Расчет фильтров для акустических систем – 404 — страница не найдена

Содержание

Расчёт корпуса и фильтров акустической системы

Конструирование акустических систем по готовым чертежам дело, конечно, увлекательное, но элемент творчества при этом, как ни крути, отсутствует. Вот если бы овладеть основными принципами построения АС, а затем все самому рассчитать и сделать из того, что есть под руками, — вот был бы класс! Это возможно, если взять несколько уроков у опытного мастера. Сегодня — первое занятие.

Все любители и специалисты, заинтересованные в достоверном воспроизведении звука, знают, что без хороших акустических систем не обойтись. Поэтому особенно озадачивают противоречия между различными взглядами на критерии качества АС. Ещё менее ясно, какие методы создания АС надежнее и приводят к приемлемым результатам.

Даже начального опыта прослушивания достаточно, чтобы заметить очень большую разницу между звучанием одной и той же музыки на разных моделях. При этом основной параметр — амплитудно-частотная характеристика (АЧХ) — почти всегда близок к идеалу, если верить данным фирм-производителей.

Большинство меломанов не может самостоятельно измерить АЧХ и приходит к выводу: проблема АЧХ практически решена, качество воспроизведения звука зависит от конструкции и материалов динамиков, корпусов, кроссоверов. Например: катушка без сердечника — хорошо, с сердечником — хуже. Или: корпус весом в 40 кг лучше, чем 20-килограммовый, при тех же габаритах и т.д.

Разумеется, оспаривать влияние динамиков, корпусов, элементов кроссовера, кабелей внутренней разводки, звукопоглотителей и прочих составляющих было бы ошибкой, но всё ли в порядке с АЧХ? Независимые измерения, например, в хорошо оснащённых лабораториях авторитетных зарубежных и отечественных аудиожурналов, не подтверждают оптимистических параметров, заявленных производителями.

На практике каждая модель АС имеет свою кривую АЧХ, разительно отличающуюся от других разновидностей колонок, причем это относится к любой ценовой группе. Наблюдаемая разница многократно превосходит порог заметности, известный из психоакустики, ее просто невозможно не услышать. И слушатели её, конечно, замечают как различие тембрального баланса при воспроизведении одних и тех же композиций разными АС. Идентифицировать искажения тембра с проблемами равномерности АЧХ нелегко, ведь перед глазами — ровные, будто по линейке нарисованные характеристики от изготовителя.

Не факт, что эти изумительные графики — обман. Просто для рекламы измерения производятся по методикам, обеспечивающим «благообразный» вид кривых. Например, при повышенной скорости сканирования рабочего диапазона в сочетании с высокой инерционностью, то есть усреднением пиков и провалов при регистрации зависимости звукового давления от частоты.

Производителей можно понять, в конце концов, все мы хотим выглядеть несколько лучше, чем на самом деле, и поэтому причёсываемся, умываемся и т.д. перед ответственными встречами.

Гораздо интереснее другое: почему одна АС с «плохой» АЧХ звучит хорошо, а другая, может быть, обладающая менее безобразной характеристикой, — гораздо хуже? Независимые, более «честные» измерения выявляют несовершенство передачи тембрального баланса из-за особенностей АЧХ, но не помогают интерпретировать, расшифровать смысл «перегибов» и дисбалансов характеристик, раскрыть связь между поведением кривой и конкретными особенностями звучания АС. Вот подходящее сравнение: кардиограмма ничего не говорит обычному человеку, тогда как врач-специалист способен прочитать по ней состояние пациента.

Наша сегодняшняя задача — научиться анализировать АЧХ. Начнём с самого общего вопроса. Почему, обладая всем необходимым, разработчики не создают идеальной, одинаково хорошо звучащей акустики. Ведь идеал, эталон — только один! Очевидно, что все колонки, близкие к нему, будут звучать очень похоже. Существует ряд общепризнанных методик обеспечения «ровной» АЧХ, и одна из основных — настройка АС в заглушенной, безэховой камере. Есть и другие, вроде бы логичные и адекватные методы, например, настройка по импульсным сигналам. Но работая по одинаковым алгоритмам, специалисты каждый раз получают разный результат. Вспомните откровения авторитетных зарубежных мастеров, опубликованные в аудиопрессе: «… обеспечив идеальную АЧХ в звукомерной камере, мы потом «портим» эту характеристику для получения приемлемого звучания в обычных условиях…». Не пора ли прекратить молиться на равномерность АЧХ с точки зрения некой общеизвестной методики измерения?

Ведь любой способ измерения в науке и технике неизбежно даёт целый комплекс разносортных ошибок. В нашем случае самые вредные ошибки — методические, то есть связанные с несовершенством самого подхода. Например, где располагать микрофон относительно АС в звуковой камере? На акустической оси? А где эта ось? Перед ВЧ-динамиком? А если он воспроизводит начиная с 8 кГц? Тогда, видимо, точнее мерить на оси СЧ-динамика? А если сместить микрофон на 5 см выше? Получим совсем другую АЧХ. На какую ориентироваться? И почему мы думаем, что ухо слушателя окажется именно там, где находился микрофон?

Кроме того, на НЧ и нижней середине АС активно взаимодействует с полом, влияние которого в безэховой камере отсутствует.

Об интеграции излучения АС с помещением прослушивания в данный момент даже и разговор не будем начинать. Это взаимодействие очень сильно влияет на звучание, но его конкретные проявления бесконечно разнообразны, поэтому не умещаются в «ложе» какой-либо математической модели, с достаточной точностью необходимой для действительно высокого качества воспроизведения.

Ещё интересный факт: в реальном помещении суммарная АЧХ двух АС стереопары, даже при сильном усреднении, сильно отличается от АЧХ одной АС. Традиционные методики настройки АС не учитывают этого важного обстоятельства. Это недопустимо, так как главные персоны в музыке — солисты — чаще всего локализуются в центре звуковой сцены, то есть — воспроизводятся обеими АС.

Можно сделать вывод: при таком обилии методических ошибок обычные способы контроля АЧХ дают неправильную характеристику для реально очень ровных АС (например, Audio Note, Magnepan и т.д.). С другой стороны, крайне подозрительно выглядят полученные по ненадёжным методикам слишком гладкие АЧХ. В этом случае ошибки измерений скомпенсированы специально сформированной характеристикой, которую разработчик обеспечивает, слепо доверяя не оправдавшим себя на практике способам измерений.

Меньше всего мне хотелось бы заменять веру в одни несовершенные принципы верой в другие, мои. Они тоже далеко не идеальны, в них присутствуют заметные методические ошибки, только менее грубые.

Залог прогресса — понимание недолговечности роли достигнутых знаний и умений, готовность воспринимать, в процессе практической работы и исследований, новые открытия. Надо уметь пересматривать подходы к достижению лучших результатов, если количественный рост позволяет совершить качественный скачок.

Итог работы зависит от методов и развития личности создателя АС. Известны превосходные изделия, рожденные в рамках традиционных подходов, при условии высочайшего класса и опыта разработчиков.

Моя цель — вооружить всех желающих достаточно эффективной методикой создания АС с приемлемым звучанием. Длинное вступление было необходимо для того, чтобы обратить ваше внимание на факторы, мешающие развивать искусство настройки АС.

Мне бы хотелось передать свой опыт, не тратя на это непомерных «писательских» усилий. Поэтому буду рассказывать только о добытых на практике фактах и методах работы, без обоснований и теоретических объяснений. Мой принцип — уверенно излагать своё мнение можно, если имеется аудиосистема, хорошим звучанием подтверждающая рекомендации автора. Для доступности расчёты и приёмы настройки максимально упрощены, без существенного вреда для результата.

Урок первый. Корпус

В первую очередь ограничим необъятную тему. Рассмотрим разработку и настройку двух полосных АС с фазоинвертором (ФИ). Такой тип легче «поддаётся» новичкам. Договоримся, что озвучиваем жилую комнату 10 — 20 м². Это определяет выбор диаметра НЧ/СЧ-динамика. В этом случае оптимальный диаметр диффузора — 10 — 20 см (примерно). Паспортная мощность (100 часов разового шума без повреждения громкоговорителя) — 20 — 60 Вт. Чувствительность — 86 — 90 дБ/Вт/м. Резонансная частота (вне корпуса) — не выше 60 Гц. Если вас устроит нижняя граничная частота (готовой АС) 100 Гц, можно брать динамик с резонансом 80 — 100 Гц.

Кстати, если АС без завала воспроизводит хотя бы от 100 Гц, звучание вполне фундаментально и «весомо», только иногда исчезают некоторые необязательные, но очень желательные элементы звуковой картины. Их можно восстановить сабвуфером, но чтобы при этом не испортить звук, надо набраться опыта его согласования с сателлитами.

Не обольщайтесь по поводу паспортных данных недорогих АС, свидетельствующих о воспроизведении НЧ от 30 до 40 Гц. Реально в формировании звуковой картины участвуют только те низкие ноты, которые отыгрываются без «завала». Всё, что имеет спад хотя бы 4 — 5 дБ, маскируется «верхним басом» (80 — 160 Гц), поэтому для большинства АС воспринимаемый на слух диапазон начинается с 50 — 80 Гц. Мы же привыкли думать, что это 30 — 40 Гц, поскольку ориентируемся на паспортные данные с допустимым отклонением -8 — -16 дБ. Повнимательнее посмотрите в аудиопрессе на реальные частотные характеристики колонок. Отмерьте, в соответствии с приведённым масштабом, -3 дБ от среднего уровня, и вы увидите, что даже крупные напольные АС эффективно работают где-то от 50 Гц.

