Светодиод плюс минус – как определить плюс и минус

Содержание

где находится плюс и минус, порядок и инструменты для определения

Содержание статьи:

Для устройства точечного освещения мастера часто используют светодиоды. Эти маленькие лампочки при минимальном потреблении электроэнергии способны выдавать хорошую производительность. К тому же служат гораздо дольше обычных ламп накаливания. Но при монтаже цепи освещения важно учитывать полярность светодиода. Иначе он просто не сработает на подаваемый ток или быстро выйдет из строя.

Подробно о полярностях светодиодных ламп

Несоблюдение полярности и неправильное включение может привести к поломке светодиода

Работают такие маленькие точки освещения по принципу протекания через них тока только в прямом направлении. От этого возникает оптическое излучение лампочки. Если полярности не соблюсти при подключении, ток не сможет проложить себе прямой путь по цепи. Соответственно, прибор освещения не заработает.

Таким образом, перед установкой светодиода мастер должен узнать расположение его катода и анода («+» и «—»). Сделать это не сложно, зная определенные принципы визуальной оценки лампочки или работы электроприборов в сочетании с ЛЕД-элементом.

Способы выявления полярности

Определение полярности светодиода по внешнему виду

Выделяют несколько основных методов, по которым можно выяснить, где плюс у светодиода, а где минус. Самый простой способ — визуальный осмотр элемента и определение полярностей по внешнему виду.

Для новых LED-элементов характерной чертой является длина ножек. Анод (плюс) всегда будет длиннее катода (минуса). Как памятка мастеру — первая литера «К» от слова «катод» означает «короткий». Можно оценить визуально и колбу лампочки. Если она хорошо просматривается, мастер увидит так называемую «чашечку». В ней расположен кристаллик. Это и есть катод.

Нелишне обратить внимание и на ободок LED-детали. Многие производители предпочитают проставлять специальную маркировку-обозначение напротив катода. Она может выглядеть как засечка (риска), маленький срез или точка. Не увидеть их сложно.

Новый вариант маркировки светодиодов — значки «+» и «-» на цоколе. Таким образом производитель облегчает мастеру работу, помогает определять полярности. Иногда возможна маркировка зеленой линией напротив плюса.

Использование мультиметра

Определение полярности светодиода при помощи мультиметра

Если определить светодиод – анод/катод – визуально не получается, можно использовать специальное оборудование. Таковым является мультиметр. Вся процедура проверки займет не более минуты. Действуют таким образом:

  • На аппарате устанавливают режим измерения сопротивления.
  • Щупы мультиметра аккуратно соединяют с ножками LED-лампочки. Предположительный плюс ставят к красному проводку. Минус — к черному. При этом касание делают кратковременным.
  • Если контакты установлены правильно, аппарат покажет сопротивление, близкое к 1,7 кОм. При неправильном подключении ничего не произойдет.

Мультиметр можно эксплуатировать и в режиме проверки диодов. Здесь при правильном соблюдении полярностей лампочка даст свет. Особенно хорошо такая рекомендация работает с диодами зеленого и красного цветов. Белые и синие требуют напряжения более 3В, поэтому даже при правильном подключении могут не засветиться.

Чтобы проверить элементы этих колеров через мультиметр, можно применить режим определения характеристик транзистора. Он есть на всех современных моделях приборов. Здесь действуют так:

  • Выставляют нужный режим.
  • Лампочку ножками вставляют в специальные пазы С (коллектор) и Е (эмиттер). Они предназначены для транзистора в нижней части устройства.

Если минус светодиода подключен к коллектору, лампочка даст свет.

Метод подачи напряжения

Определение полярности светодиода методом подачи напряжения

Чтобы определить полярности светодиода, можно использовать для этого источники напряжения (аккумуляторная батарейка). Но лучше всего применить лабораторный блок питания с наличием плавной регулировки напряжения, а также вольтметр постоянного тока.

Действуют таким образом:

  • ЛЕД-лампочку подключают к источнику питания и медленно поднимают напряжение.
  • Если полярности элемента соблюдены правильно, светодиод даст колер.
  • Если при достижении 3-4 В лампочка так и не засветится, плюс и минус подключены неверно.

При срабатывании лампочки не нужно продолжать увеличивать напряжение. Элемент от таких экспериментов просто сгорит.

Если у мастера нет блока питания или батареи на 5-12 В, можно последовательно соединить между собой несколько элементов по 1,5 В. Пригодятся здесь аккумулятор от мобильного телефона или авто. Но стоит помнить: при подключении LED-элементов к мощным устройствам рекомендуется параллельно применять токоограничивающий резистор.

Определение полярности с помощью техдокументации

Если светодиод только что купленный, к нему прилагается техническая документация от производителя. Здесь указаны основные данные о лампочках:

  • масса;
  • цоколевка светодиодов;
  • габариты;
  • электрические параметры:
  • иногда распиновка (схема подключения).

При покупке элементов в розницу можно попросить продавца дать ознакомиться с информацией, чтобы не мучиться дома и не искать, где у светодиодов плюс и минус. По бумагам делается соответствующий вывод.

Когда требуется определение полярностей LED-лампочек

Применение светодиодов в декорировании улицы

Маленькие светодиоды широко применяются в различных областях, связанных с освещением и индикацией:

  • уличное освещение: рекламные вывески, парковые подсветки;
  • бытовые элементы искусственного света: освещение рабочих панелей, периметра подвесного потолка, встроенной мебели и др.;
  • индикация электроприборов режимов вкл./выкл.: самодельные умные розетки и т.д.;
  • детские игрушки;
  • пульты ДУ и многое другое.

При выходе из строя лампочки мастер прибегает к её замене. При этом требуется определить анод и катод светодиода. В противном случае элемент просто не выдаст освещения.

На различных форумах есть информация о том, что нет смысла искать, где светодиод «прячет» плюс и минус. Нередки суждения, что лампочку можно подключать без соблюдения полярностей. Здесь есть нюансы. Даже если мастеру повезет и элемент даст свет, в конечном счете это приведет к таким последствиям:

  • Ресурс работы неправильно подключенной лампочки, заявленный производителем, сократится в разы. К примеру, при гарантированном режиме 45000 часов светодиод отработает в два раза меньше.
  • Производительность (интенсивность, яркость света) снизится в разы от той, которая должна быть. В общей цепи это будет видно невооруженным глазом.

Подобные игры с полярностями и вероятность работы диодного элемента напрямую зависят от характеристик конкретного полупроводника и напряжения пробоя.

Средняя продолжительность LED-лампочек составляет 10 лет. При их влагозащите IP67 и более элементы можно смело использовать при устройстве уличного освещения. Чтобы светодиоды работали заявленный срок, стоит принципиально соблюдать полярности при их подключении и определяться с ними до проведения ремонтных работ, а не после.

strojdvor.ru

Полярность светодиода • Самоделки своими руками

Электрический ток, проходящий через светодиод в прямом направлении, вызывает излучение. Обратное же его подключение к электрической цепи не даст никакого эффекта и может даже привести к поломке светодиода. Поэтому для того чтобы предотвратить неисправности в работе или поломку светодиода, необходимо его протестировать — определить полярность светодиода. Ниже приведены методы определения вывода минуса и плюса, которые часто применяются для маломощных диодов диаметром от 3.5 до 10 мм.

Методы определения полярности светодиода:

1) Метод визуального различия выводов светодиода

Новый светодиод имеет два вывода (ножки), один из них немного длиннее другого. Длинный вывод (ножка) – это анод, его нужно подключать к плюсу источника питания. Короткий вывод (ножка) – это катод, который подсоединяют к минусу.

Если светодиод был уже в эксплуатации, то он имеет укороченные выводы одной длины. В таком случае можно определить плюс/минус путём рассмотрения кристалла в пластиковой линзе. Анод (плюс) выполнен меньшим размером контакта по сравнению с катодом. Катод (минус) выполнен в виде флажка, на котором расположен кристалл.

2) Метод определения полярности с помощью источника питания

Также для быстрого тестирования можно воспользоваться источником тока с напряжением от 1,5 до 6 вольт (батарейка) и пригодится резистор сопротивлением 300–470 Ом любой мощности. Резистор необходимо припаять к одной из ножек. Затем нужно коснутся светодиодом контактов источника питания, при правильном подключении светодиод будет светиться. Отсюда будет известно, где находится анодом (плюс), а где катодом (минус).

3) Метод определения полярности с помощью мультиметра

Мультиметр – тестер, с помощью него можно диагностировать электронные компоненты, выявлять короткое замыкание, измерять электрические параметры и т.п. Проверка мультиметром светодиода позволяет легко определить полярность (анод, катод) и его целостность. Устанавливаем переключатель мультиметра в положение «прозвонка, проверка диода». Приложив красный щуп к аноду, а чёрный к катоду, светодиод начнет светится.

Спасибо, что дочитали до конца. Поделитесь с друзьями этими полезными способами, если данная статья вам помогла определить полярность светодиодов.

samodelof.ru

Достоинства и недостатки светодиодов, как источников света. Плюс и минус светодиода

Как определить полярность светодиода — 2 простых способа

Светодиод – полупроводниковый оптический прибор, пропускающий электрический ток в прямом направлении. При подключении инверсионно тока в цепи не будет, и, естественно, не произойдет свечения. Чтобы этого не случилось, нужно соблюдать полярность светодиода.

Светодиод на схеме обозначается треугольником в кружке с поперечной чертой – это катод, который имеет знак «-» (минус). С противоположной стороны находится анод, имеющий знак «+» (плюс).

Обозначение светодиода в схеме

В монтажных схемах должна присутствовать цоколевка (или распиновка) выводов для идентификации всех контактов соединения.

