резисторов-конденсаторов, трех разъемов и кнопки.Прибор получился компактный и удобный в использовании. Теперь у меня нет вопросов о том, как измерить емкость конденсатора. Особенно это важно для SMD-конденсаторов с емкостями в несколько пикофарад (и даже в доли пикофарада), которые я всегда проверяю перед тем, как в паять в какую-нибудь плату. Сейчас выпускается множество настольных и портативных измерителей, производители которых заявляют о нижнем пределе измерений емкости в 0.1 пФ и достаточной точности измерений таких малых емкостей. Однако во многих из них измерения проводятся на довольно низкой частоте (единицы килогерц). Спрашивается, можно ли получить приемлемую точность измерений в таких условиях (даже если параллельно измеряемому подключить конденсатор большей емкости)? Кроме того, в интернете можно найти довольно много клонов схемы RLC-метра на микроконтолллере и операционном усилителе (той самой, что с электромагнитным реле и с одно- или двухстрочным ЖКИ). Однако такими приборами малые емкости померить «по-человечески» не удается. В отличие от многих других, этот измеритель специально спроектирован для измерения малых значений емкости.

Что касается измерения малых индуктивностей (единицы наногенри), то я для этого с успехом использую анализатор RigExpert AA-230, который выпускает наша компания.

Фотография  измерителя емкости:

Параметры измерителя емкости

Диапазон измерения: от 1 пФ до примерно 470 мкФ.
Пределы измерения: автоматическое переключение пределов – 0…56 нФ (нижний предел) и 56 нФ … 470 мкФ (верхний предел).
Индикация: три значащие цифры (две цифры для емкостей меньших, чем 10 пФ).
Управление: единственная кнопка для установки «нуля» и калибровки.
Калибровка: однократная, при помощи двух образцовых конденсаторов, 100 пФ и 100 нФ.

Схема

Большая часть выводов микроконтроллера подключена к ЖКИ. К некоторым из них также подключен разъем для внутрисхемного программирования микроконтроллера (ByteBlaster). Четыре вывода задействованы в схеме измерения емкости, включая входы компаратора AIN0 и AIN1, выход управления пределами измерения (при помощи транзистора) и выход выбора порогового напряжения. К единственному оставшемуся выводу микроконтроллера подключена кнопка.

Стабилизатор напряжения +5 В собран по традиционной схеме.

Индикатор – семисегментный, на 4 знака, с прямым подключением сегментов (т.е. не-мультиплексный). К сожалению, на ЖКИ не было маркировки. Такую же цоколевку и размеры (51×23 мм) имеют индикаторы многих фирм, например, AND и Varitronix.

Схема приведена ниже (на схеме не показан диод для защиты от «переполюсовки», через него рекомендуется подключить разъем питания):


(нажмите, чтобы увеличить)

Программа микроконтроллера

Поскольку ATMEGA16 – из серии «MEGA», а не из серии «tiny», особого смысла писать ассемблерную программу нет смысла. На языке Си удается сделать ее гораздо быстрей и проще, а приличный объем flash-памяти микроконтроллера позволяет пользоваться встроенной библиотекой функций с плавающей точкой при расчете емкости.

Микроконтроллер проводит измерение емкости за два шага. В первую очередь, определяется время заряда конденсатора через резистор сопротивлением 3.3 МОм (нижний предел). Если необходимое напряжение не достигнуто в течение 0.15 секунд (что соответствует емкости около 56 пФ), заряд конденсатора повторяется через резистор 3.3 кОм (верхний предел измерения).

При этом микроконтроллер сперва разряжает конденсатор через резистор сопротивлением 100 Ом, а затем заряжает его до напряжения 0.17 В. Только после этого замеряется время заряда до напряжения 2.5 В (половина напряжения питания). После этого, цикл измерения повторяется.

При выводе результата  на выводы ЖКИ подается напряжение переменной полярности (относительно его общего провода) с частотой около 78 Гц. Достаточно высокая частота полностью устраняет мерцание индикатора.