Если диаметр диффузора — 10 — 12 см, чувствительность — 86 — 88 дБ/Вт/м, а мощность — 20 — 30 Вт (типичные параметры недорогого динамика), то о «домашней дискотеке» придётся забыть. С другой стороны, громкоговорители минимального диаметра нередко имеют более равномерную АЧХ, чем большие.

«Малыши» лучше по ширине и равномерности диаграммы направленности. Интересно, что одна из высочайших по качеству АС фирма System Audio принципиально использует только маленькие мидбасовые динамики. Полная добротность современных небольших НЧ-головок обычно составляет 0,2 — 0,5.

Не надейтесь на расчёты низкочастотного оформления, практические результаты им соответствуют недостаточно точно. Опыт показывает: лучше выбрать динамики с добротностью больше 0,3 — 0,4, иначе, даже с фазоинвертором, трудно обеспечить приемлемый бас. Для таких громкоговорителей имеет смысл изготавливать корпуса объёмом, примерно равным эквивалентному объёму громкоговорителя.

Очень ориентировочно для рекомендуемых по параметрам динамиков эквивалентный объём соответствует диаметру:

10 см — ≈ 18 литров;

16 см — ≈ 26 литров;

20 см — ≈ 50 литров.

В качестве базисного варианта рассмотрим корпус с ФИ для громкоговорителя диаметром 16 см. Объём — 26 литров. Площадь сечения ФИ — 44 см². Длина трубы ФИ — 20 см. Частота настройки — около 40 Гц. Площадь сечения ФИ должна составлять 20 — 25% от площади диффузора Sд.

Sд = π • (d/2)²,

где d — диаметр диффузора, ограниченный серединой подвеса (рис. 1).

 

Рис. 1

Если необходимо пересчитать габариты трубы ФИ для другого «литража» (другой диаметр динамика), сохраняя частоту настройки, действуйте в соответствии с примерами:

1. Громкоговоритель d = 9 см, Эквивалентный объём (Vэ) ≈ 8 л. 8 литров меньше 26 литров в 3,25 раза. Надо скомпенсировать разницу изменением длины (l) и площади (Sфи) трубы ФИ, иначе частота резонанса ФИ резко повысится.

Понижают частоту настройки Fфи увеличением lфи и снижением Sфи.

Оптимальная Sфи для динамика площадью:

Sд = π (9 см/2)² = 3,14 • (4,57 см)² ≅ 63,6 см²

находится в диапазоне:

Sфи ≈ 63,6 см²/5 … 63,6 см²/4 ≅ 13 см² … 16 см².

В данном случае уменьшение Sфи вносит вклад в понижение Fфи в

44 см²/(13 см² … 16 см²) ≈ 2,75 … 3,38 разa,

что вполне компенсирует изменение объёма АС в 3,25 раза.

Кстати, компенсировать снижение объёма увеличением длины трубы ФИ для маленького корпуса (V = 8 литров) невозможно. Тем более что от внутреннего среза трубы ФИ до ближайшего препятствия (до стенки корпуса АС) должно быть свободное расстояние не менее 8 см (в крайнем случае — 5 см). То есть один из габаритов корпуса (параллельный оси трубы ФИ) должен быть равен lфи (20 см) + 8 см (свободное пространство) + примерно 3 см (толщина двух стенок корпуса) = 31 см.

Для 8-литрового корпуса такой большой размер может быть только высотой. Возможная конструкция щелевого ФИ с прямоугольным сечением трубы показан на рис. 2а.

Рис. 2

Это очень непрактичная конструкция, так как требуется установка на специальную подставку, не загораживающую выход ФИ. Если вывести порт наверх, установка АС упростится, но вид сверху ухудшится, кроме того, колонка превратится в отличную ловушку для пыли, сора и мелких предметов.

Очень удобна конструкция, показанная на рис. 2б. Однако она требует увеличить высоту до 31 см + 8 см = 39 см. Это не всегда допустимо.

Можно изготовить корпус в виде глубокой «буханочки», с наибольшим размером — в глубину (рис. 2в).

Если не удаётся обеспечить нужную длину трубы, можно:

во-первых, выбрать минимальную

Sфи = Sд / 6; Sфи = 63,6 см² / 6 ≈ 10,6 см²;

во-вторых, несколько уменьшить lфи (≈ на 30 %), пожертвовав повышением Fфи до ≈ 50 — 60 Гц.

Уменьшение Sфи до 10,6 см² снизит эффективность ФИ и, соответственно, увеличит «завал» отдачи в диапазоне 40 — 60 Гц.

Рост Fфи при уменьшении lфи допустим, так как резонансная частота динамика диаметром 10 см выше, чем у громкоговорителя 16 см. Это значит, что ФИ с резонансом в 55 Гц не просуммирует свой подъём НЧ с резонансом динамика в ящике (≈ 70 — 90 Гц в данном случае) и не будет вредного для звучания подъёма на НЧ в области 50 — 100 Гц, который мог бы возникнуть, например, при укорочении ФИ для корпуса с динамиком 16 см.

Итак, для 8-литрового ящика и громкоговорителя диаметром 10 см вполне нормально выбрать lфи ≅ 14 см, Sфи ≅ 13 см².

2. Громкоговоритель d = 18 см, эквивалентный объём (Vэ) ≈ 50 л. 50 литров больше, чем 26 литров, в 1,92 раза.

Оптимальная Sфи для динамика площадью:

Sд ≅ 3,14 • (18 см / 6)² ≈ 254,3 см²

находится в диапазоне

Sфи ≈ 254,3 см²/5 … 254,3 см²/4 ≈ 51 см² … 64 см².

Увеличение Vэ в 1,92 раза сильнее влияет, чем увеличение Sфи в 1,45 раза. В целом Fфи понижается ориентировочно до 35 Гц. Так как резонансная частота динамика (Fд) диаметром 20 см ниже, чем Fд диаметром 16 см, то снижение Fфи — положительный фактор. Не стоит компенсировать это уменьшением lфи.

Опытные профессионалы способны точно настраивать параметры фазоинверсного акустического оформления, добиваясь максимально плоской АЧХ в диапазоне от нижней граничной частоты АС до 125 — 200 Гц. Любителю или новичку не стоит тратить на это особых усилий.

В дальнейшем я поясню, как проконтролировать полученную АЧХ на НЧ и как устранить недопустимые отклонения, если таковые обнаружатся. Кроме того, влияние на звучание неидеальности характеристики в области НЧ сильно зависит от соотношения уровня воспроизведения баса по сравнению со средними частотами. Нельзя забывать, что из-за взаимодействия АС с реальным помещением АЧХ в нижнем регистре в любом случае будет очень неравномерной.

Главные усилия необходимо сосредоточить на настройке желаемой АЧХ в области СЧ и балансировке между НЧ, СЧ и ВЧ. На первом этапе создания АС — при разработке корпуса, достаточно учесть следующие рекомендации.

Корпус должен молчать. В идеале воспроизводят звук только громкоговорители, но в реальной жизни корпус откликается на их работу. Переизлучение звука стенками ящика вносит искажения.

Один из простейших способов улучшения виброзащиты корпуса — увеличение толщины стенок. Здесь следует знать меру, прослушивание показывает, что начиная с некоторого значения эта мера даёт незначительноё улучшение звучания. Для полочных АС вполне достаточно будет 16 — 8 мм ДСП или ДВП. Выгодно укреплять корпус изнутри рёбрами жёсткости. Вариант их практического использования показан в моей статье «Повторение возможно» в «Практике» №2(4)/2002, июль).

Там же достаточно подробно изложены рекомендации по следующим вопросам:

  • размещение звукопоглощающих материалов внутри корпуса;
  • особенности изготовления фильтров;
  • как самостоятельно сделать кабели для внутренней разводки очень высокого качества;
  • требования к герметизации корпуса;
  • минимальные сведения, необходимые для выбора типа конденсаторов.

В упомянутой статье также рассмотрены вопросы выбора динамиков и затронуты некоторые другие проблемы. Имеет смысл отнестись к этому как к части изложения моих методов работы, поэтому повторяться не стану.

Разумеется, существует много способов виброзащиты корпуса АС. Они приведены, например, в книге «Высококачественные акустические системы и излучатели» (И.А. Алдошина, А.Г. Войшвилло. — М.: Радио и Связь, 1985.). Практика показывает, что 16-миллиметровые стенки, укреплённые рёбрами жёсткости, обеспечивают достаточную виброзащиту.

Абсолютных истин нет. У акустически мёртвых корпусов есть альтернатива — использование массива различных пород дерева, каждая из которых обладает собственным звучанием. Это — трудный путь с технологическими и творческими проблемами. Он не для новичков, здесь требуется высшая квалификация в области деревообработки, тонкое восприятие музыки, упорство в поиске приемлемых вариантов исполнения корпуса. Иногда таким образом удаётся создать превосходные АС.

Урок второй. Фильтры

Если вы думаете, что фильтр это просто схема, разделяющая сигнал на несколько частотных полос для соответствующих громкоговорителей, то вынужден буду вас разочаровать. Всё гораздо сложнее. Простой кроссовер нужен для идеальных динамиков с ровной АЧХ по звуковому давлению, но таковых, к сожалению, не существует. В лучшем случае некоторые типы динамиков позволяют обеспечивать приблизительно приемлемую балансировку АЧХ при лобовом использовании кроссоверов.