Как определить полярность диода, держа в руках крохотную лампочку? Ведь для правильного подключения нужно знать, где у него минус, а где плюс. Если распайка выводов будет попутана, схема не заработает.

Визуальный метод определения полярности

Первый способ определения – визуальный. У диода два вывода. Короткая ножка будет катодом, анод у светодиода всегда длиннее. Запомнить легко, так как присутствует начальная буква «к» и в том и другом слове.

Длина выводов светодиода

Когда оба вывода согнуты или прибор снят с другой платы, их длину бывает сложно определить. Тогда можно попробовать разглядеть в корпусе небольшой кристалл, который выполнен из прозрачного материала. Он располагается на небольшой подставке. Этот вывод соответствует катоду.

Также катод светодиода можно определить по небольшой засечке. В новых моделях светодиодных лент и ламп применяются полупроводники для поверхностного монтажа. Имеющийся ключ в виде скоса указывает на то, что это отрицательный электрод (катод).

Иногда на светодиодах стоит маркировка «+» и «-». Некоторые производители отмечают катод точкой, иногда линией зеленого цвета. Если нет никакой отметки или ее трудно разглядеть из-за того, что светодиод был снят с другой схемы, нужно произвести тестирование.

Тестирование с применением мультиметра или аккумулятора

Хорошо, если под рукой есть мультиметр. Тогда определение полярности светодиода произойдет за одну минуту. Выбрав режим омметра (измерение сопротивлений), нетрудно произвести следующее действие. Приложив щупы к ножкам светодиода, производится замер сопротивления. Красный провод должен подключаться к плюсу, а черный – к минусу.

При правильном включении прибор выдаст значение, примерно равное 1,7 кОм, и будет наблюдаться свечение. При обратном включении на дисплее мультиметра отобразится бесконечно большая величина. Если проверка показывает, что в обе стороны диод показывает малое сопротивление, то он пробит, и его следует утилизировать.

Определение полярности светодиода при помощи мультиметра

В некоторые приборах существует специальный режим. Он предназначен для проверки полярности диода. Прямое включение будет сигнализировать подсветкой диода. Этот метод подходит для красных и зеленых полупроводников.

Синие и белые светодиоды выдают индикацию только при напряжении более 3 вольт, поэтому нельзя достигнуть нужного результата. Для их тестирования можно использовать мультиметры типа DT830 или 831, в которых предусмотрен режим определения характеристик транзисторов.

Используя PNP-часть, один вывод светодиода вставляют в коллекторное гнездо, второй – в эмиттерное отверстие. В случае прямого подключения появится индикация, инверсионное включение не даст подобного эффекта.

Как определить полярность светодиода, если под рукой нет мультиметра? Можно прибегнуть к обычной батарейке или аккумулятору. Для этого понадобится еще любой резистор. Это нужно для защиты светодиода от пробоя и выхода из строя. Последовательно соединенный резистор, величина сопротивления которого должна быть примерно 600 Ом, позволит ограничить ток в цепи.

Проверка полярности при помощи источника питания

И еще несколько советов:

  • если известна полярность светодиода, впредь нельзя подавать на него обратное напряжение. В противном случае есть вероятность пробоя и выхода из строя. При правильной эксплуатации светодиод будет служить исправно, так как он долговечен, а также его корпус хорошо защищен от попадания влаги и пыли;
  • некоторые типы светодиодов чувствител

10i5.ru

Распиновка стабилитронов. Полярность светодиода: как определить где плюс, а где минус. Плюс и минус у светодиода

Определяем полярность светодиода. Где плюс и минус у LED

Главная » Новости

Опубликовано: 01.09.2018

Полярность светодиода. Где плюс (анод) и минус (катод) у светодиода?

Любой любитель самоделок и электроники используют диоды в качестве индикаторов, или в качестве световых эффектов и освещения. Чтобы Led прибор светился, нужно его правильно подключить. Вам уже известно, что диод проводит ток только в одну сторону . Поэтому прежде чем паять, нужно определить где анод и катод у светодиода.

Вы можете встретить два обозначения LED на принципиальной электрической схеме.


Треугольная половина обозначения – анод, а вертикальная линия – катод. Две стрелки обозначают то, что диод излучает свет. Итак, на схеме указывается анод и катод диода, как найти его на реальном элементе?

Определение полярности светодиодов

Цоколевка 5мм диодов

Чтобы подключить диоды как на схеме нужно определиться где у светодиода плюс и минус. Для начала рассмотрим на примере распространённых маломощных 5 мм диодов.

На рисунке выше изображен: А — анод, К — катод и схематическое обозначение.

Как определить полярность светодиода?

Обратите внимание на колбу. В ней видно две детали – это небольшой металлический анод, и широкая деталь похожая на чашу – это катод. Плюс подключается к аноду, а минус к катоду.

Если вы используете новые LED элементы, вам еще проще определить их цоколевку. Определить полярность светодиода поможет длина ножек. Производители делают короткую и длинную ножку. Плюс всегда длиннее минуса!

Если вы паяете не новый диод, тогда плюс и минус у него одинаковой длины. В таком случае определить плюс и минус поможет тестер или простой мультиметр.

Как определить анод и катод у диодов 1Вт и более

В фонариках и прожекторах 5мм образцы используются всё реже, на их смену пришли мощные элементы мощностью от 1 ватта или SMD. Чтобы понять где плюс и минус на мощном светодиоде, нужно внимательно посмотреть на элемент со всех сторон.

Самые распространённые модели в таком корпусе имеют мощность от 0,5 ватт. На рисунке красным обведена пометка о полярности. В данном случае значком «плюс» помечен анод у светодиода 1Вт.

Как узнать полярность SMD?

SMD активно применяются практических в любой технике:


Лампочки; светодиодные ленты; фонарики; индикация чего-либо.

Их внутренностей разглядеть не получится, поэтому нужно либо использовать приборы для проверки, либо полагаться на корпус светодиода.

Например, на корпусе SMD 5050 есть метка на углу в виде среза. Все выводы, расположенные со стороны метки – это катоды. В его корпусе расположено три кристалла, это нужно для достижения высокой яркости свечения.

Подобное обозначение у SMD 3528 тоже указывает на катод, взгляните на эту фотографию светодиодной ленты.

Маркировка выводов SMD 5630 аналогична – срез указывает на катод. Его можно распознать еще и по тому, что теплоотвод на нижней части корпуса смещён к аноду.

Как определить плюс на маленьком SMD?

В отдельных случаях (SMD 1206) можно встретить еще один способ обозначения полярности светодиодов: с помощью треугольника, П-образной или Т-образной пиктограммы на поверхности диода.

Выступ или сторона, на которую указывает тр

aboutplant.ru

Cветодиодные лампы — плюсы и минусы осветительных приборов. Плюс и минус у светодиода

как определить где плюс, а где минус?

Известно, что светодиод в рабочем состоянии пропускает ток только в одном направлении. Если его подключить инверсионно, то постоянный ток через цепь не пройдет, и прибор не засветится. Происходит это потому, что по своей сущности прибор является диодом, просто не каждый диод способен светиться. Получается, что существует полярность светодиода, то есть он чувствует направление движения тока и работает только при определенном его направлении.Определить полярность прибора по схеме не составит труда. Светодиод обозначают треугольником в кружке. Треугольник упирается всегда в катод (знак «−», поперечная черточка, минус), положительный анод находится с противоположной стороны.
Но как определить полярность, если вы держите в руках сам прибор? Вот перед вами маленькая лампочка с двумя выводами-проводками. К какому проводку подключать плюс источника, а к какому минус, чтобы схема заработала? Как правильно установить сопротивление где плюс?

Определяем зрительно

Первый способ – визуальный. Предположим, вам необходимо определить полярность абсолютно нового светодиода с двумя выводами. Посмотрите на его ножки, то есть выводы. Один из них будет короче другого. Это и есть катод. Запомнить, что это катод можно по слову «короткий», поскольку оба слова начинаются на буквы «к». Плюс будет соответствовать тому выводу, который длиннее. Иногда, правда, на глаз определить полярность сложновато, особенно когда ножки согнуты или поменяли свои размеры в результате предыдущего монтажа.

Глядя в прозрачный корпус, можно увидеть сам кристаллик. Он расположен как будто в маленькой чашечке на подставке. Вывод этой подставки и будет катодом. Со стороны катода также можно увидеть небольшую засечку, как бы срез.

Но не всегда эти особенности заметны у светодиода, поскольку некоторые производители отходят от стандартов. К тому же есть много моделей, изготовленных по другому принципу. На сложных конструкциях сегодня производитель ставит значки «+» и «−», делают отметку катода точкой или зеленой линией, чтобы все было предельно понятно. Но если таких отметок нет по каким-то причинам, то на помощь приходит электрическое тестирование.

Применяем источник питания

Более эффективный способ определить полярность – подключить светодиод к источнику питания. Внимание! Выбирать надо источник, напряжение которого не превышает допустимое напряжение светодиода. Можно соорудить самодельный тестер, используя обычную батарейку и резистор. Это требование связано с тем, что при обратном подключении светодиод может перегореть или ухудшить свои световые характеристики.

Некоторые говорят, что подключали светодиод и так и сяк, и он от этого не портился. Но все дело в предельном значении обратного напряжения. К тому же, лампочка может сразу и не погаснуть, но срок ее работы уменьшится, и тогда ваш светодиод проработает не 30-50 тысяч часов, как указано в его характеристиках, а в несколько раз меньше.

Если мощности элемента питания для светодиода не хватает, и прибор не светится, как вы его не подключаете, то можно соединить несколько элементов в батарею. Напоминаем, сто элементы соединяются последовательно плюс к минусу, а минус к плюсу.

