Схема включения ka2s0880 – Собираем импульсный БП на микросхеме KA2S0880

KA2S0880 мікросхема (02s0880-TO-3P-5L KA2S0880 Fairchild)

  1. Продукция
  2. Микросхемы
  3. KA …

Производитель:
Fairchild

Код товара: Т0000014897

Маркировка: ???

Количество приборов:

Параметры
НаименованиеЗначениеЕдиница измеренияРежим изменения
Функциональное назначениерегулятор напряжения со встроенным МОПтранзистором
Напряженик исток-сток800V
Напряженик исток-затвор800V@Rgs=1 MOhm
Напряжение затвор-исток±30V
Ток стока8A@25*C [email protected]*C
Ток стока импульсный32A
Энергия импульса коммутируемая810mJ
Ток коммутируемого импульса25A
Время включения90ns@[email protected]=8A
Время выключения450ns@[email protected]=8A
Напряжение питания30V
Температура рабочая-25…+85*C

elcom.zp.ua

Источник питания монитора SAMSUNG CGM7607L на микросхеме серии KA2S

Электропитание

Главная  Радиолюбителю  Электропитание


Специализированные микросхемы серии KA2S, составляют основу источников питания мониторов SAMSUNG последнего поколения (400b, 500/500pM, CGM1706M) К ним относятся микросхемы KA2S0880/KA2S0680, КА2Н0880/КА2Н0680 и др В корпусе микросхемы размещены широтно-импульсный модулятор с управлением по току импульса и высоковольтный полевой транзистор. Микросхема снабжена системой плавного запуска и использует внешнюю синхронизацию. Широтно-импульсный модулятор работает от генератора на фиксированной частоте и имеет внутренние цепи защиты, блокирующие работу микросхемы при повышенном или пониженном напряжении питания, перегреве и возникновении критических режимов работы источника.

Основными устройствами источников питания, обеспечивающими его работу являются:

-выпрямитель напряжения сети;
-цепи запуска и синхронизации;
-цепи стабилизации и защиты;
-выпрямители импульсного напряжения питания

Типовая схема включения микросхемы КА2Н0880 применена в источнике питания монитора SAMSUNG CGM7607L, принципиальная схема которого приведена на здесь. Основные цепи преобразователя представлены в табл. 1.

Таблица 1

Назначение цепиСоставляющие элементы
Заградительный фильтрL601, С601…С603
Сетевой выпрямительD601 . D604, ТН601, С607, R606
Цепь питанияD605, R602, С608, С609, Т601, D610, R604, С608, С609
Элементы плавного запускаС611, R605
Цепь демпфированияD608, R603, С610, С615, R618, R619, D613
Цепь стабилизацииОР601, IC602, ZD602, С605, С606
Элементы внешней синхронизацииТ602, С612, D607, С613, Q601, R615, R616, С614, R664, D611

Выпрямитель напряжения сети

Напряжение электрической сети переменного тока через разъем IS601, плавкую вставку F601, L601 поступает на выпрямитель D601…D604. Элементы L601, С601…С603, BD601 образуют заградительный фильтр, предотвращающий проникновение в электрическую сеть импульсных помех, создаваемых источником питания при его работе. Выпрямитель мостового типа выполнен на дискретных элементах D601…D604, отрицательный вывод которого подключен к общему проводу через резистор R606. В результате его работы конденсатор С607 заряжается до напряжения +300 В через терморезистор ТН601.

Устройство размагничивания ЭЛТ монитора подключается через разъем CN603, терморезистор РТН601 и контакты управляемого реле RL601 подключены к выходу фильтра. Обмотка управления реле RL601 включена в цепь коллектора транзисторного ключа Q605 и управляется сигналом DEGAUSS с процессора управления режимами.

Цепь запуска и синхронизации

Питание ШИМ-преобразователя микросхемы осуществляется подачей соответствующего напряжения на вывод 3 микросхемы IC601, которое должно находиться в требуемых пределах. Для этой цели к сети переменного тока подключена цепь, состоящая из элементов D605, R602, С608. В том случае, когда напряжение на конденсаторе С608 достигнет величины +15 В, которое соответствует порогу включения компаратора низкого напряжения (UVLO) (рис. 1), данный компаратор переводит микросхему во включенное состояние.