Положение усложняется из-за сложного взаимодействия громкоговорителей в полосе передачи эстафеты от низкочастотного к более высокочастотному. Например, имеем замечательно ровные в своих полосах СЧ и ВЧ-головки с аккуратными спадами АЧХ вне полос, а при совместной работе получаем ужасную АЧХ. Особенно проблематично для новичка состыковать НЧ и СЧ-динамики. Приёмы такого бесшовного соединения — тема отдельной статьи. Для начала необходимо набраться опыта, настраивая двухполосную АС.

Даже самые простые фильтры — мощный инструмент в умелых руках, позволяющий приблизить АЧХ реальной АС к желаемому идеалу. Для НЧ/СЧ-головок фильтры первого порядка (катушка индуктивности, включенная последовательно с динамиком) чаще всего не подходят. Они недопустимо деформируют АЧХ в полосе пропускания, заваливают середину, делая звучание тусклым, неритмичным, монотонно гудящим. В некоторых случаях такой фильтр позволяет чуть скорректировать АЧХ в верхней части диапазона, воспроизводимого НЧ/СЧ-головкой. При этом частота среза такого фильтра близка верхней частоте динамика.

У редких головок наблюдается рост отдачи, пропорциональный повышению частоты сигнала на протяжении нескольких октав. Сбалансировать АЧХ в этих случаях можно индуктивностью фильтра первого порядка, но чаще для этого применяют фильтры второго порядка. Они позволяют исключить сильные искажения АЧХ в полосе пропускания.

Подбором сочетаний величин ёмкости и индуктивности фильтра второго порядка можно обеспечить в полосе около частоты среза спад или подъём АЧХ, используя схему в качестве эквалайзера. Это — один из методов оптимизации АЧХ.

На рис. 3 показан фильтр второго порядка. Ёмкость включена параллельно динамику.

Рис. 3

Первое приближение

Рассчитаем значения L1 и С1 для фильтра без подъёма или спада на частоте среза. Поверим значению импеданса, приведённому производителем. Если бумажек нет, померяйте сопротивление по постоянному току и умножьте результат на 1,25. Обозначим полученное значение просто R.

L1 = R / (2π • Fc),

где Fс — частота среза,

C1 = 1 / ((2π • Fc)² L1).

Например: R = 4 Ом, Fс = 1,6 кГц.

L1 = 4 / (6,28 • 1.6 • 10³) = 3,98 • 10-4 H = 0,398 mH = 398 μH,

C1 = 1 / [(6,28 • 1,6 • 10³)² • 3,98 • 10-4] = 2,49 • 10-5  F = 24,9 μF.

Для справки:

Fc = 1 / (2π √L1 C1).

В этом случае модули (величины без учёта фазы) сопротивления L1 и C1 на частоте Fс равны R, то есть 4 Ом. Кстати, на частоте среза модули сопротивления L1 и C1 всегда равны.

Если выравнивание АЧХ требует подъёма на Fc, скажем, на 1 дБ, то есть примерно но 10%, необходимо снизить модули сопротивления L1(|ZL1|) и C1(|ZC1|) примерно на 10% по сравнению с R = 4 Ом, то есть до 4 Ом x 0,9 = 3,6 Ом.

L1 = 3,6 / (6,28 • 1,6 • 10³) = 3,58  10-4H = 0,358 mH = 358 μH.

C1 = 1 / [(6,28 • 1,6 • 10³)² • 3,58 • 10-4] = 2,77 • 10-5 F = 27,7 μF.

Частота среза остаётся прежней, но на Fс на головку подаётся ≈110% сигнала за счёт повышенного потребления тока от усилителя и преобразования его «звенящим» фильтром с добротностью больше единицы в форсированный сигнал на головке.

Если надо «завалить» область около Fc на 1 дБ, то нужно пересчитать фильтр, как будто его нагрузка — сопротивление динамика примерно 1,1 x 4 Ом = 4,4 Ом.

Проще получить нужные значения, увеличив L1 и уменьшив С1. Тогда Fc не изменится, а |ZL| и |ZC| будут равны 4,4 Ом.

L1 = 398 mН x 1,1 = 438 mН.

С1 = 24,9 mF x 1,1 = 22,64 mF.

Для справки:

|ZL1| = 2π • F • L1, |ZC1| = 1 / (2π • F • C).

Учтите, что при необходимости увеличения отдачи в области около FC придётся смириться с падением импеданса АС в этой же области.

Падение импеданса необходимо контролировать. Попробуйте следующий простой способ.

1 этап

Подключите к выходу вашего усилителя цепь, показанную на рис. 4а.

Рис. 4

На этом рисунке значок «+» соответствует красной клемме, а «-» — чёрной. На результаты измерений перемена полярностей не влияет.

Подайте на вход усилителя синусоидальный сигнал частотой 1 кГц от генератора. Регулятором громкости усилителя и регулятором выходного уровня генератора установите на выходных клеммах усилителя ≈1 В действующего напряжения. Для этого вам понадобится вольтметр, способный измерять действующее значение напряжения в области звуковых частот.

Переключите вольтметр для измерения напряжения на выходах резистора R2. Прибор покажет ≈38,5 мВ. Подрегулируйте уровень сигнала до показаний вольтметра ≈40 мВ.

2 этап

Подключите вашу АС вместо R2. Плавно изменяйте частоту сигнала на выходе генератора. Вы увидите, что показания вольтметра меняются. Эти изменения пропорциональны частотно-зависимому значению импеданса АС. Можно зарисовать измеряемую характеристику: по горизонтальной оси будет шкала частоты, по вертикальной — уровня напряжения. И то и другое выполняется в логарифмическом масштабе. (Пример пустого бланка будет опубликован в следующем номере «Практики AV».) Особенно внимательно ищите минимумы напряжения, плавно меняя частоту. Эти точки на характеристике соответствуют минимумам импеданса АС.

С достаточной точностью можно считать, что значение импеданса |ZAC| равны показаниям вольтметра, поделённым на 10.

Например, 40 мВ соответствует 4 Ом, 30 мВ — 3 Ом. Если у вас нет чувствительного вольтметра, то поможет хороший тестер. В режиме измерения переменного напряжения тестер является вольтметром. Его показания верны до 2 — 5 кГц, выше может быть существенная погрешность. Сверьтесь с паспортом тестера. Кроме того, не все модели тестеров позволяют измерять с хорошей точностью сигналы величиной десятки милливольт. В этом случае можно установить на клеммах усилителя выходной сигнал не 1, а 10 В. В режиме наших измерений усилитель нагружен на сопротивление более 100 Ом. Такая высокоомная нагрузка позволяет развить 10 В действующего напряжения даже большинству маломощных усилителей, причём без перегрева.

К сожалению, при 10 В на выходе есть опасность сжечь резистор цепи, обеспечивающей устойчивость, который присутствует в схемах многих усилителей. Поэтому не стоит проводить измерения на частотах выше 3 кГц.

Понятно, что в режиме «10 вольт» на пробном резисторе R2 надо установить не 40 мВ, а 400 мВ. Соответственно, шкала напряжения будет проградуирована от 125 мВ до 6000 мВ (6 В). При этом показания вольтметра делим на 100 и получаем величину импеданса АС. Например, 400 мВ соответствует 4 Ом.

(Продолжение в следующем номере)


ПрактикаAV #3/2002

www.salonav.com

Расчёт LC — фильтров. Онлайн калькулятор ПФ, ФВЧ, ФНЧ.

LC — фильтры я оставил на десерт, подобно бутылке благородного вина, покрытой слоем вековой пыли. Это антиквариат, который на Сотбисе не купишь!

Как ни крути, а не получил бы Александр Степаныч наш Попов звание почётного инженера-электрика, не направь он искровой разряд напрямик в колебательный контур для обретения благословения свыше и резонанса с передающей антенной.
И заскучала бы братва копателей свободной энергии эфира, не изобрети Никола Тесла свой резонансный трансформатор и электрический автомобиль с неведомой коробочкой. А то и вовсе, заширялась бы в подъездах, лишённая идей вселенского масштаба.

И начнём мы с расчёта самого простого LC-фильтра — колебательного контура.

Включённый по приведённой на рис.1 схеме, он представляет собой узкополосный полосовой фильтр, настроенный на частоту fо= 1/2π√LС.
На резонансной частоте сопротивление контура равно:
Rо = pQ, где р — характеристическое сопротивление, равное реактивному сопротивлению катушки и конденсатора.
Оно в свою очередь рассчитывается по формуле р = √L/C.

Рис.1

На низких (звуковых) частотах конденсаторы практически не вносят потерь, поэтому добротность контура равна добротности катушки индуктивности, величина которой напрямую зависит от активного сопротивления катушки. Чем ниже частота, тем больше витков и тоньше провод, тем проще его измерить тестером. Если эта попытка удалась, то Q=2πfL/R, где R – активное сопротивление катушки индуктивности.
На радиочастотах значение активного сопротивления катушки может составлять доли ома, поэтому для расчёта добротности надо — либо найти сопротивление в Омах по формуле R= 4ρ*L/(πd²), где ρ — удельное сопротивление меди, равное 0,017 Ом•мм²/м, L — длина в метрах, d — диаметр провода в мм, либо вооружиться генератором сигналов, каким-либо измерителем уровня выходного сигнала с высоким внутренним сопротивлением, и определить добротность экспериментально.
К тому же на высоких частотах возможно проявление влияния добротности конденсатора, особенно если он окажется варикапом, хотя современные недорогие керамические изделия (например, фирмы Murata) имеют значение параметра добротности — не менее 800.