Применение мультиметра

Существуют прибор, который называется мультиметром. Его с успехом можно использовать, чтобы узнать, куда подключать плюс, а куда минус. На это уходит ровным счетом одна минута. В мультиметре выбирают режим измерения сопротивления и прикасаются щупами к контактам светодиода. Красный провод указывает на подключение к плюсу, а черный – к минусу. Желательно, чтобы касание было кратковременным. При обратном включении прибор ничего не покажет, а при прямом включении (плюс к плюсу, а минус к минусу) прибор покажет значение в районе 1,7 кОм.

Можно также включать мультиметр на режим проверки диода. В этом случае при прямом включении светодиодная лампочка будет светиться.

Данный способ самый эффективный для лампочек, излучающих красный и зеленый свет. Светодиод, дающий синий или белый свет рассчитан на напряжение, большее 3 вольт, поэтому не всегда при подключении к мультиметру он будет светиться даже при правильной полярности. Из этой ситуации можно легко выйти, если использовать режим определения характеристик транзисторов. На современных моделях, таких как DT830 или 831, он присутствует.

Диод вставляют в пазы специальной колодки для транзисторов, которая обычно расположена в нижней части прибора. Используется часть PNP (как для транзисторов соответствующей структуры). Одну ножку светодиода засовывают в разъем С, который соответствует коллектору, вторую ножку – в разъем Е, соответствующий эмиттеру. Лампочка засветится, если катод (минус), будет подключен к коллектору. Таким образом, полярность определена.

le-diod.ru

Как определить полярность светодиода — 2 простых способа

les66.ru

Обозначение разных типов диодов на схеме. Диод на схеме где анод и где катод

Назначение диода, анод диода, катод диода, как проверить диод мультиметром

Назначение диода — проводить электрический ток только в одном направлении. Когда-то давно применялись ламповые диоды. Но сейчас используются в основном полупроводниковые диоды. В отличие от ламповых они значительно меньше по размеру, не требуют цепей накала и их очень просто соединять различным образом.

Условное обозначениедиода на схеме

На рисунке показано условное обозначение диода на схеме. Буквами А и К соответственно обозначены анод диода и катод диода. Анод диода — это вывод, который подключается к положительному выводу источника питания, непосредственно или через элементы схемы. Катод диода — это вывод из которого выходит ток положительного потенциала и далее через элементы схемы попадает на отрицательный электрод источника тока. Т.е. ток через диод идёт от анода к катоду. А в обратном направлении диод ток не пропускает. Если каким-то из своих выводов диод подключается к источнику переменного напряжения, то на другом его выводе получается постоянное напряжение с полярностью, зависящей от того, как диод подключен. Если он подключен анодом к переменному напряжению, то с катода мы получим положительное напряжение. Если он подключен катодом, то с анода будет получено соответственно отрицательное напряжение.

Как проверить диод мультиметром

Выводы диода

Как проверить диод мультиметром или тестером — такой вопрос встаёт тогда, когда есть подозрение, что диод неисправен. Но, ответ на этот вопрос даёт ещё один ответ, где у диода анод, а где катод. Т.е. если мы изначально не знаем цоколёвку диода, то просто ставим мультиметр или тестер на прозвонку диодов (или на измерение сопротивления) и по очереди прозваниваем диод в обоих направлениях. Если диод исправен, наш прибор будет показывать прохождение тока только в одном из вариантов. Если диод пропускает ток в обоих вариантах — диод пробит. Если он не пропускает ни в каком варианте, диод перегорел и также неисправен. В случае исправного диода, когда он проводит ток, смотрим на клеммы прибора, тот вывод диода, что подключен к положительному выводу тестера, является анодом диода, а тот, что к отрицательному — катодом диода. Проверка диодов очень похожа на проверку транзисторов.

m.katod-anod.ru

Назначение диода, анод диода, катод диода, как проверить диод мультиметром

Назначение диода — проводить электрический ток только в одном направлении. Когда-то давно применялись ламповые диоды. Но сейчас используются в основном полупроводниковые диоды. В отличие от ламповых они значительно меньше по размеру, не требуют цепей накала и их очень просто соединять различным образом.

Условное обозначениедиода на схеме

На рисунке показано условное обозначение диода на схеме. Буквами А и К соответственно обозначены анод диода и катод диода. Анод диода — это вывод, который подключается к положительному выводу источника питания, непосредственно или через элементы схемы. Катод диода — это вывод из которого выходит ток положительного потенциала и далее через элементы схемы попадает на отрицательный электрод источника тока. Т.е. ток через диод идёт от анода к катоду. А в обратном направлении диод ток не пропускает. Если каким-то из своих выводов диод подключается к источнику переменного напряжения, то на другом его выводе получается постоянное напряжение с полярностью, зависящей от того, как диод подключен. Если он подключен анодом к переменному напряжению, то с катода мы получим положительное напряжение. Если он подключен катодом, то с анода будет получено соответственно отрицательное напряжение.

Как проверить диод мультиметром

Выводы диода

Как проверить диод мультиметром или тестером — такой вопрос встаёт тогда, когда есть подозрение, что диод неисправен. Но, ответ на этот вопрос даёт ещё один ответ, где у диода анод, а где катод. Т.е. если мы изначально не знаем цоколёвку диода, то просто ставим мультиметр или тестер на прозвонку диодов (или на измерение сопротивления) и по очереди прозваниваем диод в обоих направлениях. Если диод исправен, наш прибор будет показывать прохождение тока только в одном из вариантов. Если диод пропускает ток в обоих вариантах — диод пробит. Если он не пропускает ни в каком варианте, диод перегорел и также неисправен. В случае исправного диода, когда он проводит ток, смотрим на клеммы прибора, тот вывод диода, что подключен к положительному выводу тестера, является анодом диода, а тот, что к отрицательному — катодом диода. Проверка диодов очень похожа на проверку транзисторов.

katod-anod.ru

Определяем полярность светодиода. Где плюс и минус у LED

Любой любитель самоделок и электроники используют диоды в качестве индикаторов, или в качестве световых эффектов и освещения. Чтобы Led прибор светился, нужно его правильно подключить. Вам уже известно, что диод проводит ток только в одну сторону. Поэтому прежде чем паять, нужно определить где анод и катод у светодиода.

Вы можете встретить два обозначения LED на принципиальной электрической схеме.

Треугольная половина обозначения – анод, а вертикальная линия – катод. Две стрелки обозначают то, что диод излучает свет. Итак, на схеме указывается анод и катод диода, как найти его на реальном элементе?

Цоколевка 5мм диодов

Чтобы подключить диоды как на схеме нужно определиться где у светодиода плюс и минус. Для начала рассмотрим на примере распространённых маломощных 5 мм диодов.

На рисунке выше изображен: А — анод, К — катод и схематическое обозначение.

Обратите внимание на колбу. В ней видно две детали – это небольшой металлический анод, и широкая деталь похожая на чашу – это катод. Плюс подключается к аноду, а минус к катоду.

Если вы используете новые LED элементы, вам еще проще определить их цоколевку. Определить полярность светодиода поможет длина ножек. Производители делают короткую и длинную ножку. Плюс всегда длиннее минуса!

Если вы паяете не новый диод, тогда плюс и минус у него одинаковой длины. В таком случае определить плюс и минус поможет тестер или простой мультиметр.

Как определить анод и катод у диодов 1Вт и более

В фонариках и прожекторах 5мм образцы используются всё реже, на их смену пришли мощные элементы мощностью от 1 ватта или SMD. Чтобы понять где плюс и минус на мощном светодиоде, нужно внимательно посмотреть на элемент со всех сторон.

Самые распространённые модели в таком корпусе имеют мощность от 0,5 ватт. На рисунке красным обведена пометка о полярности. В данном случае значком «плюс» помечен анод у светодиода 1Вт.

Как узнать полярность SMD?

SMD активно применяются практических в любой технике:

  • Лампочки;
  • светодиодные ленты;
  • фонарики;
  • индикация чего-либо.

Их внутренностей разглядеть не получится, поэтому нужно либо использовать приборы для проверки, либо полагаться на корпус светодиода.

Например, на корпусе SMD 5050 есть метка на углу в виде среза. Все выводы, расположенные со стороны метки

xn—-7sbeb3bupph.xn--p1ai

А как определить где в светодиоде плюс,а где минус??

та ножка которая идёт на более большой электрод обычно + должно быть видно насквозь. Но по большому счету только при помощи маленькой батарейки все они разные эти светодиоды

один «усик» рядом с пластмассовой оболочкой может быть «ктрестиком» а второй ровным

подключая в одном положении загорится в другом нет только напругу нужно четко соблюдать а то спалить светодиод как два пальца

При прозвонке тестером ОНИ светятся. А щупы на тестере ПРОМАРКИРОВАНЫ ..))))

все светодиоды разные, у некоторых корпус слегка сточен у катода. В тестерах типа DT830 есть режим проверки диодов (ток там мизерный так что проверять можно смело) , прикладываешь щупы, и при верной полярности он слегка засветится. Дешевые стрелочные не пойдут, там одна батарейка всего на 1,5в . Или берешь 2 -3 пальчиковые батарейки, (2 для красного или зеленого, 3 — для синего или белого) соединяешь последовательно и резистор около 1 кОм последовательно и так же пробуешь. При правильной полярности он должен слегка светиться.

можно тестером поставить на прозвонку (диодик нарисован и пищит если закоротить щупы) подсоединить к контактам тестер и поглядеть на него он должен засветиться в проводящем состоянии, и соответственно который контакт подсоединен к клемме (СОМ) обычно черного цвета тот катод — «куда направлена стрелочка» а плюсов и минусов у полупроводников не бывает) надеюсь не запутал)

у новых анод длиннее

А также как заяц и зайчиха: кинуть, если побежал — то заяц….