Использовался компилятор WinAVR (AVR-GCC) и программатор AVRISP mkII. Микроконтроллер можно запрограммировать и при помощи AVReAl, но придется подобрать параметры командной строки.

Конструкция

Измеритель собран на отрезке макетной платы. Как микроконтроллер, так и ЖКИ имеют 40-выводный корпус с шагом выводов 2.54 мм и разным расстоянием между рядами. Благодаря этому можно установить их друг под другом:

При этом уменьшается размер платы и упрощается монтаж, поскольку большинство выводов соединено между собой короткими проводниками. Для того, чтобы появилась возможность использовать для этого провод без изоляции, контактные площадки между рядами выводов можно удалить:

На той же стороне платы, что и микроконтроллер и ЖКИ, размещены транзистор, разъем программирования и разъем питания. Здесь же находится разъем для подключения измеряемой емкости (отрезок панельки для микросхем) и контакты для подключения емкостей в SMD-корпусе (выполнены из изогнутых отрезков провода без изоляции). Чем меньше длина соединительных проводов в цепях измерения, тем выше стабильность показаний, особенно, для емкостей в единицы пикофарад. По этой же причине все резисторы и конденсаторы – в SMD-исполнении.

Кварцевый резонатор, микросхема стабилизатора, диод и резисторы-конденсаторы установлены на стороне монтажа:

При помощи четырех стоек плата закреплена на основании, снабженном резиновыми ножками.

Работа с измерителем емкости

Для того, чтобы определить емкость неизвестного конденсатора, нужно просто подключить его к измерителю. Предел измерений будет выбран автоматически, отображая «p» – пикофарады, «n» – нанофарады и «μ» – микрофарады. Также, будет меняться положение десятичной точки. При подключении слишком большой емкости на ЖКИ будет выведено «999μ».

Нижний и верхний пределы измерения переключаются при значении емкости около 56 нФ. При подключении такой емкости возможны незначительные скачки показаний, поскольку два разных предела измерений калибруются при помощи разных образцовых конденсаторов.

Калибровка и установка «нуля»

Если при включении питания держать кнопку нажатой, измеритель перейдет в режим калибровки. При этом на ЖКИ загорится надпись «CAL». Затем, отобразится значение «100p». При этом нужно подключить к измерителю емкость 100 пФ и нажать кнопку. Далее появится значение «100n» – нужно подключить конденсатор емкостью 100 нФ и еще раз нажать кнопку. После этого измеритель перейдет в обычный режим.

Установка «нуля» происходит при нажатии кнопки в режиме измерения (на ЖКИ отобразится значение «000»). Она необходима для того, чтобы скомпенсировать емкость монтажа (несколько пикофарад).

Файлы

Схема
Программа

Денис Нечитайлов, UU9JDR
05.02.2008
P.S. от 7.11.2009:

Ссылки по теме:
Цифровой измеритель ёмкости – японская статья, переведенная на русский язык
Цифровой измеритель ёмкости elm-chan`а – обсуждение схемы
Измеритель ёмкости – конструкция на PIC-контроллере
Измеритель емкости и частотомер на AVR микроконтроллере
P.S. от 18.11.2009:

Меня не раз спрашивали, как переделеть этот измеритель для подключения к светодиодным индикаторам. Отвечаю: Светодиодные индикаторы, как и ЖКИ с контроллером (а также черно-белые ЖКИ от всяческих телефонов) не обеспечивают того качества «картинки», которое меня устроило бы. Поэтому предлагаю не мучаться, а сходить на ближайший радиобазар или в ближайшую фирму, торгующую электронными компонентами, и купить такой же индикатор, какой я поставил в свой измеритель.
P.S. от 29.03.2010:

Ссылки по теме:
Измеритель емкости конденсаторов от 1пФ до 470 мкФ – статья на сайте Easy Electronics с печатной платой и расстановкой фьюзов для программатора AVRDUDE (игнорируем замечание узколобых юзеров о якобы невозможности компенсации емкости разъема, а также очередное предложение поставить другой индикатор).
На этой же странице – схема измерителя емкости с увеличенным пределом измерений, программа. Другой ЖКИ.

rigexpert.com

Схема. Измеритель ёмкости и ЭПС конденсаторов — приставка к мультиметру

      В наше время практически у каждого радиолюбителя имеется цифровой мультиметр, но далеко не в каждой модели имеется функция измерения ёмкости конденсаторов. Как при ремонте радиоаппаратуры, так и при оценке пригодности повторно используемых конденсаторов очень полезно измерение ёмкости и эквивалентного последовательного сопротивления (ЭПС) “подозрительных” конденсаторов.