Нарисуем табличку с расчётом фильтра для низкочастотных приложений.

ТАБЛИЦА ДЛЯ LC- РЕЗОНАНСНОГО (ПОЛОСОВОГО) ФИЛЬТРА ДЛЯ НЧ.

Если параметр активного сопротивления катушки R опущен, его значение принимается равным 200 омам.
Необходимо отметить, что все полученные в таблице данные верны и для последовательного колебательного контура. При этом, если мы хотим использовать свойства контура полностью, т. е. получить острую резонансную кривую, соответствующую конструктивной добротности, то параллельный контур надо нагружать слабо, выбирая R1 и Rн намного больше Rо (на практике десятки кОм), для последовательного же контура, сопротивление генератора R1 наоборот должно быть на порядок меньше характеристического сопротивления ρ.

Теперь, нарисуем таблицу для расчёта высокочастотных резонансных контуров.
Тут на добротность влияет не только активное сопротивление катушек, но и другие факторы, такие как — потери в ферритах, наличие экрана, эффект близости витков и т. д. Поэтому вводить этот параметр в качестве входного я не стану — будем считать, что добротность катушки вы измерили, или подсмотрели в документации на готовые катушки. Естественным образом значение добротности катушки должно измеряться на резонансной частоте контура, ввиду прямой зависимости этой величины от рабочей частоты (Q=2πfL/R).
К тому же я добавлю сюда параметр добротности конденсатора, особенно актуальный в случае применения варикапов.
По умолчанию (для желающих оставить эти параметры без внимания), добротность катушки примем равной 100, конденсатора — 1000, а для испытывающих стремление измерить эти параметры в радиолюбительских условиях, рекомендую посетить страницу   ссылка на страницу .

ТАБЛИЦА ДЛЯ LC- РЕЗОНАНСНОГО (ПОЛОСОВОГО) ФИЛЬТРА ДЛЯ ВЧ.

Теперь плавно переходим к LC фильтрам верхних и нижних частот (ФВЧ и ФНЧ).

Рис.2

Крутизна спада АЧХ этих фильтров в полосе подавления — 12 дБ/октаву, коэффициент передачи в полосе пропускания К=1 при R1 Однако наилучшие параметры, с точки зрения равномерности АЧХ и передачи максимальной мощности в нагрузку, обеспечиваются при R1=Rн=ρ. В этом случае фильтр является согласованным, правда коэффициент передачи в полосе пропускания становится равным К=0.5.
Ну да ладно, ближе к делу.

ТАБЛИЦА LC- ФИЛЬТРОВ ВЕРХНИХ и НИЖНИХ ЧАСТОТ.


А если надо рассчитать L и C при известных значениях Fср и ρ ?   Не вопрос,

ТАБЛИЦА РАСЧЁТА ЭЛЕМЕНТОВ LC- ФИЛЬТРОВ ВЕРХНИХ и НИЖНИХ ЧАСТОТ.

Данные ФВЧ и ФНЧ называются Г-образными.
Для получения более крутых скатов АЧХ используют два или более Г-образных звеньев, соединяя их последовательно, чтобы образовать Т-образное звено (на Рис.3 сверху), или П-образное звено (на Рис.3 снизу). При этом получаются ФНЧ третьего порядка. Обычно, ввиду меньшего количества катушек, предпочитают П-образные звенья.

Рис.3

ФВЧ конструируют подобным же образом, лишь катушки заменяются конденсаторами, а конденсаторы — катушками.

Широкополосные полосовые LC — фильтры получают каскадным соединением ФНЧ и ФВЧ.

Что касается многозвенных LC-фильтров высоких порядков, то более грамотным решением (по сравнению с последовательным соединением фильтров низших порядков) будет построение подобных устройств с использованием полиномов товарищей Чебышева или Баттерворта.

Именно такие фильтры 3-го, 5-го и 7-го порядков мы и рассмотрим на следующей странице.

 

vpayaem.ru

Методика создания акустических систем (часть №4)

08 Ноября 2006 Автор: А. Клячин

Если Вы обнаружите минимумы импеданса около 3 Ом, не расстраивайтесь. Некоторые модели АС известных фирм имеют минимум до 2,6 Ом. Одна — две модели даже 2 Ом! С другой стороны, ничего хорошего в таких «провалах» импеданса нет. Усилители перегреваются, работая на такую нагрузку, если Вы слушаете музыку громко. Растут искажения усилителя в области минимумов сопротивления акустической системы.

Для ламповых триодных усилителей особенно опасны минимумы в области низких и средне-низких частот. При этом если импеданс падает ниже 3 Ом, возможен выход из строя выходных ламп. Выходные пентоды в таких случаях не ломаются.

Важно помнить, что выходное сопротивление усилителя участвует в настройке фильтра акустической системы. Например, если обеспечить форсаж на 1 дБ области Fc, настраивая АС с транзисторным усилителем, у которого почти нулевое выходное сопротивление, то при подключении этих акустических систем к ламповому усилителю (типовое выходное сопротивление ~2 Ом) от форсажа не останется и следа. АЧХ будет другой. Для повторения характеристики, достигнутой с транзисторным усилителем, в случае работы с ламповым аппаратом, придется создать другой фильтр.

Слушатель, способный к развитию собственной личности, со-временем приходит к пониманию ценности хороших ламповых усилителей. По этой причине я обычно настраиваю АС с ламповым усилителем, а при подключении к транзисторному усилителю последовательно с АС ставлю 10-и Ваттный малоиндукционный (не более 4-8 uН) резистор сопротивлением 2 Ом.

Если Вы обладаете транзисторным усилителем, но не исключаете возможность приобретения в будущем ламповой техники, то подключайте при настройке и последующей эксплуатации Ваши АС к выходу усилителя через вышеуказанные резисторы. Тогда, при переходе на ламповый усилитель, не потребуется настраивать АС заново, достаточно подключиться к нему напрямую, без резисторов.

Для тех, кто не может раздобыть генератор, рекомендую найти тестовый CD с дорожками, содержащими испытательные сигналы для оценки АЧХ. При этом Вы не сможете плавно менять частоту испытательного сигнала и пропустите точку самого глубокого падения импеданса в области его спада. Тем не менее, даже приблизительная оценка частотной характеристики импеданса будет полезна. Для ориентировочной оценки псевдошумовые сигналы в треть-октавных полосах даже удобнее, чем синусоидальные. Такие сигналы есть на тестовом CD журнала «Салон AV» (#07 от 2002 года).

В крайнем случае можно обойтись без измерений импеданса, если ограничить форсаж отдачи на частоте среза фильтра величиной 1 дБ. При этом условии импеданс вряд-ли упадет сильнее чем на 20%. Например, для 4-х Омной АС это соответствует минимуму в 3,2 Ом, что допустимо.

Учтите, что «поймать» параметры элементов фильтра, нужные для желаемой коррекции АЧХ, Вам придется самостоятельно. Предварительный расчет пробных фильтров нужен чтобы изначально не промахнуться «на километр».

В простой фильтр НЧ-СЧ головки можно добавлять резисторы для некоторых манипуляций с АЧХ, которые могут потребоваться при настройке Ваших АС.

Если средний уровень звукового давления этого динамика выше соответствующего параметра ВЧ головки, необходимо включить последовательно с динамиком резистор. Варианты включения — на Рис. 6а и 6б.

Величину необходимого снижения отдачи НЧ-СЧ головки, выраженную в дБ обозначим символом N. Тогда:

, где Rд — среднее значение импеданса динамика.

Можете вместо расчетов воспользоваться следующей информацией:

Таблица 1

1 дБ ~10% или изменение уровня в 1,1 раза;
2 дБ ~25% или изменение уровня в 1,25 раза;
3 дБ ~40% или изменение уровня в 1,4 раза;
4 дБ ~60% или изменение уровня в 1,6 раза;
5 дБ ~80% или изменение уровня в 1,8 раза;
6 дБ ~100% или изменение уровня в 2 раза.

, где Vус — действующее значение напряжения на выходе усилителя. Vд — то же на динамике. Vд меньше, чем Vс, благодаря ослаблению сигнала резистором R1. Кроме того, N = Nвч — Nнч, где Nнч и Nвч уровень звукового давления развиваемый, соответственно, НЧ и ВЧ головками. Эти уровни — усредненные по полосам воспроизводимым НЧ и ВЧ головками. Естественно, Nнч и Nвч измеряются в дБ.

Пример быстрой оценки необходимой величины R1:

Для N = 1 дБ; R1 = Rд (1,1 — 1) = 0,1 Rд.

Для N = 2 дБ; R1 = Rд (1,25 — 1) = 0,25 Rд.

Для N = 6 дБ; R1 = Rд (2 — 1) = Rд.

Более конкретный пример:

Rд = 8 Ом, N = 4 дБ.
R1 = 8 Ом (1,6 — 1) = 4,8 Ом.

Как рассчитать мощность R1?

Пусть Рд — паспортная мощность НЧ-СЧ громкоговорителя, PR1 — допустимая мощность, рассеиваемая R1.Тогда:

Не следует затруднять отвод тепла от R1, то есть не надо обматывать его изолентой, заливать термоклеем и т. п.

Особенности предварительного расчета фильтра с R1:

Для схемы на Рис. 6б значения L1 и C1 рассчитываются на воображаемый динамик, суммарное сопротивление которого RΣ = R1 + Rд. При этом L1 получается больше, а C1 — меньше, чем у фильтра без R1.