Светодиоды проверяют, как и другие диоды: любым тестером, поставив на омы. В одну сторону покажет около 50…60 Ом, а перевернуть — бесконечность. У диодов: Анод и Катод.

По справочнику…

Плюс находится в тонкой ножке светодиода, а минус в толстой. У советских светодиодах на оборот.

touch.otvet.mail.ru

Подключение светодиодов | Лучший моддинг сайт

Использование светодиодов в моддинге очень популярно, в связи с невысокой сложностью их подключения и неплохим получаемым визуальным эффектом от их применения. Именно по этой причине, в продолжение моей теоретической статьи про светодиоды я решил сделать практический гайд по подключению светодиодов в компьютере. Данный гайд ориентирован на моддеров, которые только начинают применять светодиоды в своих моддинг-проектах и в нем я расскажу о трех самых популярных способах подключения питания к светодиодам, в зависимости от разъема: от 4-pin molex, от 3-pin или от USB.

Необходимое

Для выполнения этого гайда по подключению светодиодов нам понадобятся следующие вещи:

  • Светодиоды. Тут все понятно, собственно их мы и будем подключать.
  • Резисторы. Необходимы для снижения напряжения и силы тока от источника питания до величин, необходимых подключаемому светодиоду.
  • Разъемы. Ими светодиоды будут подключатся к источникам питания в компьютере.
  • Паяльник со всем необходимым для пайки. С их помощью мы и будем осуществлять всю работу.
  • Термоусадочная трубка. Понадобится для обеспечения аккуратного внешнего вида и безопасности спаянного соединения.
  • Мультиметр (тестер). Для проверки напряжений и целостности соединений.
  • Кусачки и/или лезвие. Для снятия изоляции и работы с проводами.

Мультиметр

Кусачки, лезвие, термоусадочная трубка и паяльник со всем необходимым для пайки

Как видно из списка приведенного выше, никаких сложных, дорогих или хитрых приспособлений нам, для выполнения данного гайда, не понадобится. Да и сама операция по подключению светодиодов тоже не отличается особой сложностью. Перейдем к детальному описанию различных способов подключения светодиодов в компьютере.

Подключение светодиода к разъему 4-pin molex

4-pin molex является одним из самых распространенных разъемов питания в компьютере. Именно при помощи molex-разъемов подключалось раньше (да и сейчас в старых моделях) питание к жестким дискам и оптическим приводам. Также при помощи molex-разъемов подключается часть вентиляторов и большинство компьютерных аксессуаров, например панелей управления, ламп подсветки и тому подобных устройств. Как видно из его названия, 4-pin molex содержит в себе четыре контакта: +12 В (обычно это желтый провод), +5 В (обычно это красный провод), а так же два контакт земли (черные провода). Соответственно, при подключении светодиода к 4-pin molex у вас есть возможность выбрать куда именно подключать светодиоды, а именно к 12 или 5 вольтам.

Схема разъема 4-pin molex

В нашем случае я буду подключать четырехкристальный 10мм светодиод зеленого цвета, который работает от 3.2 вольт и потребляет 80 мА к источнику 12 вольт. В соответствии с моей предыдущей статьей о светодиодах рассчитываем параметры резистора, который нам понадобится для подключения светодиода — понадобится нам резистор с сопротивлением в 120 Ом. Сам разъем 4-pin molex можно либо купить отдельно, либо использовать разъем взятый из чего-то старого/ненужного устройства, например удлинителя, разветвителя или переходника.

Molex разъем с кабелем

Перед подключением светодиода желательно предварительно проверить мультиметром соответствие выбранных контактов, а так же определить где у светодиода положительный (плюс) и отрицательный (минус) контакты. После этого необходимо зачистить провода, которые идут от molex-разъема и припаять к положительному контакту резистор, не забыв закрыть спаянное соединение термоусадочной трубкой. После этого к другому контакту резистора необходимо припаять положительный контакт светодиода также закрыв место пайки термоусадкой. Отрицательный контакт светодиода припаивается к контакту «земля» у molex-разъема, место пайки в очередной раз закрывается термоусадочной трубкой. Вот теперь все готово и можно смело подключать светодиод к питанию для проверки его работоспособности. Проверяем — все работает!

Molex разъем с кабелем, а также светодиод с резистором

Провода, идущие от molex разъем, зачищены

В провод питания добавлен резистор

Подготовлена термоусадка для изоляции мест пайки вокруг резистора

Термоусадка одета на резистор

Термоусадка ужата и изолирует резистор и провода, подходящие к нему

Продеваем термоусадку для изоляции соединений со светодиодом

Термоусадка ужата, соединение со светодиодом изолированно

Проверка работоспособоности светодиода после нашего подключения

Зеленый светодиод подключен и работает

Подключение светодиода к разъему 3-pin

Разъем 3-pin является стандартным разъемом для подключения вентиляторов в компьютере и довольно-таки часто они остаются лишними, соответственно в них можно подключить светодиод. Так иногда делают при установке ватерблоков с прозрачными крышками на процессор, ведь необходимости подключать вентилятор процессорного кулера уже нет, а тянуть провод для подключения светодиода откуда-то издалека не охота — можно воспользоваться разъемом 3-pin. Описанный способ подключения светодиодов практикует, к примеру, Thermaltake со своими процессорными ватерблоками, которые обладают прозрачной крышкой. Как понятно из его названия, разъем 3-pin обладает тремя контактами: +12 В, земля, а так же третий контакт, который является контактом датчика скорости вращения вентилятора.

Схема разъема 3-pin

В нашем случае к разъему 3-pin я буду подключать 10 мм светодиод красного цвета, который работает от 2.3 вольт и потребляет 50 мА к источнику 12 вольт, в соответствии с моей предыдущей статьей о светодиодах рассчитываем параметры резистора, который нам понадобится для подключения светодиода — понадобится нам резистор с сопротивлением в 220 Ом. Как вам должно уже быть понятно, для подключения светодиода мы воспользуемся двумя контактами, а именно +12 В и землей. Стоит помнить, что разъемы 3-pin предназначены для подключения вентиляторов, так что их лучше сильно не нагружать, однако несколько ватт дополнительной нагрузки проблемы не создадут, а для светодиодов их хватит с запасом. Разъемы 3-pin можно либо купить или использовать разъем взятый из какого-нибудь старого/ненужного устройства, например вентилятора, удлинителя, переходника или разветвителя.

3-pin разъема с кабелем

Перед подключением светодиода к разъему 3-pin желательно дополнительно предварительно проверить мультиметром соответствие выбранных контактов, а так же определить где у светодиода положительный (плюс) и отрицательный (минус) контакты. Теперь необходимо зачистить провода, которые идут от разъема 3-pin и припаять к положительному контакту резистор, закрыв спаянное соединение термоусадочной трубкой для лучшего внешнего вида и безопасности. К второму контакту резистора необходимо припаять положительный контакт светодиода и также закрыть место пайки термоусадкой. Отрицательный контакт светодиода припаивается к контакту «земля» у разъема 3-pin, и еще раз место пайки закрывается термоусадочной трубкой. Теперь все готово, можно смело подключать разъем 3-pin к питанию для проверки работоспособности светодиода. Проверяем — все, как и ожидалось, работает!

Светодиод красного цвета с резистором нужного номинала

Резистор припаян к ножке светодиода

К резистору и второй ножке светодиода припаяны провода

Следы пайки закрыты термоусадкой

Одеваем дополнительную термоусадку

Все соединеия изолтрованы при помощи термоусадки

Провека работы светодиода после подключения

Красный светодиод подключен к 3-pin и работает

Подключение светодиода к разъему USB

Для тех кто не знает, USB является интерфейсом передачи данных для периферийных устройств, однако помимо данных в разъеме USB передает и напряжение для питания разных устройств. Если быть точным, то в USB-разъеме расположены четыре контакта: два контакта отвечают за передачу данных и еще два — за питание. В разъеме USB доступен источник напряжения 5 В с силой тока до 500 мА. USB-разъемы редко встречаются в продаже отдельно, так что проще всего будет купить USB-кабель или взять ненужный вам кабель от какого-то устройства. Полноразмерные USB-разъемы бывают двух видов, которые отличаются размерами:

USB тип А4 x 12 мм
USB тип B7 x 8 мм

Все отличия заключаются только в форме, с точки зрения доступных контактов они одинаковы. В моем случае я воспользовался USB-удлинителем с разъемами USB тип A.

Обычный USB удлинитель с разъемами USB типа A

Схема USB разъемов типа A и B

К разъему USB я буду подключать 10 мм светодиод синего цвета, который работает от 3.4 вольт и потребляет 20 мА к источнику 5 вольт, в соответствии с моей предыдущей статьей о светодиодах рассчитываем параметры резистора, который нам понадобится для подключения светодиода — понадобится нам резистор с сопротивлением в 82 Ом.

Перед подключением светодиода к разъему USB желательно проверить мультиметром соответствие выбранных контактов, а так же определить где у вашего светодиода положительный (плюс) и отрицательный (минус) контакты. Теперь необходимо зачистить провода с питанием, которые идут от разъема USB и припаять к положительному контакту резистор, закрыв соединение термоусадочной трубкой. К оставшемуся контакту резистора необходимо припаять положительный контакт светодиода и тоже закрыть место пайки термоусадкой. В свою очередь, отрицательный контакт светодиода припаивается к контакту «земля» у разъема USB, место пайки закрывается все той же термоусадочной трубкой. Все готово, можно подключать USB-разъем в компьюетр для проверки работоспособности светодиода. Проверяем — в очередной раз все работает.