      Основными критериями при разработке схемы измерителя емкости являлись простота схемы, дешевизна и доступность элементов, простота налаживания и небольшие габариты, Можно сказать, что это “конструкция выходного дня”, которая может быть собрана за несколько часов.
      В основе работы данного прибора при измерении ёмкости лежит принцип зарядки конденсатора неизвестной ёмкости до определённого напряжения через резистор известного сопротивления. Продолжительность этого процесса прямо пропорциональна ёмкости конденсатора.

      Принцип измерения ЭПС заключается в следующем: разряженный конденсатор подключается к источнику напряжения через резистор известного сопротивления, затем через небольшие промежутки времени микроконтроллер дважды измеряет напряжение на заряжаемом конденсаторе и вычисляет его ЭПС.
      С уменьшением ёмкости повышается погрешность измерения ЭПС. Поэтому это измерение программно отключается при ёмкости конденсатора менее 2 мкФ.

Основные технические характеристики
Интервал измерения ёмкости, мкФ …………………………………….0,02…10000
Погрешность измерения ёмкости, не более, % ……………………..5
Интервал измерения ЭПС, Ом …………………………………………..0…50
Дискретность измерения ЭПС, Ом ……………………………………..0,2
Погрешность измерения ЭПС, Ом ………………………………………±0,45
Максимальное напряжение на проверяемом конденсаторе, В …..5
Потребляемый ток, мА
в режиме покоя……………………………………………………………..5,5
в режиме измерения ………………………………………………………11

      Схема измерителя емкости показана на рис. 1. Основа устройства — микроконтроллер PIC12F683 (DD1). Он работает на тактовой частоте 4 МГц от внутреннего RC-генератора. После включения микроконтроллер входит в режим измерения ёмкости, и тогда конфигурация портов ввода/вывода следующая: GP0 и GP4 работают как выходы и управляют зарядкой конденсатора через резисторы R1 и R3 соответственно; GP1 — инвертирующий вход встроенного в микроконтроллер компаратора, при этом его неинвертирующий вход подключён к внутреннему источнику образцового напряжения, определяющему порог напряжения, до достижения которого осуществляется подсчёт времени зарядки конденсатора; GP3 — вход сигнала от кнопки SB1 переключения в режим измерения ЭПС; GP5 —выход управления индикацией поддиапазона ёмкости и, наконец, ССР1 — выход ШИ сигнала, среднее напряжение которого пропорционально измеряемому параметру. Расчётное значение периода ШИ сигнала — 4096 мкс.

      К выходным гнёздам Х2 и ХЗ подключают щупы цифрового мультиметра, включённого в режим измерения постоянного напряжения на пределе 2000 мВ. Фильтрации ШИ напряжения на выходе нет, поскольку все цифровые мультиметры в режиме измерения постоянного напряжения имеют на входе АЦП ФНЧ с низкой частотой среза.
      Поддиапазоны измеряемой ёмкости индицируют светодиоды HL1, HL2 зелёного цвета свечения и HL3, HL4 красного цвета. При измерении ёмкости менее 1 мкФ, а также при измерении ЭПС светодиоды погашены. Если ёмкость больше 1 мкФ, но меньше 10мкФ, горят только красные светодиоды. Если ёмкость больше 10мкФ, но меньше 100мкФ, горят они все. Если ёмкость больше 100 мкФ, но меньше 1000 мкФ, горят только зелёные светодиоды. Наконец, если ёмкость больше 1000 мкФ, но не более 10000 мкФ, красные и зелёные свет од йоды мигают. В этом поддиапазоне максимальное значение на дисплее мультиметра равно “1000”, в остальных — “999”.