Для схемы на Рис. 6а — все наоборот: введение в схему R1 требует уменьшения L1 и увеличения С1. Проще рассчитывать фильтр по схеме Рис 6б. Пользуйтесь именно этой схемой.

Дополнительная коррекция АЧХ при помощи резистора:

Если, для улучшения равномерности АЧХ, необходимо уменьшить подавление фильтром сигналов выше частоты среза, можно применить схему, приведенную на Рис. 7.

Применение R2 в этом случае приводит к уменьшению отдачи в Fс. Выше Fc отдача, напротив, растет по сравнению с фильтром без R2. Если необходимо восстановить близкую к исходной АЧХ (измеренной без R2), следует уменьшить L1 и увеличить C1 в одинаковой пропорции. На практике диапазон R2 находится в пределах: R2 ~= (0,1-1) * Rд.

Коррекция АЧХ:

Простейший случай: на достаточно равномерной характеристике имеется зона завышенной отдачи («презенс») в области средних частот. Можно применить корректор в виде резонансного контура (Рис. 8).

На частоте резонанса

Контур имеет некоторое значение импеданса, в соответствии с величиной которого сигнал на динамике ослабляется. Вне частоты резонанса ослабление уменьшается, таким образом, контур может избирательно подавлять «презенс». Ориентировочно рассчитать, значения L2 и C2 в зависимости от Fp и степени подавления N2 (в дБ) можно так:

Удобно воспользоваться таблицей 1. Нарисую ее по другому:

Изменение уровня, в дБ Относительное изменение уровня (Δ).
1 1,1
2 1,25
3 1,4
4 1,6
5 1,8
6 2
7 2,2
8 2,5
9 2,8
10 3,16
11 3,55
12 4

Пример. Необходимо подавить «презенс» с центральной частотой 1600 Гц. Импеданс громкоговорителя — 8 Ом. Степень подавления: 4 дБ.

Конкретная форма АЧХ громкоговорителя может потребовать более сложной коррекции. Примеры на Рис. 9.

Случай на Рис. 9а — самый простой. Легко подобрать параметры корректирующего контура, так как «презенс» имеет форму «зеркальную» возможной характеристике фильтра.

На Рис. 9б показан другой возможный вариант. Видно, что простейший контур позволяет «разменять» один большой «горб» на два маленьких с небольшим провалом АЧХ в придачу. В таких случаях нужно сначала увеличить L2 и уменьшить С2. Это расширит полосу подавления до нужных пределов. Затем следует зашунтировать контур резистором R3, как показано на Рис. 10. Величина R3 выбирается исходя из необходимой степени подавления сигнала, подаваемого на динамик в полосе, определяемой параметрами контура. R3 = Rд (Δ — 1)

 Пример: Надо подавить сигнал на 2 дБ. Динамик — 8 Ом. Обращаться к Таблице 1. R3 = 8 Ом (1,25 — 1) = 2 Ом.

Как в этом случае происходит коррекция, показано на Рис. 9в.

Для современных громкоговорителей довольно характерно сочетание двух проблем: «презенс» в области 1000-2000 Гц и некоторый избыток верхней середины. Возможный вид АЧХ показан на Рис. 11а.

Наиболее свободный от вредных «побочных» эффектов способ коррекции требует небольшого усложнения контура. Корректор показан на Рис. 12.

Резонанс контура L2, С2 нужен, как обычно, для подавления «презенса». Ниже Fp сигнал почти без потерь проходит на динамик через L2. Выше Fp сигнал идет через С2 и ослабляется резистором R4.

Оптимизируется корректор в несколько этапов. Так как введение R4 ослабляет резонанс контура L2,C2, то изначально следует выбрать L2 больше, а C2 меньше. Это обеспечит избыточное подавление на Fp, которое нормализуется после введения R4. R3 = Rд (Δ — 1), где «Δ» — величина подавления сигналов выше Fp. «Δ» выбирается в соответствии с избытком верхней середины, сверяясь с таблицей 1. Этапы коррекции условно проиллюстрированы на Рис. 11б.

В редких случаях требуется обратное воздействие на наклон АЧХ при помощи корректирующей цепи. Ясно, что для этого R4 должен переместиться в цепь L2. Схема на Рис. 13.

Проблемная АЧХ и ее коррекция для этого случая показана на Рис. 14.

При опредленном сочетании величин L2, C2 и R4 корректор может не иметь особенного подавления на Fp. Пример, когда необходимо именно такая коррекция, показан на Рис. 15.

 

При необходимости можно использовать фильтр второго порядка и корректирующий контур совместно. Варианты включения — на Рис. 16.

ри одинаковых номиналах элементов вариант а) обеспечивает большую отдачу на средних частотах и на частоте среза. В принципе, подбором значений элементов можно почти уровнять АЧХ АС для обоих вариантов фильтра. По некоторым причинам, о которых долго говорить, советую чаще применять вариант а). Иногда очень выраженный «презенс» требует применения варианта б). Совместная работа фильтра и корректора проиллюстрирована на Рис. 17.

Рассмотрим фильтры для ВЧ динамиков.

Для ВЧ головок гораздо чаще, чем для НЧ динамиков, применим фильтр первого порядка, то есть просто конденсатор включенный последовательно с громкоговорителем. То, что такой простой фильтр вносит ощутимый наклон в АЧХ динамика, не так пагубно влияет на звучание, как в случае НЧ динамика. Во-первых, нередко этот наклон частично компенсируется плавным комплементарным (взаимодополняющим) наклоном АЧХ НЧ динамика в той же частотной области. Во-вторых, некоторый «провал» в области нижнего верха (3-6 кГц) вполне допустим по результатам субъективных экспертиз. Возможный ход АЧХ ВЧ-динамика без фильтра, с фильтром и совместно с НЧ динамиком показан на Рис. 18.

Не следует бояться экспериментов с подключением ВЧ динамика в противофазе с НЧ громкоговорителем. Иногда это один из немногих способов добиться хорошего звучания. Наиболее вероятные результаты перемены полярности ВЧ головки показаны на Рис. 19

Часть №1

Часть №2

Часть №3

Часть №5

Часть №6

Часть №7 — заключительная

baseacoustica.ru

Расчет фильтра для акустической системы онлайн

В качественной аудиосистеме основная роль отводится акустическим системам стерео- или многоканального типа.

Поиск данных по Вашему запросу:

Расчет фильтра для акустической системы онлайн

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.
По завершению появится ссылка для доступа к найденным материалам.

Благодаря им электрические импульсы преобразуются в звуки акустического диапазона разной частоты. Кому-то важно чистое и максимально приближенное к оригиналу звучание музыкальных инструментов, а для кого-то на первом месте стоит голос вокалиста, актеров фильма или преподавателя из обучающих видеокурсов.

Насколько важна акустическая система?

Она является базой для всей аудиосистемы.

Предпочтительней начинать подбор подходящей аудиосистемы именно с акустики.

Причем для каждого будут стоять в приоритете разные варианты оборудования. На выбор влияют такие факторы, как “заточенность” такой системы под те жанры, которые по нраву будущему владельцу и ценовая категория.

Любителям максимально точного звука подойдут акустические системы hi-fi.
Несмотря на мифы, далеко не каждая дорогая аудиотехника показывает упомянутые возможности.

В случае, когда на первом месте стоит эксклюзив, рынок аудиосистем предоставляет фанатам высококачественного звука аудиоаппаратуру класса Hi-End.

Справка! High End – это термин маркетологов, указывающий на элитность программного и аппаратного обеспечения, позволяющего усилить звук. Соответственно, цена на подобные аудиосистемы не пугает только ярых фанатов музыки или любителей несерийной звуковой аппаратуры, обладающих хорошим финансовым состоянием.

Типы акустических систем

Существует несколько категорий акустических систем, каждая из которых способна удовлетворить определенные запросы покупателя. По базовым отличиям выделяют 5 базовых классификационных групп.

  • Принцип установки аппаратуры. Акустические системы делятся на напольные и полочные в зависимости от размера. Первые предпочтительны для крупных помещений, таких как кинотеатры. Использование их дома для телевизора или компьютера нерентабельно. Оптимальнее использовать полочные колонки.
  • Количество динамиков. Иначе это называется делением по количеству полос звука. Производитель может включать от 1 до 7 динамиков. Наиболее оптимальный по бюджету вариант – 3 динамика, где одна полоса отвечает за низкие частоты, другая за средние и третья за верхние.
  • Наличие или отсутствие усилителя звука в колонках. В первом случае они называются активными, во втором – пассивными. Гораздо чаще встречаются пассивные варианты. Они предпочтительнее для аудиофилов за счет разделительного фильтра и, соответственно, более высокого качества звука за счет разделения частот.
  • По конструкции динамики различаются на планарные, динамические, электростатические и прочие типы, а в некоторых случаях аппаратура не попадает ни под одну категорию.
  • Оформлением. У колонок может быть закрытый или открытый корпус, хорошим дополнением будет фазоинвентор – труба в колонке, настроенная на определенную частоту и усиливающая звуки в ее пределах. Благодаря такому отверстию воспроизводятся более низкие частоты, чем у обычной аппаратуры. Если трубу изгибать внутри корпуса, увеличивая ее длину, мощность и диапазон воспроизводимых низких частот, получатся колонки с акустическим лабиринтом. Они более дорогие и требуют большей точности при изготовлении.

Области использования акустических систем

Первая и основная сфера применения – домашнее пользование.