USB разъем с отрезком кабеля

Зачищены провода USB кабеля

Синий светодиод с резистором нужного номинала

Резистор подпаян к светодиоду

Одеты три отрезка термоусадки для изоляции

Термоусадка усажена, все соединения изолированны

Подключение светодиода к USB разъему ноутбука для провеки работоспособности

Синий светодиод подключен и работает

Выводы

На примере данного небольшого гайда по подключению светодиодов в компьютере вы можете убедиться, что подключение светодиодов является несложной процедурой, которая вполне по силам даже новичкам, да и занимает она минимум времени. Теперь вы можете легко воплотить полученные знания в одном из своих моддинг-проектов.

www.modmag.net

как определить где плюс, а где минус

Известно, что светодиод в рабочем состоянии пропускает ток только в одном направлении. Если его подключить инверсионно, то постоянный ток через цепь не пройдет, и прибор не засветится. Происходит это потому, что по своей сущности прибор является диодом, просто не каждый диод способен светиться. Получается, что существует полярность светодиода, то есть он чувствует направление движения тока и работает только при определенном его направлении.

Определить полярность прибора по схеме не составит труда. Светодиод обозначают треугольником в кружке. Треугольник упирается всегда в катод (знак «−», поперечная черточка, минус), положительный анод находится с противоположной стороны.

Но как определить полярность, если вы держите в руках сам прибор? Вот перед вами маленькая лампочка с двумя выводами-проводками. К какому проводку подключать плюс источника, а к какому минус, чтобы схема заработала? Как правильно установить сопротивление где плюс?

Определяем зрительно

Первый способ – визуальный. Предположим, вам необходимо определить полярность абсолютно нового светодиода с двумя выводами. Посмотрите на его ножки, то есть выводы. Один из них будет короче другого. Это и есть катод. Запомнить, что это катод можно по слову «короткий», поскольку оба слова начинаются на буквы «к». Плюс будет соответствовать тому выводу, который длиннее. Иногда, правда, на глаз определить полярность сложновато, особенно когда ножки согнуты или поменяли свои размеры в результате предыдущего монтажа.

Глядя в прозрачный корпус, можно увидеть сам кристаллик. Он расположен как будто в маленькой чашечке на подставке. Вывод этой подставки и будет катодом. Со стороны катода также можно увидеть небольшую засечку, как бы срез.

Но не всегда эти особенности заметны у светодиода, поскольку некоторые производители отходят от стандартов. К тому же есть много моделей, изготовленных по другому принципу. На сложных конструкциях сегодня производитель ставит значки «+» и «−», делают отметку катода точкой или зеленой линией, чтобы все было предельно понятно. Но если таких отметок нет по каким-то причинам, то на помощь приходит электрическое тестирование.

Применяем источник питания

Более эффективный способ определить полярность – подключить светодиод к источнику питания. Внимание! Выбирать надо источник, напряжение которого не превышает допустимое напряжение светодиода. Можно соорудить самодельный тестер, используя обычную батарейку и резистор. Это требование связано с тем, что при обратном подключении светодиод может перегореть или ухудшить свои световые характеристики.

Некоторые говорят, что подключали светодиод и так и сяк, и он от этого не портился. Но все дело в предельном значении обратного напряжения. К тому же, лампочка может сразу и не погаснуть, но срок ее работы уменьшится, и тогда ваш светодиод проработает не 30-50 тысяч часов, как указано в его характеристиках, а в несколько раз меньше.

Если мощности элемента питания для светодиода не хватает, и прибор не светится, как вы

tanders.ru

les66.ru

Что такое светодиоды? Их плюсы и минусы

Светодиод — это прибор, основанный на полупроводнике и преобразует электрический ток в световое излучение. Существует масса полупроводниковых материалов с разным химическим составом, которые используют для создания светодиодов. Материалы и их химический состав влияют на характеристику светодиодов ( цвет излучаемого света, яркость и т.д.).

Где применяются 

Если сказать коротко, везде, где дело касается светотехники. Например, вывеска с названием магазина, подсветка тюнингованного авто, дизайн интерьера, лампы освещения, фонарики, светофоры на перекрестках. Также применение светодиодов удобно и выгодно там, где строгая экономия электроэнергии, где высокие требования к электробезопасности и где приходится часто пользоваться освещением. Для примера, светодиодные табло — они работают круглыми сутками и должны быть безопасными (так как находятся в оживленных местах). Если для табло использовать обычные лампы, это очень энергозатратно. А благодаря диодной технологии результат тот же, но при гараздо меньшем энергопотреблении.  Примеры таких светодиодных табло можно увидеть тут http://mpp-kredo.ru/svetodiodnoe-tablo-svm-s.html.

Преимущества и недостатки

В светодиоде электрический ток преобразовывается непосредственно в световое излучение, а значит нет потерь, в отличии от лампы накаливания или люминисцентной лампы. При должном теплоотводе светодиод практически не греется, что в некоторых местах является незаменимым. Размеры светодиода также можно отнести к преимуществам, так как он очень легкий и занимает очень мало места. Благодаря своему компактному размеру светодиод излучает свет в узком спектре, а это дает яркий и чистый цвет, особенно важно данное достоинство при комбинировании разных цветов.

Отдельно стоит отметить надежность светодиодов. Они способны работать до 100 тысяч часов, а это в 100 раз больше работы обычной лампы накаливания и в 5-10 раз превосходит работу люминисцентной лампы. Светодиод является низковольтным прибором. Это также преимущество, потому низковольтность делает прибор безопасным для жизни.

К недостаткам можно отнести то, что при неправильном подключении светодиод может перегореть. И главный недостаток — это цена. Один люмен, излучаемый светодиодом стоит в 100 раз больше, чем такой люмен на основе галогенной лампы.

kak-eto-sdelano.ru

Достоинства и недостатки светодиодных ламп

В отношении ламп и самого освещение многие производители осветительных приборов делали упор именно на качество освещения, его ярость и естественность. Но в последние годы особым критерием выбора осветительного прибора есть его экономичность – минимальное потребление электроэнергии есть главным при выборе ламп.

Светодиодные лампочки – основные моменты

Сегодня рынок осветительных приборов представлен многими осветительными приборами, включающие в себе функцию экономного потребления электроэнергии, при этом качество освещения и его яркость остаются на прежнем уровне, без ущерба, а в некоторых случаях – лучше. Одной из таких приборов есть так называемые светодиодные лампы – на вид она практически ничем не отличима от стандартной лампочки, но в нее вмонтировано множество светодиодов, а также полупроводниковых кристаллов.

Как показывает практика, основными, так сказать ключевыми, сферами применения LED или светодиодных ламп есть освещение и создание световых эффектов. При этом данные сферы и применения касаются не только нежилых, промышленных помещений, но и квартир, когда в дизайне собственного жилища можно создавать невероятное по своей красоте освещение. И все это при помощи светодиодных ламп.

Но чтобы правильно сделать выбор, стоит знать все сильные стороны таких ламп, а также минусы – все это в совокупности позволит не только иметь в своем доме качественное освещение и при этом экономить собственные деньги.
Преимущества светодиодных ламп.

Плюсы светодиодных ламп

Среди сильных сторон, преимуществ которыми обладают светодиодные лампы сами производители и потребители отмечают таковые:

  • Более низкое потребление электрической энергии при сравнении со стандартными приборами освещения и лампами – в частности, самой лампе нужно всего 10 Вт., чтоб полностью осветить площадь помещения, которая освещается лампой накаливания мощностью в 100 Вт.
  • В процессе работы светодиодной лампочки не излучают ультрафиолетовые лучи – именно данный спектр света не самым лучшим образом сказывается на состоянии сетчатки глаз и коже. В этом отношении можно говорить об определенной пользе для собственного здоровья, а не только для своего же кошелька и бюджета.
  • Именно такая лампочки выделяет минимум тепла, не нагреваясь в процессе работы, тем самым, снижая себестоимость кондиционирования помещения. Но в тоже время сама лампа нуждается в дополнительной системе кондиционирования – это продлевает срок ее службы, но об этом будет рассказано ниже.
  • Говоря о сроках службы данного вида лампы, то он весьма большой – достаточно сказать, что многие производители оценивают продолжительность их работы в 40-50 тысяч световых часов. Для сравнения можно отметить, что если такую лампочку включать ежедневно на 5 часов, то в итоге она прослужит своим хозяевам больше чем 10 лет.
  • Светодиодная лампочка весьма безопасна с экологической точки зрения, в особенности, если сравнивать их с лампой, содержащей в себе ртутные наполнители. Именно в этом отношении такие лампы безопасны как для всех, кто находится в помещении, так и для окружающей среды, в особенности при их утелизировании.
  • Светодиодные лампочки обладают малым весом и при этом характерны высоким процентом ударостойкости – даже если она упадет нечаянно из ваших рук, то не разлетится на мелкие осколки как обычная лампа накаливания, колба которой выполнена из стекла.
  • Сама светодиодная лампа имеет мгновенный разогрев – достаточно мене 1 сек. для полноценной ее работы.

Недостатки светодиодных ламп

Говоря о достоинствах, сильных сторонах светодиодных ламп, каждому потребителю стоит знать и их слабые стороны. В отношении последних, многие потребители отмечают следующие минусы:

  • Стоимость светодиодной лампы – ее основной и главный минус, когда в сравнении с обычными лампами накаливания или же энергосберегающими, она превышает их цену в разы.
  • Многие потребители говорят о том, ставя в минус таким лампам то, что они имеют неприятный для глаз, режущий спектр свечения. Именно в силу такой их особенности они не используются в светильниках или же настольных лампах для чтения или иной кропотливой работы. В таком случае многие возвращаются к старому, проверенному варианту, с использованием обычной лампы накаливания.
  • Еще одним недостатком таких ламп есть то, что для их нормальной и эффективной, а главное долговечной работы требуется установка дорогих систем и источников их питания, а также охлаждения. В противном случае без соблюдения этих условий сами светодиоды будут быстро деградировать и соответственно срок службы лампы сокращается. Сам источник питания выбирается импульсный, оборудованные стабилизаторами напряжения.