      Если измеряемая ёмкость больше 10000 мкФ, светодиоды остаются в состоянии поочерёдного мигания, а дисплей мультиметра показывает пороговое значение, о котором написано ниже.
      Разрядка измеряемого конденсатора происходит через резисторы R1 и R2, при этом порт GP1 также переключается в режим выхода. Суммарное время между циклами зарядка/разрядка в последнем поддиапазоне измерения достигает 10 с, в других поддиапазонах оно меньше.

      При нажатии на кнопку SB1 прибор на 5 с переходит в режим измерения ЭПС, затем возвращается в режим измерения ёмкости. В режиме измерения ЭПС конфигурация портов ввода/вывода микроконтроллера следующая: GP0 и GP1 синхронно управляют зарядкой конденсатора через резисторы R1 и R2; GP4 — вход встроенного аналого-цифрового преобразователя; GP5 и ССР1 выполняют те же функции, что и в режиме измерения ёмкости. Во время измерения ЭПС светодиоды не горят, индикация выводится в десятых долях ома с дискретностью 0,2 Ома. Это связано с тем, что разрешающая способность встроенного АЦП микроконтроллера составляет около 5 мВ, а ток зарядки конденсатора в этом режиме равен 25 мА. Если измеренное ЭПС конденсатора превышает 50 Ом, то на дисплее мультиметра будет пороговое значение.

      Измеритель питается от батареи 9 В типоразмера 6F22, которую подключают к разъёму Х1. Напряжение батареи подаётся на микросхему стабилизатора 78L05 (DA1) с выходным напряжением 5 В. Конденсаторы С1 и С2 обеспечивают устойчивость её работы. Если есть возможность, взамен микросхемы 78L05 лучше применить LP2950CZ-5.0 — это уменьшит потребляемый ток до 1,5 мА в режиме покоя и до 7,5 мА в режиме измерения, Диоды VD1 и VD2 и стабилитрон VD3 служат для защиты линий входа/выхода микроконтроллера от выхода из строя при подключении заряженного конденсатора, При выборе стабилитрона VD3 надо учесть, что при напряжении 5 В через него не должен течь ток более 0,5мА, Например, можно применить BZX55C5V6. Диоды VD1 и VD2 — любые кремниевые импульсные, например, из серий КД521, КД522. Но диоды 1N4148 выбраны из-за большего максимально допустимого импульсного прямого тока, Диод VD4 может быть заменён перемычкой, если исключена неправильная полярность подключения батареи питания к разъёму Х1.

      Ввиду простоты прибора печатная плата для него не разработана, он собран на макетной плате размерами 26×40 мм. Микроконтроллер устанавливают в панель. При программировании разрешение сброса микроконтроллера необходимо отключить — не должна стоять отметка в окне “MCLR Enable”, поскольку этот вывод используется в качестве сигнального входа. Светодиоды HL1—HL4 — любые разного цвета свечения с заметной яркостью притоке 5…6 мА, в экземпляре автора использованы DFL-3014RC и DFL-3014LGC диаметром 3 мм, Необходимое условие — цепь из четырёх последовательно соединённых светодиодов не должна светиться при подключении к источнику напряжением 5 В, поэтому применены четыре светодиода, хотя для индикации необходимы только два. Если яркость свечения светодиодов разного цвета заметно различается, её выравнивают подбором резисторов R8 и R9.

      Разъём Х1 — контактная колодка от батареи типоразмера 6F22. Гнёзда Х2 и ХЗ для подключения мультиметра взяты от разъёма питания материнской платы компьютера (рис. 2). Плюсовое гнездо Х2 не имеет особенностей. Минусовое гнездо ХЗ, совмещённое с выключателем питания SA1, — самодельная конструкция, показанная на рис. 3. Одна из двух пружинящих полос контакта удалена, рядом установлена изолирующая площадка из стеклотекстолита со стороной квадрата 3…4 мм. На ней закреплена согнутая пружинная проволока диаметром 0,5…6,6 мм, выполняющая функцию выключателя питания SA1. Когда минусовый щуп мультиметра вставлен в гнездо ХЗ, он касается пружинной проволоки, в результате чего замыкается цепь минусового провода питания измерителя. Разумеется, при повторении конструкции можно применить любой миниатюрный выключатель питания SA1 промышленного изготовления и минусовое гнездо, такое, как Х2.