Сюда включается потребность в качественном звуке для более полного погружения в видеоигры, мощность и сила звука для просмотра телевизора, чистота и приближенность к оригинальному звучанию для любителей музыки различных жанров.

Любителям качественной музыки в автомобиле рекомендуется приобретать многополосные аудиосистемы.

Причем для лучшего звучания в передней части машины располагаются высокочастотные и среднечасттные элементы Car-системы. Низкочастотным колонкам отводится задняя часто авто.

Концертные варианты акустических систем призваны не только обеспечить доступ звука в любую точку обширного помещения или зала, но и удовлетворить требования многих слушателей к качеству звучания. Наиболее распространенные наборы аудиотехники для концертов включают в себя мониторы для передачи нюансов звука, фронтальные громкоговорители, дающие прямой звук с высокой плотностью, центральные громкоговорители для передачи вокала.

Расчет фильтра для акустической системы онлайн

Отдельная категория – студии звукозаписи. Для них предпочтительны студийные мониторы, которые способны воспроизвести звук со всеми его плюсами и минусами, что способствует, в конечном итоге, созданию более чистого и достоверного по своему звучанию трека.

Вне зависимости от того, где будет использоваться акустическая система, рекомендуется предварительно определить критерии, по которым будет происходить отбор подходящей аппаратуры.

С их помощью удастся получить аппаратуру, которая максимально сможет приблизить вас к звуку вашей мечты.

all-audio.pro

Последовательные фильтры в кроссовере АС

Аудиотехника

Главная  Радиолюбителю  Аудиотехника



Применение последовательных фильтров в кроссоверах АС — редкое техническое решение. В статье рассказано о некоторых нюансах, наблюдаемых при моделировании и измерениях характеристик АС с такими фильтрами, что позволит любителям-конструкторам более обоснованно использовать их в ряде случаев, например, применяя коаксиальные динамические головки.

О пассивных разделительных фильтрах (кроссоверах) акустических систем написано уже столько, что можно собрать приличную библиотеку. Не утихают баталии на интернет-форумах между приверженцами фильтров различных типов, поскольку улучшение одних характеристик почти неизбежно ведёт к ухудшению других. Причём чаще всего спорщики игнорируют факт влияния акустического оформления и собственных параметров головок на характеристики фильтра, рассматривая «идеальные» случаи.

Особый интерес для любителей высококачественного звучания представляют фильтры первого порядка, потому что такие фильтры корректно передают прямоугольный импульс (как сумму полос). И ради этого можно смириться с широкой зоной совместной работы динамических головок. Однако хорошие импульсные характеристики двухполосной АС с фильтрами первого порядка реализуются только при условии небольшой разницы в фазе совместного излучения и, кроме того, при максимально близком расположении центров излучения НЧ- и ВЧ-головок. Наиболее полно этому условию отвечают коаксиальные излучатели. Большинство головок такого типа используют в автомобильных АС с простейшими фильтрами.

Наиболее распространены параллельные фильтры различного порядка и типа (рис. 1). Их достоинство — независимость каждого фильтра (при сопротивлении источника сигнала, равном нулю), поэтому импеданс нагрузки, частоту среза и порядок фильтров можно выбирать почти произвольно. Обратная сторона этой гибкости — сложные фазовые соотношения сигналов смежных полос, увеличивающие неравномерность АЧХ в области частот разделения за счёт интерференции и отчасти влияющие на локализацию кажущегося источника звука (КИЗ). Схемы и методы расчёта таких фильтров подробно освещены в литературе, поэтому останавливаться на них не будем.

Рис. 1. Типы фильтров

В недорогих трёхполосных АС часто применяют каскадные фильтры, позволяющие сократить число деталей — других достоинств у них нет, сплошные недостатки. Иногда также используют комбинированные фильтры, которые нельзя однозначно отнести к тому или иному типу.

Однако существуют фильтры, незаслуженно игнорируемые и профессиональными разработчиками аппаратуры, и любителями. Речь идёт о последовательных фильтрах, происхождение которых теряется во тьме времён. Действие элементов последовательных фильтров обратно их действию в параллельных. В параллельном кроссовере каждый из частотно-зависимых элементов преграждает путь сигналам «ненужным» частот, в последовательном — наоборот, пускает их «в обход», а «нелишним» сигналам не оставляют иного пути, кроме как через предназначенную для них нагрузку.

Одно время интерес к последовательным фильтрам пробудил Ричард Смолл (тот самый, который вместе с Невиллом Тилем определил важные электромеханические параметры акустических излучателей). На рубеже 60-х и 70-х годов он сделал доклад об этих фильтрах на сессии Audio Engineering Society (Общества аудиоинженеров). Доклад назывался «Constant-Voltage Crossover Network Design». В нём показано, что в последовательном фильтре сумма напряжения на двух полосовых динамических головках будет всегда равна входному, т. е. напряжению на выходе усилителя; это — основное свойство последовательных фильтров. Кроме того, для таких фильтров первого порядка (и только для них!) ФЧХ всех звеньев взаимно дополняющие, что обеспечивает минимальные искажения АЧХ, уменьшает интерференцию и улучшает локализацию КИЗ. Последовательные фильтры более высокого порядка этого достоинства лишены (а других и не имеют), поэтому практически не применяются. Впрочем, при соответствующем выборе номиналов фильтра первого порядка можно увеличить крутизну спада АЧХ вблизи частоты среза до 9…12 дБ на октаву (рис. 2), но ценой снижения входного сопротивления на частоте разделения [1].

Рис. 2. Формулы и номиналы фильтров первого порядка

Ещё одно, практически не упоминаемое (но от этого не менее важное) достоинство последовательных фильтров — отсутствие влияния собственной индуктивности звуковых катушек (ЗК) на частоту разделения и суммарную АЧХ. Для иллюстрации этого явления рассмотрим сначала классические фильтры первого порядка (в моделях использованы среднестатистические параметры НЧ- и ВЧ-головок).

Для ФНЧ некомпенсированная индуктивность ЗК НЧ-головки включена последовательно с катушкой индуктивности фильтра, поэтому в результате получаем цепь, которая уже через октаву выше частоты среза превращается в индуктивный делитель напряжения (рис. 3). Приведённая в примере частота среза дана для наглядности, при её повышении фильтр практически прекращает работу, внося лишь небольшое затухание выше условной частоты среза. Таким образом, для полноценного ФНЧ первого порядка компенсатор Цобеля абсолютно необходим, но в промышленных конструкциях им нередко пренебрегают (экономия!).

Рис. 3. АЧХ

Справедливости ради следует отметить, что иногда такое решение применяют целенаправленно для коррекции АЧХ головки на средних частотах, а разделение полос получается за счёт естественного спада АЧХ головки — этот случай нетипичный (рис. 4) [2].

Рис. 4. АЧХ

Для ФВЧ реальность тоже не столь радужная, как при расчёте «по формулам». Ёмкость конденсатора фильтра образует с индуктивностью ЗК ВЧ-головки последовательный колебательный контур, демпфированный активным сопротивлением ЗК; в результате вблизи частоты среза возникает небольшой «горбик» (рис. 5). Обычно это не создаёт проблему, так как для выравнивания отдачи НЧ- и ВЧ-головок в цепи более чувствительной ВЧ-головки вводят делитель напряжения или последовательный резистор (чаще), и электрический резонанс надёжно демпфируется.

Рис. 5. АЧХ

Вообще говоря, влиянием последовательного сопротивления пренебрегать нельзя ни в одном случае. Для параллельных фильтров, например, весьма заметно влияние сопротивления проводов между усилителем и АС — при этом характеристики фильтров «плывут», меняется и характер звучания. Это одна (но далеко не единственная) из причин «мистического» влияния проводов на качество звучания. Влияние сопротивления проводов между фильтром и нагрузкой существенно противления проводов выражено слабее, но подробное рассмотрение этих вопросов уведёт нас в сторону и достойно отдельной статьи.

Рассмотрим теперь влияние параметров реальных головок на работу последовательных фильтров. Используем модели головок из уже рассмотренных примеров, а частоту разделения для наглядности примем 2 кГц.

Для начала смоделируем последовательный фильтр для динамических головок с сопротивлением ЗК 3,2 Ом (см. рис. 2). Номиналы элементов фильтра рассчитаем по приведённым ранее формулам — 25 мкФ и 0,25 мГн, АЧХ и ФЧХ показаны на рис. 6 и рис. 7 соответственно.

Рис. 6. АЧХ

Рис. 7. ФЧХ

Поскольку напряжение источника приложено к входу кроссовера, сами напряжения на элементах последовательной цепи (как мы увидим далее) могут изменяться весьма причудливым образом, но их сумма остаётся постоянной и автоматически учитывает все фазовые сдвиги. В случае идеальной (резистивной) нагрузки сдвиг фаз между выходами остаётся постоянным во всей полосе частот и равен 90 град.

Вернёмся к реальным головкам. Тот же фильтр демонстрирует совершенно непривычные АЧХ по полосам и идеальную прямую как результат их совместной работы (рис. 8). То, что было препятствием в работе параллельного фильтра, стало фактором повышения эффективности у последовательного. Когда с ростом частоты растёт индуктивное сопротивление НЧ-головки, сигнал с ещё большей охотой идёт в обход, через конденсатор. Индуктивность фильтра заметно выше индуктивности Зк ВЧ-головки, что также эффективно направляет высокочастотные составляющие спектра сигнала именно к ней. И там, и там крутизна спада АЧХ вблизи частоты разделения близка к 12 дБ на октаву — заметьте, при базовых номиналах элементов, без снижения входного сопротивления!