Наравне с представленными выше минусами светодиодных ламп многие потребители называют еще один негативный момент. Он скорее относится к экономической ситуации, к которой приводят светодиодные лампы. В частности, в силу их массового использования экономика государства страдает – электричества расходуется мало, а соответственно доходы в казну уменьшаются. Да и менять такие лампы можно раз в десять лет, а обычные лампы накаливания – раз в 4-5 месяцев, что также минус в статье доходов и как следствие, со своей стороны власти повышают стоимость электроэнергии для своих потребителей, как для граждан, так и для предприятий.

Подвод итог можно резюмировать, что светодиодная лампа имеет больше плюсов, нежели минусов и именно в силу ее положительных качеств, она и пользуется такой большой популярностью.

Похожие записи

plusiminusi.ru

Правильное включение светодиода — ОРБИТА-СОЮЗ

Светодиод — это диод способный светится при протекании через него тока. По-английски светодиод называется light emitting diode, или LED.

Цвет свечения светодиода зависит от добавок добавленных в полупроводник. Так, например, примеси алюминия, гелия, индия, фосфора вызывают свечение от красного до желтого цвета. Индий, галлий, азот заставляет светодиод светится от голубого до зеленного цвета. При добавке люминофора в кристалл голубого свечения, светодиод будет светиться белым светом. В настоящее время промышленность выпускает светодиоды свечения всех цветов радуги, однако цвет зависит не от цвета корпуса светодиода, а именно от химических добавок в его кристалле. Светодиод любого цвета может иметь прозрачный корпус.

Первый светодиод был изготовлен в 1962 году в Университете Иллинойса. В начале 1990-ых годов на свет появились яркие светодиоды, а чуть позже сверх яркие.
Преимущество светодиодов перед лампочками накаливания не оспоримы, а именно:

    * Низкое электропотребления – в 10 раз экономичней лампочек
    * Долгий срок службы – до 11 лет непрерывной работы
    * Высокий ресурс прочности – не боятся вибраций и ударов
    * Большое разнообразие цветов
    * Способность работать при низких напряжениях
    * Экологическая и противопожарная безопасность – отсутствие в светодиодах ядовитых веществ. светодиоды не греются, от чего пожары исключаются.

Маркировка светодиодов

Рис. 1. Конструкция индикаторных 5 мм светодиодов

В рефлектор помещается кристалл светодиода. Этот рефлектор задает первоначальный угол рассеивания.
Затем свет проходит через корпус из эпоксидной смолы . Доходит до линзы — и тут начинает рассеиваться по сторонам на угол, зависящий от конструкции линзы, на практике — от 5 до 160 градусов.

Излучающие светодиоды можно разделить на две большие группы: светодиоды видимого излучения и светодиоды инфракрасного (ИК) диапазона. Первые применяются в качестве индикаторов и источников подсветки, последние — в устройствах дистанционного управления, приемо-передающих устройствах ИК диапазона, датчиках.
Светоизлучающие диоды маркируются цветовым кодом (табл. 1). Сначала необходимо определить тип светодиода по конструкции его корпуса (рис. 1), а затем уточнить его по цветной маркировке по таблице.

Рис. 2. Виды корпусов светодиодов

Цвета светодиодов

Светодиоды бывают почти всех цветов: красный, оранжевый, желтый, желтый, зеленый, синий и белый. Синего и белого светодиода немного дороже, чем другие цвета.
Цвет светодиодов определяется типом полупроводникового материала, из которого он сделан, а не цветом пластика его корпуса. Светодиоды любых цветов бывают в бесцветном корпусе, в таком случае цвет можно узнать только включив его…

            Таблица 1. Маркировка светодиодов

Многоцветные светодиоды

Устроен многоцветный светодиод просто, как правило это красный и зеленый объединенные в один корпус с тремя ножками. Путём изменения яркости или количества импульсов на каждом из кристаллов можно добиваться разных цветов свечения.

Светодиоды подключаются к источнику тока, анодом к плюсу, катодом к минусу. Минус (катод) светодиода обычно помечается небольшим спилом корпуса или более коротким выводом, но бывают и исключения, поэтому лучше уточнить данный факт в технических характеристиках конкретного светодиода.

При отсутствии указанных меток полярность можно определить и опытным путём, кратковременно подключая светодиод к питающему напряжению через соответствующий резистор. Однако это не самый удачный способ определения полярности. Кроме того, во избежание теплового пробоя светодиода или резкого сокращения срока его службы, нельзя определять полярность «методом тыка» без токоограничивающего резистора. Для быстрого тестирования резистор с номинальным сопротивлением 1кОм подходит большинству светодиодов если напряжение 12V или менее.

При подключении светодиода необходимо соблюдать полярность, иначе прибор может выйти из строя. Напряжение пробоя указывается изготовителем и обычно составляет более 5 В для одного светодиода. Почему? Как уже ясно из названия, светодиод это не выпрямительный диод, и, хотя свойство пропускать ток в одном направлении у них общее, между ними есть значительная разница. Для того, что светодиод излучал в видимом диапазоне, у него значительно более широкая запрещенная зона, чем у обычного диода. А от ширины запрещенной зоны напрямую зависит такой паразитный параметр диодов, как внутренняя емкость. При изменении направления тока, эта емкость разряжается, за какое-то время, называемое временем закрытия, зависящее от размеров этой емкости. Во время разряда емкости, светодиодный кристалл испытывает значительные пиковые нагрузки на протяжении гараздо большего времени, нежели обычный диод. При последующем изменении направления тока на «правильное» ситуация повторяется. Поскольку время закрытия / открытия у обычных диодов значительно меньше, необходимо использовать их в цепях переменного тока, включая последовательно со светодиодами, для снижения негативного влияния переменного тока на светодиодный кристалл. Если светодиодное изделие не имеет встроенной защиты от переполюсовки, то ошибка подключения также приведет к снижению срока службы. В некоторые светодиоды токоограничивающий резистор встроен «с завода» и их сразу можно подключать к источнику 12 или 5 вольт, но такие светодиоды встречаются довольно редко и чаще всего к светодиоду необходимо подключать внешний токоограничивающий резистор.

Сразу следует предупредить: не следует направлять луч светодиода непосредственно в свой глаз (а также в глаз товарища) на близком расстоянии, что может повредить зрение.

Напряжение питания

Две главных характеристики светодиодов это падение напряжения и сила тока. Обычно светодиоды рассчитаны на силу тока в 20 мА, но бывают и исключения, например, четырехъкристальные светодиоды обычно рассчитаны на 80 мА , так как в одном корпусе светодиода содержаться четыре полупроводниковых кристалла, каждый из которых потребляет 20 мА. Для каждого светодиода существуют допустимые значения напряжения питания Umax и Umaxобр (соответственно для прямого и обратного включений). При подаче напряжений свыше этих значений наступает электрический пробой, в результате которого светодиод выходит из строя. Существует и минимальное значение напряжения питания Umin, при котором наблюдается свечение светодиода. Диапазон питающих напряжений между Umin и Umax называется “рабочей” зоной, так как именно здесь обеспечивается работа светодиода.

Напряжение питания — параметр для светодиода неприменимый. Нет у светодиодов такой характеристики, поэтому нельзя подключать светодиоды к источнику питания напрямую. Главное, чтобы напряжение, от которого (через резистор) питается светодиод, было выше прямого падения напряжения светодиода (прямое падение напряжения указывается в характеристике вместо напряжения питания и у обычных индикаторных светодиодов колеблется в среднем от 1,8 до 3,6 вольт).
Напряжение, указанное на упаковке светодиодов — это не напряжение питания. Это величина падения напряжения на светодиоде. Эта величина необходима, чтобы вычислить оставшееся напряжение, «не упавшее» на светодиоде, которое принимает участие в формуле вычисления сопротивления резистора, ограничивающего ток, поскольку регулировать нужно именно его.
Изменение напряжение питания всего на одну десятую вольта у условного светодиода (с 1,9 до 2 вольт) вызовет пятидесятипроцентное увеличение тока, протекающего через светодиод (с 20 до 30 милиампер).

Для каждого экземпляра светодиода одного и того же номинала подходящее для него напряжение может быть разным. Включив несколько светодиодов одного и того же номинала параллельно, и подключив их к напряжению, например, 2 вольта, мы рискуем из-за разброса характеристик быстро спалить одни экземпляры и недосветить другие. Поэтому при подключении светодиода надо отслеживать не напряжение, а ток.

Величина тока для светодиода является основным параметром, и как правило, составляет 10 или 20 миллиампер. Неважно, какое будет напряжение. Главное, чтобы ток, текущей в цепи светодиода, соответствовал номинальному для светодиода. А ток регулируется включённым последовательно резистором, номинал которого вычисляется по формуле:

R — сопротивление резистора в омах.
Uпит — напряжение источника питания в вольтах.
Uпад — прямое падение напряжения на светодиоде в вольтах (указывается в характеристиках и обычно находится в районе 2-х вольт). При последовательном включении нескольких светодиодов величины падений напряжений складываются.
I — максимальный прямой ток светодиода в амперах (указывается в характернистиках и составляет обычно либо 10, либо 20 миллиамперам, т.е. 0,01 или 0,02 ампера). При последовательном соединении нескольких светодиодов прямой ток не увеличивается.
0,75 — коэффициент надёжности для светодиода.

Не следует также забывать и о мощности резистора. Вычислить мощность можно по формуле:

P — мощность резистора в ваттах.
Uпит — действующее (эффективное, среднеквадратичное) напряжение источника питания в вольтах.
Uпад — прямое падение напряжения на светодиоде в вольтах (указывается в характеристиках и обычно находится в районе 2-х вольт). При последовательном включении нескольких светодиодов величины падений напряжений складываются. .
R — сопротивление резистора в омах.