рис. 1 Структурная схема КА2Н0880При этом разрешается функционирование внутреннего источника опорного напряжения выходного MOSFET транзистора и включаются цепи управления преобразователем. Выпрямленное напряжение электрической сети переменного тока подводится к стоку MOSFET (выв. 1 IC601) от обшей точки диодов D602, D603 через дроссели BD6O2, BD6O3.

Для облегчения режима запуска преобразователя в первый момент включения, когда сигналы обратных связей отсутствуют и режим работы преобразователя близок к режиму короткого замыкания в нагрузке, используется режим плавного запуска. Функционирование в этом режиме обеспечивают внешние элементы: конденсатор С611 и резистор R605, которые подключены к выводу 5 микросхемы. Работа этой цепи заключается в том, что во время заряда конденсатора С611 ШИМ-модулятор формирует сигналы управления на MOSFET так, как будто бы преобразователь работает с сигналом нулевой ошибки, длительность управляющего сигнала на выходе драйвера — небольшая. При этом конденсатор С6О5 заряжается от внутреннего источника до напряжения ошибки длительности плавного запуска соответствующему этой ошибке. По мере заряда напряжение на конденсаторе С611 достигает величины +5 В и цепь плавного запуска отключается, а длительность управляющего сигнала MOSFET увеличивается, на пряжение на конденсаторе С605 определяется сигналом ошибки, формируемым цепью обратной связи.

В установившемся режиме работы питание микросхемы осуществляется от цепи подпитки, образованной вторичной обмоткой трансформатора Т601 (выв.6-9), элементами D610, R604. Уменьшение напряжения на выводе питания микросхемы (выв.З IC601) меньше величины порога выключения компаратора UVLO, соответствующего +10 В, приводит к выключению преобразователя.

При протекании тока через первичную обмотку трансформатора Т601 (выв. 2-5) в источнике питания протекают процессы, способствующие его переводу в установившийся режим работы .

Элементы Т602, С612, D607 образуют цепь внешней синхронизации внутреннего генератора микросхемы импульсами SYNC_P, поступающими с выходного каскада строчной развертки в цепь базы транзистора Q601.

Цепи стабилизации и защиты

Цепь обратной связи образована оптопарой ОР601 и микросхемой маломощного регулируемого стабилизатора постоянною напряжения параллельного типа IC602. На управляющий электрод микросхемы IC602 поступает информация о выходном напряжении с делителя, образованного элементами R612, R610, VR601, подключенного к каналу +195 В. При уменьшении выходного напряжения уменьшается ток через фотодатчик оптопары ОР601, а соответственно и выходной ток в цепи коллектор-эмиттер фототранзистора ОР601, подключенного к входу сигнала ошибки (выв. 4 IC601). Это приводит к увеличению длительности управляющего импульса MOSFET и к соответствующему увеличению выходного напряжения до требуемого значения. Так в преобразователе реализован принцип управления по ошибке выходного напряжения.

Регулировка выходного напряжения осуществляется резистором VR601 по каналу +195 В. Напряжение, превышающее +7,5 В на входе сигнала ошибки (выв. 4 IC601), приводит к прекращению работы микросхемы срабатыванием компаратора сброса напряжения питания. Элементы R611, С621 предназначены для уменьшения переходных процессов в микросхеме, фотодатчик оптопары питается напряжением +14 В(2).

Режим управления по току регулятора (первичная обмотка Т601 выв. 5-8) реализован внутренними цепями микросхемы как способ регулирования выходного напряжения при увеличении тока в нагрузке с одной стороны, а с другой — как элемент защиты от максимальных токов в цепи нагрузки. В режиме максимальных токов в нагрузке эта цепь выключает выход MOSFET транзистора до очередного цикла запуска.