Рис. 8. АЧХ

ФЧХ с реальными головками уже не выглядит столь же привлекательно (рис. 9), однако и здесь фазовые сдвиги в основном сохраняются постоянными, кроме области разделения полос. Впрочем, «загогулину» на фазовой характеристике легко устранить включением компенсатора Цобеля, тогда и полосовая АЧХ станет более аккуратной (но и крутизна вернётся к 6 дБ на октаву). Однако, в отличие от параллельных фильтров, компенсатор здесь — всего лишь необязательная опция.

Рис. 9. ФЧХ

Остаётся последний штрих — импеданс нагрузки. Согласно канонам расчёта последовательных фильтров, динамические головки должны быть с одинаковым импедансом. Подразумевается, что и отдача у них тоже одинаковая — в противном случае согласующие цепи изменят импеданс. Однако эти ограничения — кажущиеся, если при расчётах для каждого элемента использовать своё значение импеданса: НЧ-головки — для конденсатора, ВЧ-головки — для индуктивности. Получившийся фильтр может иметь непривычные сочетания номиналов, но работать будет не хуже. В качестве примера — фильтр для коаксиальной головки SoundFen D-MAX 4″ (рис. 10). При сопротивлении основной головки 7 Ом высокочастотный изодинамический излучатель с плоской ЗК практически не проявляет индуктивности в полосе ЗЧ, его сопротивление постоянному току всего лишь 2,4 Ом.

Рис. 10. Фильтр для коаксиальной головки SoundFen D-MAX 4

Нетрудно заметить, что последовательный резистор, корректирующий отдачу ВЧ-звена, слабо влияет на АЧХ и не затрагивает частоту разделения (рис. 11).

Рис. 11. АЧХ

Подведём итоги. Последовательный фильтр не чувствителен к реальному импедансу нагрузки и может применяться в случае различного номинального сопротивления головок. В некоторых случаях он может соперничать по эффективности с классическими фильтрами второго порядка при вдвое меньшем числе деталей. Наконец, даже довольно широкая зона совместного действия головок не ухудшает локализацию КИЗ благодаря постоянному сдвигу фаз между полосами. Поэтому последовательный фильтр идеален для применения с коаксиальными головками, но будет не менее полезен и в случае классических двухполосных АС.

Литература

1. Елютин А. Последовательный кроссовер. — URL: http://www.автозвук.рф/az/ 2010/01 /082-krossover. htm (4.10.17).

2. Ким В. Компонентная акустика FOCAL PS 165V. — URL: http://www.автозвук.рф/ az/201 7/09/komponentnaya-akustika-focal-ps-165v1.htm (4.10.17).

Автор: А. Шихатов, г. Москва

Дата публикации: 02.01.2018

Мнения читателей
  • Андрей / 01.04.2019 — 19:15
    Графики явно расходятся с расчетами, поэтому у людей, которые пытаются повторить последовательный фильтр, получается ужасное радио. В формулы надо вставлять 2Z. Тогда последовательный фильтр покажет все преимущества перед параллельным.
  • Дмитрий / 13.12.2018 — 17:15
    Как раз все наоборот
  • ErWik / 29.04.2018 — 19:01
    Последовательный фильтр не имеет шансов перед паралельным, особенно в 3 — полосной системе?

Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:


www.radioradar.net

Акустическая система своими руками\ AKTON

Процесс  создания акустической системы своими руками (далее АС) можно подразделить на несколько основных этапов:

  • Выбор состава динамиков, исходя из требований, предъявляемых к АС,
  • Расчёт акустического оформления,
  • Разработка конструкции и изготовление корпуса АС,
  • Расчёт и изготовление разделительного фильтра,
  • Отладка.

Приступая к конструированию АС, необходимо сформулировать требования, предъявляемые к ней:

  • Назначение и условия эксплуатации,
  • Необходимый уровень звукового давления,
  • Воспроизводимый диапазон частот,
  • Вариант исполнения (со встроенным усилителем или без усилителя),
  • Габариты и допустимый вес.

Также необходимо определиться с типом конструкции:

  • Тип акустического оформления,
  • Количество полос,
  • Конструктивные особенности и дизайн.

На основании этих сведений можно приступать к выбору динамиков и других компонентов системы, производить расчёт акустического оформления и фильтров.

                Критерии выбора динамиков подробно рассматривались здесь. Расчёту фильтров для АС на нашем сайте так же посвящена отдельная статья. В данной же статье мы рассмотрим вопросы расчета и изготовления акустического оформления для АС.

Итак, после выбора динамиков производят расчёт акустического оформления, а затем приступают к разработке конструкции корпуса.

                Расчёт акустического оформления

Напомним, что излучение АС в области НЧ определяется совместной работой НЧ динамика и акустического оформления. Акустическое оформление бывает нескольких типов: открытого, закрытого и фазоинверсного. В статье упор сделан на фазоинверсные системы, поскольку при условии правильного расчёта, они имеют максимальную эффективность излучения НЧ, благодаря чему получили широкое распространение среди систем, предназначенных для профессионального озвучивания.

Расчёт акустического оформления фазоинверсного типа производится по методике, предложенной инженерами Тилем и Смоллом. Согласно этой методике, АС представляет собой фильтр верхних частот.

 Задача расчета АО сводится к определению необходимого внутреннего объёма и частоты настройки фазоинвертора, оптимальные для данного НЧ динамика. Критерии расчёта могут быть различными и зависят, прежде всего, от назначения АС. Системы, предназначенные для озвучивания мероприятий, как правило, должны иметь максимальную эффективность излучения в области НЧ. При этом субъективное ощущение «низов» должно сохраняться по мере добавления мощности. Частоту настройки фазоинвертора для таких АС выбирают обычно порядка 40-50 Гц. К примеру, такие системы с успехом применяются для озвучивания танцполов, где в большей степени нужен удар, чем субниз.

Современные методы расчёта АС подразумевают проведение компьютерного моделирования в специальных программах. Такой подход позволяет оптимизировать АС не только по амплитудно-частотной характеристике звукового давления, но и по целому ряду других параметров. Одной из таких программ является BassBox 6 Pro. Данная программа позволяет произвести комплексный расчёт характеристик АС, представляющей собой НЧ динамик в акустическом оформлении. Методика расчета позволяет найти компромисс между различными требованиями, предъявляемыми к АС, используя метод последовательных приближений.

Рассмотрим основные приёмы работы в программе BassBox:

Вход в программу осуществляется двойным щелчком мыши по соответствующему ярлыку на рабочем столе.

В окне выбора варианта работы (рис.1) выбираем OpenDesignWindow (Открыть проект).

На рис.2 показано главное окно программы.

Программа BassBox позволяет производить работу сразу с несколькими АС, производить их сравнение между собой по различным характеристикам. Данные на каждую АС сохраняются в отельной вкладке, которая называется Design. Проектирование Новой АС начинается с создания новой вкладки, нажав File->NewDesign.

Нажатие кнопки Driver на вкладке Design приводит к открытию окна параметров динамика (рис.3). В нём содержатся все сведения, относящиеся к конкретной модели динамика.

Данные можно занести вручную, но лучше загрузить требуемую модель динамика из базы.

Программа BassBox 6 Pro содержит обширную базу динамиков известных мировых производителей. Существует возможность  дополнить эту базу другими динамиками. Для этого вначале необходимо занести в базу название нового производителя. Для этого нужно открыть в меню Edit->Database->EditCompanyData (рис.4). В поле Name следует указать название фирмы и поставить галочку напротив пункта Manufacturer, по желанию заполнить и другие поля, содержащие сведения о производителе, и затем нажать Save.

После этого следует сохранить в базе новую модель динамика. Для этого вносятся данные на динамик в окно DriverProperties (рис.5).

Во вкладке Description указываются общие сведения о динамике.

Во вкладке Paramerters указываются тиль-смолл параметры динамика (рис.6). При этом не обязательно заполнять все поля параметров, а достаточно указать лишь некоторые из них.  При этом остальные параметры можно рассчитать с помощью встроенного  калькулятора (Calc и CalculateAll).

Все тиль-смолл параметры в динамике взаимосвязаны друг с другом. О наличии или отсутствии противоречий между значениями параметров  свидетельствует цвет сигнального светодиода, находящегося слева от поля параметра. Красный цвет светодиода указывает на сильное взаимное несоответствие параметров, жёлтый – незначительное, зелёный – отсутствие несоответствия.

Также можно заполнить вкладку Dimension, которая содержит сведения о геометрических размерах динамика (рис.7). Эти сведения будут автоматически использованы программой, когда будет необходимо рассчитать свободный внутренний объём корпуса.

После заполнения указанных вкладок следует нажать AddthisDrivertoDatabase (Добавить этот динамик в базу данных).

Для извлечения нужного динамика из базы данных нужно нажать LoadfromDatabase (Загрузить из базы данных) в окне DriverProperties (рис.3). Откроется окно, показанное на рис.8.  В выпадающих списках следует выбрать CompanyName и DriverFound, после чего нажать Load.

После загрузки основных параметров НЧ динамика, требуется указать количество устанавливаемых динамиков, способ установки, а также схему взаимного подключения, если количество динамиков больше одного.  Для этого предназначена вкладка Configuration (рис.9).

Для задания начальных параметров акустического оформления во вкладке проекта Design1 следует нажать Box. В результате этого откроется окно BoxProperties.