Расчет токогораничивающего резистора и его мощности для одного светодиода

Типичные характеристики светодиодов

Типовые параметры белого индикаторного светодиода: ток 20 мА, напряжение 3,2 В. Таким образом, его мощность составляет 0,06 Вт.

Также к маломощным относят светодиоды поверхностного монтажа — SMD. Он подсвечивают кнопки в вашем сотовом, экран вашего монитора, если он с LED-подсветкой, из них изготовлены декоративные светодиодные ленты на самоклеющейся основе и многое другое. Есть два наиболее распостраненных типа: SMD 3528 и SMD 5050. Первые содержат такой же кристалл, как и индикаторные светодиоды с выводами, то есть его мощность 0,06 Вт. А вот второй — три таких кристалла, поэтому его нельзя уже называть светодиодом — это светодиодная сборка. Принято называть SMD 5050 светодиодами, однако это не совсем правильно. Это — сборки. Их общая мощность, соответственно, 0,2 Вт.
Рабочее напряжение светодиода зависит от полупроводникового материала, из которого он сделан, соответственно есть зависимость между цветом свечения светодиода и его рабочим напряжением.

         Таблица падения напряжений светодиодов в зависимости от цвета

По величине падения напряжения при тестировании светодиодов мультиметром можно определить примерный цвет свечения светодиода согласно таблице.

Последовательное и параллельное включение светодиодов

При последовательном подключении светодиодов сопротивление ограничивающего резистора рассчитывается также, как и с одним светодиодом, просто падения напряжений всех светодиодов складываются между собой по формуле:

При последовательном включении светодиодов важно знать о том, что все светодиоды, используемые в гирлянде, должны быть одной и той же марки. Данное высказывание следует взять не за правило, а за закон.

Что б узнать какое максимальное количество светодиодов, возможно, использовать в гирлянде, следует воспользоваться формулой

Где:

    * Nmax – максимально допустимое количество светодиодов в гирлянде
    * Uпит – Напряжение источника питания, например батарейки или аккумулятора. В вольтах.
    * Uпр — Прямое напряжение светодиода взятого из его паспортных характеристик (обычно находится в пределах от 2 до 4 вольт). В вольтах.
    * При изменении температуры и старения светодиода Uпр может возрасти. Коэфф. 1,5 дает запас на такой случай.

При таком подсчете “N” может иметь дробный вид, например 5,8. Естественно вы не сможете использовать 5,8 светодиодов, посему следует дробную часть числа отбросить, оставив только целое число, то есть 5.

Ограничительный резистор, для последовательного включения светодиодов рассчитывается точно также как и для одиночного включения. Но в формулах добавляется еще одна переменная “N” – количество светодиодов в гирлянде. Очень важно чтобы количество светодиодов в гирлянде было меньше или равно “Nmax”- максимально допустимому количеству светодиодов. В общем, должно выполнятся условие: N =

Все остальные действия по расчетам производятся в аналогии расчета резистора при одиночном включении светодиода.

Если напряжения источника питания не хватает даже для двух последовательно соединённых светодиодов, тогда на каждый светодиод нужно ставить свой ограничительный резистор.

Параллельное включение светодиодов с общим резистором — плохое решение. Как правило, светодиоды имеют разброс параметров, требуют несколько различные напряжения каждый, что делает такое подключение практически нерабочим. Один из диодов будет светиться ярче и брать на себя тока больше, пока не выйдет из строя. Такое подключение многократно ускоряет естественную деградацию кристалла светодиода. Если светодиоды соединяются параллельно, каждый из них должен иметь свой собственный ограничительный резистор.

Последовательное соединение светодиодов предпочтительнее ещё и с точки зрения экономного расходования источника питания: вся последовательная цепочка потребляет тока ровно столько, сколько и один светодиод. А при параллельном их соединении ток во столько раз больше, сколько параллельных светодиодов у нас стоит.

Рассчитать ограничительный резистор для последовательно соединённых светодиодов так же просто, как и для одиночного. Просто суммируем напряжение всех светодиодов, отнимаем от напряжения источника питания получившуюся сумму (это будет падение напряжения на резисторе) и делим на ток светодиодов (обычно 15 — 20 мА).

А если светодиодов у нас много, несколько десятков, а источник питания не позволяет соединить их все последовательно (не хватит напряжения)? Тогда определяем исходя из напряжения источника питания, сколько максимально светодиодов мы можем соединить последовательно. Например для 12 вольт — это 5 двухвольтовых светодиодов. Почему не 6? Но ведь на ограничительном резисторе тоже должно что-то падать. Вот оставшиеся 2 вольты (12 — 5х2) и берём для расчёта. Для тока 15 мА сопротивление будет 2/0.015 = 133 Ома. Ближайшее стандартное — 150 Ом. А вот таких цепочек из пяти светодиодов и резистора каждая, мы уже можем подключить сколько угодною Такой способ называется параллельно-последовательным соединением.

Если имеются светодиоды разных марок то комбинируем их таким образом что бы в каждой ветви были светодиоды только ОДНОГО типа (либо с одинаковым рабочим током). При этом необязательно соблюдать одинаковость напряжений, потому что мы для каждой ветви рассчитываем свое собственное сопротивление.

Далее рассмотрим стабилизированную схему включения светодиодов. Коснёмся изготовления стабилизатора тока. Существует микросхема КР142ЕН12 (зарубежный аналог LM317), которая позволяет построить очень простой стабилизатор тока. Для подключения светодиода (см. рисунок) рассчитывается величина сопротивления R = 1.2 / I (1.2 — падение напряжения не стабилизаторе) Т.е., при токе 20 мА, R = 1,2 / 0.02 = 60 Ом. Стабилизаторы рассчитаны на максимальное напряжение в 35 вольт. Лучше не напягать их так и подавать максимум 20 вольт. При таком включении, например, белого светодиода в 3,3 вольта возможна подача напряжения на стабилизатор от 4,5 до 20 вольт, при этом ток на светодиоде будет соответствовать неизменному значению в 20 мА. При напряжении 20В получаем, что к такому стабилизатору можно подключить последовательно 5 белых светодиодов, не заботясь о напряжении на каждом из них, ток в цепи будет протекать 20мА (лишнее напряжение погасится на стабилизаторе).

Важно! В устройстве с большим количеством светодиодов протекает большой ток. Категорически воспрещается подключать такое устройство к включенному источнику питания. В этом случае, в месте подключения, возникает искра, которая ведет к появлению в цепи большого импульса тока. Этот импульс выводит из строя светодиоды (особенно синие и белые). Если светодиоды работают в динамическом режиме (постоянно включаются, выключаются и подмаргивают) и такой режим основан на использовании реле, то следует исключить возникновение искры на контактах реле.

Каждую цепочку следует собирать из светодиодов одинаковых параметров и одного производителя.
Тоже важно ! Изменение температуры окружающей среды влияет на протекающий ток через кристалл. Поэтому желательно изготавливать устройство так, чтобы протекающий ток через светодиод был равен не 20мА, а 17-18 мА. Потеря яркости будет незначительная, зато долгий срок службы обеспечен.

Как запитать светодиод от сети 220 В.

Казалось бы все просто: ставим последовательно резистор, и всё. Но нужно помнить об одной важной характеристике светодиода: максимально допустимом обратном напряжении. У большинства светодиодов оно около 20 вольт. А при подключении его в сеть при обратной полярности (ток-то переменный, полпериода в одну сторону идёт, а вторую половину — в обратную) к нему приложится полное амплитудное напряжение сети — 315 вольт! Откуда такая цифра? 220 В — это действующее напряжение, амплитудное же в {корень из 2} = 1,41 раз больше.
Поэтому, чтобы спасти светодиод нужно поставить последовательно с ним диод, который не пропустит к нему обратное напряжение.

Еще один вариант подключения светодиода к электросети 220в:

Или же поставить два светодиода встречно-параллельно.

Вариант питания от сети с гасящим резистором не самый оптимальный: на резисторе будет выделяться значительная мощность. Действительно, если применим резистор 24 кОм (максимальный ток 13 мА), то рассеиваемая на нём мощность будет около 3 Вт. Можно снизить её в два раза, включив последовательно диод (тогда тепло будет выделяться только в течение одного полупериода). Диод должен быть на обратное напряжение не менее 400 В. При включении двух встречных светодиодов (существуют даже такие с двумя кристаллами в одном корпусе, обычно разных цветов, один кристалл красного свечения, другой зелёного) можно поставить два двухваттных резистора, каждый сопотивлением в два раза меньше.
Оговорюсь, что применив резистор большого сопротивления (например 200 кОм) можно включить светодиод и без защитного диода. Ток обратного пробоя будет слишком мал, чтобы вызвать разрушение кристалла. Конечно, яркость при этом весьма мала, но например для подсветки в темноте выключателя в спальне её будет вполне достаточно.
Благодаря тому, что ток в сети переменный, можно избежать ненужных трат электричества на нагрев воздуха ограничительным резистором. Его роль может выполнять конденсатор, который пропускает переменный ток, не нагреваясь. Почему так — вопрос отдельный, рассмотрим его позже. Сейчас же нам нужно знать, что для того, чтобы конденсатор пропускал переменный ток, через него должны обязательно проходить оба полупериода сети. Но ведь светодиод проводит ток только в одну сторону. Значит, ставим встречно-параллельно светодиоду обычный диод (или второй светодиод), он и будет пропускать второй полупериод.