Микросхема IC601 источника питания обладает функцией перезапуска без отключения от питающей сети. Период между очередными запусками при перегрузках определяется временем заряда конденсатора С605 от внутренних источников 1 мА и 5 мкА. В режиме длительных перегрузок преобразователь полностью выключается с помощью встроенного компаратора выключения питания.

Демпфирующие цепи D602, С610, R609 и С611, D604, R610, R623 предохраняют MOSFET транзистор от коммутационных импульсов, обусловленных индуктивностью обмоток импульсного трансформатора и от превышения мгновенной мощности на стоке.

Выпрямители импульсного питания

Выпрямители импульсного напряжения вторичных источников питания собраны по однополупериодной схеме выпрямления. Основные элементы цепей вторичных выпрямителей приведены в табл. 2

Таблица 2

ВыпрямительИсточникСостав
+ 195 ВТ601 выв. 11-12D631,С632,С634, BD631, R631
+80 ВТ601 выв. 13-1D633,С637,R635, BD632
+40 ВТ601 выв. 10-1D640,С661
+ 14В(1)Т601 выв. 17-14D634,С646,BD613
+14 В(2)Т601 выв. 17-14D636,С641
+8 ВТ601 выв. 16-14D638, R621,С651, R622,Q602, 0604, Q603, R620, R623
-12ВТ601 выв. 18-14D639,С656
+ 12В+ 14 В(1)IC632,Q610,С676, С677, R625
-14 B_AUDIOТ601 выв. 1-2D612,С622,BD605
+ 14 BJJSBТ601 выв. 1-2D641,С623
+5В+ 14 В(2)IC633,С682,С683, С684, R617

Сигналами SUSPEND и OFF источник питания переводится в режимы пониженного потребления электроэнергии. По команде SUSPEND блокируется напряжение +12 В с помощью транзисторного ключа Q610, а командой OFF снимается напряжение +8 В.

Типовые неисправности

Перегорает сетевой предохранитель FH601.

В этом случае, при выключенном из сети мониторе, необходимо проверить исправность элементов заградительного фильтра и сетевого выпрямителя (L601, С601…С603, D601…D604), проверить исправность микросхемы (выв. 1,2) IC601, а также элементов демпфирующей цепи (D608, R603, С610).

Выходные напряжения модуля питания отсутствуют.

Проверить наличие напряжения +300 В на конденсаторе С607. При его отсутствии проверить исправность элементов сетевого выпрямителя D601…D604, ТН601. При включенном мониторе проверить наличие напряжения питания микросхемы IC601 +16 В между выводами 2 и 3. При его отсутствии проверить исправность элементов D605, R6O2, С6О8, D610, R604. При наличии напряжения питания меньшим +10 В (источнике питания выключен), следует удостовериться в отсутствии неисправностей в нагрузках вторичных выпрямителей, исправности самих вторичных выпрямителей и элементов цепи обратной связи ОР601, IC6O2. В случае их исправности заменить микросхему IC601.

Выходные напряжения выше или ниже нормы и не регулируются переменным резистором VR601.

Проверить исправность элементов ОР601, IC602, С605, ZD602 и С606.

Дата публикации: 25.11.2008

Мнения читателей
  • [email protected] / 28.09.2010 — 08:49
    Ошибка в предыдущем тексте — С805!

Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:

www.radioradar.net

Собираем импульсный БП на микросхеме KA2S0880 « схемопедия


Минуя стандартные устаревшие ШИМ модуляторы, начнем, пожалуй, с более продвинутых схем БП, использующих в основе работы переключение силового ключа при нулевом токе дросселя, или по-заграничному – off-line switch. Такие схемы отличаются от обычных очень высоким КПД, низким уровнем шумов, а при выборе соответствующей элементной базы – простотой конструкции и легкостью настройки.