Вкладка Descriptionпредназначена для сохранения основных сведений об АС.

Параметры корпуса АС задаются во вкладках BoxDesign (см. рис.10) и Vents (см. рис.11). В первой указываются тип акустического оформления(Type = Vented Box — фазоинвертор), объём (Vb) или размеры корпуса (Dimensions) и частота настройки фазоинвертора fb.

Во вкладке Vents — указываются конструктивные параметры портов ФИ.

Задав требуемые параметры динамика и корпуса можно произвести пробное построение графических характеристик. Для этого следует нажать Plot на вкладке проекта Design. Откроется окно, показанное на рис.12.  Дальше эти характеристики можно оптимизировать, изменяя параметры акустического оформления (размеры корпуса и фазоинвертора).

Вкратце рассмотрим наиболее важные характеристики и критерии их оценки:

  • NAАЧХ уровня звукового давления на расстоянии 1м, при подведении мощности 1Вт.

    Нужно стремиться к достижению наибольшей равномерности;

  • CAАЧХ уровня звукового давления на расстоянии 1м, при подведении номинальной мощности.

    Показывает величину звукового давления, который способна обеспечить АС.

  • AP– Акустическая мощность.

    Нужно стремиться уменьшить глубину провала в области НЧ и не допускать провала более 3-4 дб;

  • CD– Амплитуда смещения диффузора (звуковой катушки).

    Нужно стремится не допускать превышения максимальной амплитуды смещения звуковой катушки больше Xmax в границах диапазона частот, воспроизводимых акустической системой;

  • VV– Скорость потока воздуха в трубах фазоинвертора.

    Нужно стремится к уменьшению скорости воздушного потока в трубе ФИ, не более 15м/с.

Изготовление АС

Рассмотрим некоторые особенности изготовления корпусов АС:

В большинстве случаев корпуса АС изготавливают из фанеры толщиной 15 и 18 мм.

Конструкция корпуса должна быть прочной и герметичной. Следует учитывать, что в процессе работы АС внутри корпуса создаётся повышенное давление. Данное обстоятельство приводит к тому, что в негерметичном корпусе возникают потери, которые проявляются в том, что из щелей начинает просачиваться воздух. Это может проявляться в появлении дополнительных призвуков при работе АС. Для того, чтобы этого избежать, все соединения должны быть тщательно проклеены столярным клеем. Панели скручиваются саморезами через каждые 7-10см. Головки саморезов заглубляются и, впоследствии, зашпаклёвываются.

Панели значительных размеров желательно оснастить рёбрами жёсткости, т.к. в недостаточно укреплённых панелях может возникнуть колебательный процесс, приводящий к потере чёткости воспроизведения низких частот. Нежелательно использовать в конструкции съёмную крышку, т.к. данное конструктивное решение, как правило, также приводит к снижению герметичности и жёсткости корпуса.

Все динамики с открытой тыльной стороной, входящие в состав АС, кроме НЧ динамиков, необходимо изолировать от внутреннего объёма корпуса для исключения влияния на них НЧ излучения. Если планируется оснастить АС встроенным усилителем, то под него желательно выделить в корпусе АС отдельную камеру. Особенно это касается усилителей с открытым печатным монтажом. При проектировании АС следует обеспечить возможность вентиляции компонентов системы, и принять меры для создания более благоприятных условий их работы. Напомним, что при продолжительной работе на высокой мощности нагрев магнитной цепи динамика может достигать 70 градусов.

Подводя итог всему вышесказанному, ещё раз напомним, что для изготовления высококачественной АС необходимы не только качественные динамики. Важно правильно спроектировать и изготовить корпус АС,  сделать рациональный выбор драйверов  (ВЧ-головок) и произвести расчёт разделительного фильтра. Следует помнить, что параметры корпуса АС фазоинверсного типа рассчитываются применительно к конкретной модели НЧ динамика. Можно самостоятельно произвести расчёт фазоинвертора на основании Тиль-смолл параметров динамика, используя специализированные программы и методики. На основании рассчитанных данных об объёме корпуса и параметрах фазоинвертора спроектировать корпус АС. Для производимых динамиков, инженерами фирмы АКТОН спроектированы АС, подходящие для большинства задач озвучивания. Корпуса этих АС оптимизированы по ряду параметров, таких как максимальная отдача на низких частотах, наилучшие условия тепловой конвекции динамиков внутри корпуса, формо-габаритные показатели, удобство транспортирования и др. Разработана документация, содержащая набор чертежей на изготовление корпусов АС. Все АС прошли испытания в условиях реальной работы. Согласно документации, корпуса АС изготавливаются из стандартной фанеры. Наружная поверхность корпуса может быть окрашена краской или обтянута карпетом. Техническая документация на корпуса акустических систем в формате PDF размещена на нашем сайте в свободном доступе и по ней вы можете изготовить акустическую систему своими руками.

akton-lab.ru

Расчет фильтров для акустических систем

В качественной аудиосистеме основная роль отводится акустическим системам стерео- или многоканального типа.

Поиск данных по Вашему запросу:

Расчет фильтров для акустических систем

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.
По завершению появится ссылка для доступа к найденным материалам.

Благодаря им электрические импульсы преобразуются в звуки акустического диапазона разной частоты. Кому-то важно чистое и максимально приближенное к оригиналу звучание музыкальных инструментов, а для кого-то на первом месте стоит голос вокалиста, актеров фильма или преподавателя из обучающих видеокурсов.

Насколько важна акустическая система?

Она является базой для всей аудиосистемы.

Предпочтительней начинать подбор подходящей аудиосистемы именно с акустики.

Причем для каждого будут стоять в приоритете разные варианты оборудования. На выбор влияют такие факторы, как “заточенность” такой системы под те жанры, которые по нраву будущему владельцу и ценовая категория.

Любителям максимально точного звука подойдут акустические системы hi-fi.
Несмотря на мифы, далеко не каждая дорогая аудиотехника показывает упомянутые возможности.

В случае, когда на первом месте стоит эксклюзив, рынок аудиосистем предоставляет фанатам высококачественного звука аудиоаппаратуру класса Hi-End.

Справка! High End – это термин маркетологов, указывающий на элитность программного и аппаратного обеспечения, позволяющего усилить звук. Соответственно, цена на подобные аудиосистемы не пугает только ярых фанатов музыки или любителей несерийной звуковой аппаратуры, обладающих хорошим финансовым состоянием.

Типы акустических систем

Существует несколько категорий акустических систем, каждая из которых способна удовлетворить определенные запросы покупателя. По базовым отличиям выделяют 5 базовых классификационных групп.

  • Принцип установки аппаратуры. Акустические системы делятся на напольные и полочные в зависимости от размера. Первые предпочтительны для крупных помещений, таких как кинотеатры. Использование их дома для телевизора или компьютера нерентабельно. Оптимальнее использовать полочные колонки.
  • Количество динамиков. Иначе это называется делением по количеству полос звука. Производитель может включать от 1 до 7 динамиков. Наиболее оптимальный по бюджету вариант – 3 динамика, где одна полоса отвечает за низкие частоты, другая за средние и третья за верхние.
  • Наличие или отсутствие усилителя звука в колонках. В первом случае они называются активными, во втором – пассивными. Гораздо чаще встречаются пассивные варианты. Они предпочтительнее для аудиофилов за счет разделительного фильтра и, соответственно, более высокого качества звука за счет разделения частот.
  • По конструкции динамики различаются на планарные, динамические, электростатические и прочие типы, а в некоторых случаях аппаратура не попадает ни под одну категорию.
  • Оформлением. У колонок может быть закрытый или открытый корпус, хорошим дополнением будет фазоинвентор – труба в колонке, настроенная на определенную частоту и усиливающая звуки в ее пределах. Благодаря такому отверстию воспроизводятся более низкие частоты, чем у обычной аппаратуры. Если трубу изгибать внутри корпуса, увеличивая ее длину, мощность и диапазон воспроизводимых низких частот, получатся колонки с акустическим лабиринтом. Они более дорогие и требуют большей точности при изготовлении.

Области использования акустических систем

Первая и основная сфера применения – домашнее пользование.

Сюда включается потребность в качественном звуке для более полного погружения в видеоигры, мощность и сила звука для просмотра телевизора, чистота и приближенность к оригинальному звучанию для любителей музыки различных жанров.

Любителям качественной музыки в автомобиле рекомендуется приобретать многополосные аудиосистемы.

Причем для лучшего звучания в передней части машины располагаются высокочастотные и среднечасттные элементы Car-системы. Низкочастотным колонкам отводится задняя часто авто.

Концертные варианты акустических систем призваны не только обеспечить доступ звука в любую точку обширного помещения или зала, но и удовлетворить требования многих слушателей к качеству звучания. Наиболее распространенные наборы аудиотехники для концертов включают в себя мониторы для передачи нюансов звука, фронтальные громкоговорители, дающие прямой звук с высокой плотностью, центральные громкоговорители для передачи вокала.

Расчет фильтров для акустических систем

Отдельная категория – студии звукозаписи. Для них предпочтительны студийные мониторы, которые способны воспроизвести звук со всеми его плюсами и минусами, что способствует, в конечном итоге, созданию более чистого и достоверного по своему звучанию трека.

Вне зависимости от того, где будет использоваться акустическая система, рекомендуется предварительно определить критерии, по которым будет происходить отбор подходящей аппаратуры.

С их помощью удастся получить аппаратуру, которая максимально сможет приблизить вас к звуку вашей мечты.

all-audio.pro