      Подстроечный резистор R7 — СПЗ-19а или аналогичный миниатюрный. Резистор R3 определяет ток зарядки для интервала измеряемых ёмкостей до 15 мкФ, его лучше взять с допуском 1 % или отобрать с помощью цифрового омметра. Резистор R1, определяющий ток зарядки для ёмкостей более 15 мкФ, можно отобрать из номинала 1 кОм 5 %, его расчётное сопротивление— 980 Ом, но вполне допустимо поставить 1 кОм 1 % без отбора, поскольку такая ёмкость характерна для оксидных конденсаторов, а для них точность измерения их ёмкости 5 % вполне достаточна.

      Калибровка прибора может быть выполнена двумя способами.
      Первый способ — подключить к измерителю один или несколько конденсаторов суммарной ёмкостью более 10000 мкФ и движком подстроечного резистора R7 установить на дисплее мультиметра пороговое значение “1023”, Также можно подсоединить ко входу измерителя цепь из резистора 62…100 Ом и конденсатора 50…1000 мкФ, нажать на кнопку SB1 и аналогично установить то же самое пороговое значение на дисплее, Поскольку время нахождения измерителя в этом режиме всего 5 с, эту операцию, возможно, придётся повторить несколько раз.

      Погрешность калибровки может составить около 3 % в наихудшем случае, так как она складывается из погрешностей внутреннего генератора и отличий сопротивлений резисторов R1—R3 от расчётных значений. Заявленная производителем точность частоты внутреннего RC-генератора микроконтроллера DD1 — ±1 % при постоянной температуре 25° и ±2 % в интервале 0…85 °С.

      Второй способ — подключить к измерителю плёночный или керамический конденсатор с известной ёмкостью в пределах 4,7…9 мкФ и движком подстроечного резистора R7 установить значение его ёмкости на дисплее мультиметра. Предварительно необходимо измерить ёмкость этого конденсатора образцовым прибором с точностью не хуже 1 %. При калибровке по этому способу пороговое значение может незначительно отличаться от “1023”. Выбор способа калибровки не принципиален: разброс показаний нескольких экземпляров прибора, откалиброванных разными способами, не превысил 3 %, Разумеется, к измерителю должен подключаться только предварительно разряженный конденсатор. При измерении ёмкости оксидных конденсаторов необходимо соблюдать полярность подключения. Касание руками измерительных зажимов искажает показания.

Прилагаемые файлы:   van.zip

Ю. ВАНЮШИН, г. Уфа, Башкортостан
“Радио” №2 2013г.

Похожие статьи:
Измеритель мощности-приставка к цифровому мультимеру

radioelectronika.ru

Простые измерители емкости | Для начинающих


Простые измерители емкости


Многие современные и некоторые не очень современные мультиметры имеют функцию измерения емкости. Если же такого мультиметра нет, а есть только прибор, которым можно измерять сопротивление и ток, то несложные приспособления к нему позволят проверить работоспособность и узнать емкость неполярных и даже полярных конденсаторов емкостью от единиц или десятков пикофарад до сотен и тысяч микрофарад. О таких приставках и рвссказывает автор публикуемой статьи.


Вначале упомяну так называемый метод баллистического гальванометра, или, как его называют в просторечии, метод отскока стрелки. Под отскоком понимают кратковременное отклонение стрелки. Этот метод вовсе не требует дополнительных приспособлений и позволяет грубо оценить параметры конденсатора, сравнивая его с заведомо исправным. Для этого мультиметр включают на предел измерения сопротивления и щупами дотрагиваются до выводов предварительно разряженного конденсатора (рис. 1). Ток зарядки вызовет кратковременное отклонение стрелки, тем большее, чем больше емкость конденсатора. Пробитый конденсатор имеет сопротивление, близкое к нулевому, а конденсатор с оборванным выводом не вызовет никакого отклонения стрелки омметра.