На рисунке 1 представлена схема блока питания мощностью 70Вт для питания стереофонического усилителя в пределах 2х20Вт. Силовой преобразователь построен на микросхеме KA2S0880, которая включает в себя все необходимые компоненты для постройки первичной части блока питания. Следует отметить, что корпорация Fairchild, разработав эту микросхему, здорово постаралась – микросхема очень устойчива в работе и располагает всеми необходимыми защитами. Собранный на базе этой микросхемы блок питания имеет реальнодействующую защиту от перегрузки и короткого замыкания, защиту нагрузки при аварийном выходе напряжений за пределы допустимых, возможность введения спящего режима. Явный минус этой схемы – блок не включается при полной нагрузке. Сначала нужно включить его отдельно, потом нагрузить.

Характеристики:

Напряжение питания: 200…240В

Выходное напряжение:

Без нагрузки . . . . . . . . . . . . . . . . . ±16,5В

При полной нагрузке. . . . . . . . . . . . . . ±15…±15,5В

Выходная мощность максимальная долговременная, она же, ограничиваемая микросхемой . . . . . . . 70Вт

Рабочая частота. . . . . . . . . . . . . . . . . 20кГц

КПД устройства . . . . . . . . . . . . . . . . . 90…93%

Блок питания разработан для симметричной нагрузки, у которой потребляемые токи по плюсу и по минусу равны – усилители НЧ. Неравномерная нагрузка вызывает перенапряжение на одном из плеч и блок может уйти в защиту. При подборе деталей не забудем о требованиях к их параметрам и конструкции устройства. Выпрямительные диоды должны быть с обратным напряжением не менее 200Вольт, конденсаторы С11 и С12 умышленно выбраны на напряжение 50Вольт, т.е. крупногабаритные – дело в том, что они будут нагреваться, на частотах около 20-30кГц у них минимальный импеданс, на котором происходит эффективное подавление выбросов напряжения, и, как следствие – их нагрев. Обращайте внимание на внешний вид компонентов, особенно микросхемы и выпрямительных диодов – поцарапанный, невзрачный, некрасивый корпус говорит либо о некачественном изготовлении детали, либо о «левом» производстве. Не используйте конденсаторы серии К73-17, они часто выходят из строя. Микросхему могут выпускать либо фирма Fairchild , либо Samsung (SEC)

Схемы, в которых есть трансформаторы, очень критичны к фазировке их обмоток. При фазировке обмоток требуется сделать так, чтобы начала и концы обмоток подключались к своим точкам в схеме. Если фазировка будет неверной, то обмотки будут работать в противофазе, что нарушит работу схемы и может повредить компоненты. Начала обмоток на схеме помечаются точкой у одного из вывода обмоток. Это как у динамиков – выводы помечаются плюсами. Нам с вами лучше всего мотать обмотки как на рисунке 2 – либо как вариант 1, либо как вариант 2, но не смешивая эти варианты .

Так нам легче будет разобраться, какой вывод будет началом, а какой концом. Пример фазировки обмоток – на рисунке 3, точками показаны начала обмоток.

Трансформатор намотан на сердечнике Ш12Х12 из феррита М2000, с зазором в магнитопроводе 0,2мм. Первичная обмотка 36витков, поделена на две равные части. Одна часть наматывается в первый слой, вторая – в последний. Между ними располагаются вторичные обмотки: выходная – 7+7витков в два провода каждая, обмотка питания микросхемы – 7 витков. Все обмотки намотаны проводом диаметром 0,6мм. Зазор делаем с помощью бумаги, наклеиваем ее на торцы феррита, складываем всё вместе с катушкой и проклеиваем магнитопровод суперклеем.

Блок, собранный без ошибок в монтаже, начинает работать сразу и без глюков. Тем не менее, чтобы обезопасить себя от возможных ошибок, проведем первое включение устройства пошагово.