Но вот мы отключили нашу схему от сети. На конденсаторе осталось какое-то напряжение (вплоть до полного амплитудного, если помним, равного 315 В). Чтобы избежать случайного удара током, предусмотрим параллельно конденсатору разрядный резистор большого номинала (чтобы при нормальной работе через него тёк незначительный ток, не вызывающий его нагрева), который при отключении от сети за доли секунды разрядит конденсатор. И для защиты от импульсного зарядного тока тоже поставим низкоомный резистор. Он также будет играть роль предохранителя, мгновенно сгорая при случайном пробое конденсатора (ничто не вечно, и такое тоже случается).

Конденсатор должен быть на напряжение не менее 400 вольт, или специальный для цепей переменного тока напряжением не менее 250 вольт.
А если мы хотим сделать светодиодную лампочку из нескольких светодиодов? Включаем их все последовательно, встречного диода достаточно одного на всех.

Диод должен быть рассчитан на ток, не меньший чем ток через светодиоды, обратное напряжение — не менее суммы напряжения на светодиодах. А ещё лучше взять чётное число светодиодов и включить их встречно-параллельно.

На рисунке в каждой цепочке нарисовано по три светодиода, на самом деле их может быть и больше десятка.
Как расчитать конденсатор? От амплитудного напряжения сети 315В отнимаем сумму падения напряжения на светодиодах (например для трёх белых это примерно 12 вольт). Получим падение напряжения на конденсаторе Uп=303 В. Ёмкость в микрофарадах будет равна (4,45*I)/Uп, где I — необходимый ток через светодиоды в миллиамперах. В нашем случае для 20 мА ёмкость будет (4,45*20)/303 = 89/303 ~= 0,3 мкФ. Можно поставить два конденсатора 0,15 мкф (150 нФ) параллельно.

Наиболее распространённые ошибки при подключении светодиодов

1. Подключение светодиода напрямую к источнику питания без ограничителя тока (резистора или специальной микросхемы-драйвера). Обсуждалось выше. Светодиод быстро выходит из строя из-за плохо контролируемой величины тока.

2. Подключение параллельно включенных светодиодов к общему резистору. Во-первых, из-за возможного разброса параметров, светодиоды будут гореть с разной яркостью. Во-вторых, что более существенно, при выходе из строя одного из светодиодов, ток второго возрастёт вдвое, и он может тоже сгореть. В случае использования одного резистора целесообразнее подключать светодиоды последовательно. Тогда при расчёте резистора ток оставляем прежним (напр. 10 мА), а прямое падение напряжения светодиодов складываем (напр. 1,8 В + 2,1 В = 3,9 В).

3. Включение последовательно светодиодов, рассчитанных на разный ток. В этом случае один из светодиодов будет либо работать на износ, либо тускло светиться — в зависимости от настройки тока ограничивающим резистором.

4. Установка резистора недостаточного сопротивления. В результате текущий через светодиод ток оказывается слишком большим. Поскольку часть энергии из-за дефектов кристаллической решётки превращается в тепло, то при завышенных токах его становится слишком много. Кристалл перегревается, в результате чего значительно снижается срок его службы. При ещё большем завышении тока из-за разогрева области p-n-перехода снижается внутренний квантовый выход, яркость светодиода падает (это особенно заметно у красных светодиодов) и кристалл начинает катастрофически разрушаться.

5. Подключение светодиода к сети переменного тока (напр. 220 В) без принятия мер по ограничению обратного напряжения. У большинства светодиодов предельно допустимое обратное напряжение составляет около 2 вольт, тогда как напряжение обратного полупериода при запертом светодиоде создаёт на нём падение напряжения, равное напряжению питания. Существует много различных схем, исключающих разрушающее воздействие обратного напряжение. Простейшая рассмотрена выше.

6. Установка резистора недостаточной мощности. В результате резистор сильно нагревается и начинает плавить изоляцию касающихся его проводов. Потом на нём обгорает краска, и в конце концов он разрушается под воздействием высокой температуры. Резистор может безболезненно рассеять не более той мощности, на которую он рассчитан.

Мигающие светодиоды

Мигающий сеетодиод (МСД) представляет собой светодиод со встроенным интегральным генератором импульсов с частотой вспышек 1,5 -3 Гц.
Несмотря на компактность в мигающий светодиод входит полупроводниковый чип генератора и некоторые дополнительные элементы. Также стоит отметить то, что мигающий светодиод довольно универсален — напряжение питания такого светодиода может лежать в пределах от З до 14 вольт — для высоковольтных, и от 1,8 до 5 вольт для низковольтных экземпляров.

Отличительные качества мигающих сеетодиодое:

    • Малые размеры
    • Компактное устройство световой сигнализации
    • Широкий диапазон питающего напряжения (вплоть до 14 вольт)
    • Различный цвет излучения.

В некоторых вариантах мигающих светодиодов могут быть встроены несколько (обычно — 3) разноцветных светодиода с разной периодичностью вспышек.
Применение мигающих светодиодов оправдано в компактных устройствах, где предьявляются высокие требования к габаритам радиоэлементов и электропитанию — мигающие светодиоды очень экономичны, т..к электронная схема МСД выполнена на МОП структурах. Мигающий светодиод может с лёгкостью заменить целый функциональный узел.

Условное графическое обозначение мигающего светодиода на принципиальных схемах ничем не отличается от обозначения обычного светодиода за исключением того, что линии стрелок- пунктирные и символизируют мигающие свойства светодиода.

Если взглянуть сквозь прозрачный корпус мигающего светодиода, то можно заметить, что конструктивно он состоит из двух частей. На основании катодного (отрицательного вывода) размещён кристалл светоизлучающего диода.
Чип генератора размещён на основании анодного вывода.
Посредством трёх золотых проволочных перемычек соединяются все части данного комбинированного устройства.

Отличить МСД от обычного светодиода легко по внешнему виду, разглядывая его корпус на просвет. Внутри МСД находятся две подложки примерно одинакового размера. На первой из них располагается кристаллический кубик светоизлучателя из редкоземельного сплава.
Для увеличения светового потока, фокусировки и формирования диаграммы направленности применяется параболический алюминиевый отражатель (2). В МСД он немного меньше по диаметру, чем в обычном светодиоде, так как вторую часть корпуса занимает подложка с интегральной микросхемой (3).
Электрически обе подложки связаны друг с другом двумя золотыми проволочными перемычками (4). Корпус МСД (5) выполняется из матовой светорассеивающей пластмассы или из прозрачного пластика.
Излучатель в МСД расположен не на оси симметрии корпуса, поэтому для обеспечения равномерной засветки чаще всего применяют монолитный цветной диффузный световод. Прозрачный корпус встречается только у МСД больших диаметров, обладающих узкой диаграммой направленности.

Чип генератора состоит из высокочастотного задающего генератора — он работает постоянно -частота его по разным оценкам колеблется около 100 кГц. Совместно с ВЧ-генератором работает делитель на логических элементах, который делит высокую частоту до значения 1,5- 3 Гц. Применение высокочастотного генератора совместно с делителем частоты связано с тем, что для реализации низкочастотного генератора требуется использование конденсатора с большой ёмкостью для времязадающей цепи.

Для приведения высокой частоты до значения 1-3 Гц используются делители на логических элементах, которые легко разместить на небольшой площади полупроводникового кристалла.
Кроме задающего ВЧ-генератора и делителя на полупроводниковой подложке выполнен электронный ключ и защитный диод. У мигающих светодиодов, рассчитанных на напряжение питания 3-12 вольт, также встраивается ограничительный резистор. У низковольтных МСД ограничительный резистор отсутствует Защитный диод необходим для предотвращения выхода из строя микросхемы при переполюсовке питания.

Для надёжной и долговременной работы высоковольтных МСД, напряжение питания желательно ограничить на уровне 9 вольт. При увеличении напряжения возрастает рассеиваемая мощность МСД, а, следовательно, и нагрев полупроводникового кристалла. Со временем чрезмерный нагрев может привести к быстрой деградации мигающего светодиода.

Безопасно проверить исправность мигающего светодиода можно с помощью батарейки на 4,5 вольта и последовательно включенного совместно со светодиодом резистора сопротивлением 51 Ом, мощностью не менее 0,25 Вт.

Исправность ИК-диода можно проверить при помощи фотокамеры сотового телефона.
Включаем фотоаппарат в режим съемки, ловим в кадр диод на устройстве (например, пульт ДУ), нажимаем на кнопки пульта, рабочий ИК диод должен в этом случае вспыхивать.

В заключении следует обратить внимание на такие вопросы как пайка и монтаж светодиодов. Это тоже очень важные вопросы, которые влияют на их жизнеспособность.
светодиоды и микросхемы боятся статики, неправильного подключения и перегрева, пайка этих деталей должна быть максимально быстрая. Следует использовать маломощный паяльник с температурой жала не более 260 градусов и пайку производить не более 3-5 секунд (рекомендации производителя). Не лишним будет использование медицинского пинцета при пайке. Светодиод берется пинцетом выше к корпусу, что обеспечивает дополнительный теплоотвод от кристалла при пайке.
Ножки светодиода следует гнуть с небольшим радиусом (чтобы они не ломались). В результате замысловатых изгибов, ноги у основания корпуса должны остаться в заводском положении и должны быть параллельны и не напряжены (а то устанет и кристалл отвалится от ножек).

Чтобы ваше устройство защитить от случайного замыкания или перегрузки следует ставить предохранители.

Скачать:
1. Програма для автоматического подбора резистора при подключении светодиодов — Пожалуйста Войдите или Зарегистрируйтесь для доступа к этому контенту
2. Программа автоматического расчета токоограничивающего резистора светодиода — Пожалуйста Войдите или Зарегистрируйтесь для доступа к этому контенту
3. Интернет-ресурс для автоматического расчета и подбора резисторов светодиода — Пожалуйста Войдите или Зарегистрируйтесь для доступа к этому контенту

os-info.ru