На пределе «Омы» удается проверять конденсаторы емкостью в тысячи микрофарад. При проверке оксидных конденсаторов надо соблюдать полярность, предварительно определив, на каком из выводов мультиметра присутствует плюсовое напряжение (полярность выводов мультиметра в режиме измерения сопротивлений может и не совпадать с полярностью в режиме измерения токов или напряжений). На пределе «кОм х 1» можно проверять конденсаторы емкостью в сотни микрофарад, на пределе «кОм х 10» — в десятки микрофарад, на пределе «кОм х 100» — в единицы микрофарад и, наконец, на пределе «кОм х 1000» или «МОм» — в доли микрофарады. Но конденсаторы емкостью в сотые доли микрофарады и менее дают слишком малое отклонение стрелки, поэтому судить об их параметpax становится трудно.


На рис. 2 приведена схема измерения емкости с помощью понижающего трансформатора и диодного моста. Так удается измерять емкости от тысячи пикофарад до единиц микрофарад. Отклонение стрелки прибора здесь стабильное, поэтому считывать показания легче. Ток в цепи миллиамперметра РА1 пропорционален напряжению вторичной обмотки трансформатора, частоте тока и емкости конденсатора. При частоте сети 50 Гц, а это наш бытовой стандарт, и вторичном напряжении трансформатора 16 В, ток через конденсатор емкостью 1000 пФ будет около 5 мкА, через 0,01 мкФ — 50 мкА, через 0,1 мкФ — 0,5 мА и через 1 мкФ — 5 мА. Калибровать или проверять показания также можно с помощью заведомо исправных конденсаторов известной емкости.



Резистор R1 служит для ограничения тока до значения 0,1 А в случае короткого замыкания измерительной цепи. Большой погрешности в показания на указанных пределах измерений этот резистор не вносит. Трансформатор понижающий, лучше малогабаритный, подобный тем, что используют в маломощных блоках питания (сетевых адаптерах). На вторичной обмотке он должен обеспечивать переменное напряжение 12…20 В.


Измерить емкость конденсаторов от десятков до тысячи пикофарад позволит устройство, собранное по схеме на рис. 3. Прототипом предлагаемого измерителя послужила схема, предложенная в статье [1]. Фактически, это автогенератор с кварцевым резонатором. Схема возбуждения кварца выбрана иной, чем в прототипе. Сделано это по двум причинам: во-первых, чтобы уменьшить влияние паразитной проходной емкости транзистора между его базой и коллектором на работу генератора, во-вторых, чтобы ослабить вероятность возбуждения генератора на высших гармониках резонатора. Сам же принцип работы прибора прежний, поэтому полезно будет прочитать всю статью [1].



Работает устройство следующим образом. Когда частота колебательного контура L1C2 в цепи коллектора транзистора VT1 оказывается близкой к частоте основного резонанса кварцевого резонатора ZQ1, возбудившийся генератор потребляет минимальный ток. Омметр, который питает устройство энергией, уменьшение тока будет воспринимать как увеличение измеряемого сопротивления. Таким образом, с помощью омметра удается контролировать процесс настройки контура в резонанс конденсатором переменной емкости (КПЕ) С2. Частота генератора определяется резонансной частотой кварцевого резонатора, а емкость и индуктивность колебательного контура при резонансе взаимосвязаны в соответствии с формулой Томсона [2]: f = 1/2WLC. Изменяя индуктивность катушки контура, необходимо добиться, чтобы резонанс наблюдался при емкости КПЕ, близкой к максимальной. Контролируемые конденсаторы подключают параллельно КПЕ, при этом резонанс будет наблюдаться при другом положении ротора КПЕ. Его емкость уменьшится на величину искомой.