Вместо предохранителя включим обычную лампу 220В 100Вт. Она предотвратит возможную поломку микросхемы. Отпаяем стабилитроны у тиристоров. К выходу блока питания между “+” и “–“ подключим нагрузку – нихромовую спираль 30-40 Ом мощностью не менее 100Вт. Ее мы будем использовать только для проверки блока питания. Такие спирали продаются в магазинах для ремонта электрообогревателей, либо спиралька отдельно, либо в стеклянной трубке. Нам нужна только часть спиральки. Нужное сопротивление отмерим тестером и подключим к выходу блока питания. Не забываем о том, что спираль подключается между “+” и “–“ источника, а замеры напряжения мы будем вести от общего провода (GND). Подключим тестер к “+” выходу блока питания и включим блок в розетку. Через секунду на выходе должно установиться напряжение +16,5вольт. Ждем секунд 5, выключаем блок и смотрим нагрев деталей. Если есть подозрительно нагревшиеся элементы – не оставляем без внимания!!! Не забывайте, что только что собрали СЕТЕВОЙ блок питания, который обладает «скрытой», но мощной разрушительной силой 🙂 Если выходное напряжение больше, чем 16вольт, например, 20, 30вольт – значит, не работает цепь обратной связи. Это может быть либо из-за ошибок в схеме, либо из-за неисправности деталей. Нужно будет проверить. Если напряжение меньше 16вольт и за 5секунд сильно нагрелась микросхема, значит, у нас неправильно сфазированы вторичные обмотки по отношению к первичной.

Может получиться так, что при включении блока в сеть на выходе ничего нет 🙁 В таком случае проверим напряжение на сетевом конденсаторе – около 300вольт, напряжение на третьей лапке микросхемы относительно первичного общего провода (вывод 2). Оно должно прыгать в пределах 12-15вольт – это микросхема пытается запуститься, но что-то ей мешает. Проверим цепь её подпитки – вспомогательную обмотку и ее выпрямитель, фазировку обмотки. Если все правильно – возможно, микросхема ушла в защиту из-за короткого замыкания в нагрузке, неисправности выпрямительных диодов, перегрузки. Выключим блок и подождем разряда сетевого конденсатора ниже 30вольт и попробуем включить снова с подключенной спиралькой не 30-40 Ом, а 50-60. Возможно так же, что диоды D 4 и D 5 не могут работать на высоких частотах, то есть не подходят для этой схемы. В таком случае трансформатор свистит, надрывается, бедный 🙁 Если и так не вышло, то давайте вспоминать, сколько витков мы намотали и как :). Если напряжение на третьем выводе микросхемы уходит далеко за пределы 20вольт, например, 30, 40вольт, то у нас слишком много намотано витков на вспомогательной обмотке либо эта обмотка опять же неправильно сфазирована по отношению к первичке.

Следующий этап – проверка работы блока без нагрузки. Это проверка цепи обратной связи на стабилизацию. Она осуществляется оптопарой. Требуемое выходное напряжение выставляется стабилитроном D 6, правда, оно будет выше на полтора вольта, чем стабилитрон 🙂 Если на спиральке мы мерим ровно необходимое напряжение, т.е. 15-16вольт, то отключим нагрузку. Напряжение не должно измениться, ну вольт-полтора нам не мешает. Будем готовы немедленно отключить блок из розетки, если без нагрузки напряжение резко возрастет, иначе можно убить выпрямительные диоды, конденсаторы и оптопару.

Далее – проверяем защиту нагрузки при превышении выходного напряжения. Защита срабатывает в аварийном режиме, без попытки повторного запуска блока. Защита есть как на плюсовом плече, так и на минусовом, причем работают они независимо, а эффект общий 🙂 Принцип работы – устраивается короткое замыкание на выходе, из-за которого микросхема уходит в защиту. Тиристоры обладают неплохим быстродействием, и при аварии всего за пару миллисекунд с нагрузки снимается питание. Если вдруг в будущем, сработает эта цепь, то нужно проверять блок питания с самого начала по этой же методике. Для проверки принудительно поднимем выходное напряжение на несколько вольт. Для этого последовательно со стабилитроном включим еще один на несколько вольт – 4,7 или 5,1 или 6,2В. Закоротим его перемычкой и включим блок. Мерим выходное напряжение – в норме. Размыкаем перемычку, трансформатор должен «тикнуть», а блок – отключиться. Ждем разряда сетевого конденсатора, снова ставим перемычку и включаем. Выходные напряжения должны установиться в норме.

Если все тесты блок отработал без глюков, то вешаем ему нагрузку 15Ом и оставляем на полчаса. После этого устройство признается годным к службе отечеству 🙂

Монтаж печатной платы.