КПЕ надо оснастить шкалой, проградуированной в пикофарадах с помощью точных, заведомо исправных конденсаторов. В устройстве можно применить любой маломощный транзистор, способный генерировать на частоте кварцевого резонатора. При использовании р-п-р транзистора полярность питания меняют на противоположную. Конденсатор С1 следует подобрать максимально большой емкости, при которой еще возникает генерация на основной частоте кварцевого резонатора. В этом случае уменьшится вероятность того, чтс кварц будет возбуждаться на высших гармониках. КПЕ лучше использовать трехсекционный, с воздушным диэлектриком, от старых ламповых приемников. Емкость одной секции такого конденсатора изменяется примерно от 12 до 490 пФ. Если все три секции соединить параллельно, то с учетом паразитных емкостей получим КПЕ, изменяющий емкость примерно от 50 до 1500 пФ. Можно применить и двухсекционный конденсатор, соединив его секции параллельно. Максимальная емкость такого конденсатора составит около 1000 пФ. В качестве катушки индуктивности L1 использован дроссель ДПМ-2,4 индуктивностью 20 мкГн. Катушку можно изготовить и самостоятельно. Индуктивность однослойной цилиндрической катушки без магнитопровода определяют по следующей эмпирической формуле: L [мкГн] = DN2/(1000Nh/D+440), где D — диаметр катушки [мм]; N — число витков; h — шаг намотки [мм], а при намотке виток к витку это просто диаметр провода.


Функциональную схему омметра и особенности его подключения можно посмотреть в статье [3]. Желательно выбрать предел, на котором омметр развивает ток короткого замыкания порядка 1 …2 мА, и определить полярность выходного напряжения. При неправильной полярности подключения омметра устройство не заработает, хотя и не выйдет из строя. Измерить напряжение холостого хода, ток короткого замыкания омметра и определить его полярность на различных пределах измерения сопротивления можно с помощью другого прибора. С помощью описанной приставки можно измерять индуктивность катушек в пределах приблизительно 17…500 мкГн. Это при использовании кварцевого резонатора на частоту 1 МГц и КПЕ емкостью 50…1500пФ. Катушку для этого устройства делают сменной и калибруют прибор, используя эталонные индуктивности. Можно также использовать приставку как кварцевый калибратор.


Вместо устройства по схеме рис. 3 можно предложить менее громоздкое, в том отношении, что не потребуются КПЕ, кварц и катушка. Его схема показана на рис. 4. Назову эту приставку «Преобразователь емкости в активное сопротивление с питанием от омметра». Она представляет собой двухкаскадный УПТ на транзисторах VT1 и VT2 разной структуры и непосредственной связью между каскадами. Измеряемый конденсатор Сх включают в цепь положительной обратной связи с выхода на вход УПТ. При этом возникает релаксационная генерация и транзисторы часть времени остаются закрытыми. Этот промежуток времени пропорционален емкости конденсатора.



Пульсации выходного тока фильтрует блокировочный конденсатор С1. Усредненный ток, потребляемый устройством, при увеличении емкости конденсатора Сх становится меньше, и омметр воспринимает это как увеличение сопротивления. Устройство уже начинает реагировать на конденсатор емкостью 10 пФ, а при емкости 0,01 мкФ его сопротивление становится большим (сотни килоом). Если сопротивление резистора R2 уменьшить до 100 кОм, то интервал измеряемых емкостей составит 100 пФ…0,1 мкФ. Начальное сопротивление устройства — около 0,8 кОм. Здесь следует отметить, что оно нелинейное и зависит от протекающего тока. Поэтому на разных пределах измерения и с разными приборами показания будут различаться, и для проведения измерений необходимо сравнивать искомые показания с показаниями, даваемыми образцовыми конденсаторами.


С. Коваленко, г. Кстово Нижегородской обл. Радио 07-05.

Литература:

1. Пилтакян А. Простейшие измерители L и С:

Сб.: «В помощь радиолюбителю», вып. 58, с.61—65. — М.: ДОСААФ, 1977.

2. Поляков В. Теория: Понемногу — обо всем.

Расчет колебательных контуров. — Радио, 2000, № 7, с. 55, 56.

3. Поляков В. Радиоприемник с питанием от… мультиметра. — Радио, 2004, № 8, с. 58.

www.radiomexanik.spb.ru