Печатная плата разрабатывается отдельно под конкретную конструкцию каркаса трансформатора и его расположение выводов.

При разработке печатной платы необходимо учесть следующие моменты:

  1. Связанные меж собой детали не разносите далеко друг от друга. По дорожкам текут импульсные токи, излучающие помехи в окружающее
  2. пространство, и чем длиннее будет дорожка, тем больше от нее наводок.

  3. Между дорожками сетевой части выдерживайте достаточное расстояние. Если между рядом идущими дорожками напряжение 200-300 вольт, расстояние между ними должно быть не менее 4-5мм. Также выдерживайте расстояние между дорожками и деталями сетевой и вторичной части. Единственный компонент, с которым нам ничего не сделать – оптопара. У нее расстояние меж лапками около сантиметра, все остальные расстояния меж сетевой и вторичной частью должны быть не менее 1см.
  4. На вторичной стороне дорожка от оптопары должна подключаться как можно ближе к диоду D 4.
  5. Чтобы дорожка выдерживала большие токи, ее часто заливают припоем. Но делать так можно не с каждой дорожкой. Если есть возможность, пусть она будет шире, чем толще, иначе между толстыми дорожками будет паразитная связь, которая может дать шумы на выходе и сделать еще много пакостей.
  6. Конденсаторы С15, C 16 должны подключаться ближе к диодам, а не к электролитам С11, C 12.
  7. ОЧЕНЬ ВАЖНО!!!! Смотрим рисунок 4.

Дорожка идет от диода D1 к керамическому конденсатору С1, от него – к электролиту С2, от него – к катушке L1 – так правильно.

Рисунок 5 – так неправильно.

Дорожка, на которой висит несколько элементов, должна ОБХОДИТЬ каждый из них, а не идти мимо. В импульсной технике часто очень важны миллиметры расстояний. Для примера: рисунок 6.

Если точку подключения керамического конденсатора С1 отвести на 5мм дальше от диода D1, стабилизация ухудшится на полвольта, КПД упадет на 1%.

А вот фотографии собранного опытного образца:

Источник: www.radiokot.ru

shemopedia.ru

Подключение однофазного двигателя: схемы, проверка, видео

Чаще всего к нашим домам, участкам, гаражам подведена однофазная сеть 220 В. Потому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В данной статье рассмотрим, как правлильно сделать подключение однофазного двигателя. 

Асинхронный или коллекторный: как отличить

Содержание статьи

Вообще, отличить тип двигателя можно по пластине — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

Так выглядит новый однофазный конденсаторный двигатель

Как устроены коллекторные движки

Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.

Строение коллекторного двигателя

Недостатки колелкторых двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д.. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

Асинхронные

Асинхронный двигатель имеет стартер и ротор, может быть одно и трех фазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

Строение асинхронного двигателя

Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Более точно определить бифолярный или конденсаторный двигатель перед вами можно при помощи измерений обмоток. Если сопротивление вспомогательной обмотки меньше в два раза (разница может быть еще более значительная), скорее всего, это бифолярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

Схемы подключения однофазных асинхронных двигателей

С пусковой обмоткой

Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

  • один с рабочей обмотки — рабочий;
  • с пусковой обмотки;
  • общий.

С этими тремя проводами и работаем дальше — исползуем для подключения однофазного двигателя.

Со всеми этими 

Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно). К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифолярного) через кнопку.

Конденсаторный

При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения  и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

Схемы подключения однофазного конденсаторного двигателя

Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

Схема с двумя конденсаторами

Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

Подбор конденсаторов

Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

  • рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
  • пусковой — в 2-3 раза больше.

Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите конденсатор специальный конденсатор. У них в маркировке присутствует слова Start или  Starting, но можно взять и обычные.

Изменение направления движения мотора

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

Как все может выглядеть на практике

stroychik.ru

СХЕМА ПЛАВНОГО ВКЛЮЧЕНИЯ

   В ходе непрекращающейся борьбы с перегоранием ламп на лестничной площадке было реализовано несколько схем защиты ламп. Их применение дало положительный результат – лампы приходится менять гораздо реже. Однако не все реализованные схемы устройств работали «как есть» — в процессе эксплуатации приходилось производить подбор оптимального набора элементов. Параллельно производился поиск других интересных схем. Результатом изысканий в глубинах интернета стала статья И. Нечаева из г. Курска в журнале «Радио». Поскольку указанный журнал (как и сайт Радиосхемы) – издание, вызывающее доверие, и вряд ли размещающее на своих страницах непроверенные схемы, то решено было воплотить разработку автора в радиоэлементах. Как известно, плавное включение ламп накаливания увеличивает срок их службы и исключает броски тока и помехи в сети. В устройстве, которое реализует такой режим, удобно использовать мощные полевые переключательные транзисторы. Среди них можно выбрать высоковольтные, с рабочим напряжением на стоке не менее 300 В и сопротивлением канала не более 1 Ом.

Схема плавного включения ламп — 1

   Автор приводит две схемы плавного пуска ламп. Однако, здесь хочу предложить только схему с оптимальных режимом работы полевого транзистора, что позволяет его использовать без радиатора при мощности лампы до 250 Ватт. Но вы можете изучить и первую — которая проще тем, что включается в разрыв одного из проводов. Тут по окончании зарядки конденсатора напряжение на стоке составит примерно 4…4,5 В, а остальное напряжение сети будет падать на лампе. На транзисторе при этом будет выделяться мощность, пропорциональная току, потребляемому лампой накаливания. Поэтому при токе более 0,5 А (мощность лампы 100 Вт и больше) транзистор придется установить на радиатор. Для существенного уменьшения мощности, рассеиваемой на транзисторе, автомат необходимо собрать по схеме, приведенной далее.

Схема плавного включения ламп — 2

   Схема устройства, которое включается последовательно с лампой накаливания, приведена на рисунке. Полевой транзистор включен в диагональ диодного моста, поэтому на него поступает пульсирующее напряжение. В начальный момент транзистор закрыт и все напряжение падает на нем, поэтому лампа не горит. Через диод VD1 и резистор R1 начинается зарядка конденсатора С1. Напряжение на конденсаторе не превысит 9,1 В, потому что оно ограничено стабилитроном VD2. Когда напряжение на нем достигнет 9,1 В, транзистор начнет плавно открываться, ток будет возрастать, а напряжение на стоке уменьшаться. Это приведет к тому, что лампа начнет плавно зажигаться.

   Но следует учесть, что лампа начнет зажигаться не сразу, а через некоторое время после замыкания контактов выключателя, пока напряжение на конденсаторе не достигнет указанного значения. Резистор R2 служит для разрядки конденсатора С1 после выключения лампы. Напряжение на стоке будет незначительным и при токе 1 А не превысит 0,85 В.

   При сборке устройства были использованы диоды 1N4007 из отработавших свое энергосберегающих ламп. Стабилитрон может быть любой маломощный с напряжением стабилизации 7…12 В. Под рукой нашелся BZX55-C11. Конденсаторы — К50-35 или аналогичные импортные, резисторы — МЛТ, С2-33. Налаживание устройства сводится к подбору конденсатора для получения требуемого режима зажигания лампы. Я использовал конденсатор на 100 мкф – результатом стала пауза от момента включения до момента зажигания лампы в 2 секунды.

   Немаловажным является отсутствие мерцания лампы, как это наблюдалось при реализации других схем. Для облегчения жизни другим заинтересованным самодельщикам выкладываю фото готового гаджета и печатную плату в Sprint-Layout 6.0 (перед нанесением на текстолит делать зеркальное отражение не нужно).

   Это устройство работает уже долгое время и лампы накаливания пока менять не пришлось. Автор статьи и фото — Николай Кондратьев (позывной на сайте Николай5739), г.Донецк. Украина.

   Форум по автоматике

   Обсудить статью СХЕМА ПЛАВНОГО ВКЛЮЧЕНИЯ

radioskot.ru