Транзистор светильники – О компании

СВЕТИЛЬНИК АВАРИЙНОГО ОСВЕЩЕНИЯ

СВЕТИЛЬНИК АВАРИЙНОГО ОСВЕЩЕНИЯ

Светильники аварийного освещения данной серии ЛБА применяются для временного местного освещения рабочей зоны, освещения путей эвакуации, коридоров, запасных дверей или просто как переносные светильники.

Данные светильники используются в качестве аварийных, при отсутствии стационарного аварийного освещения в квартире или любом другом помещении. Питание такого аварийного освещения берётся от встроенного свинцового герметичного аккумулятора на 6 В.

Корпус светильника выполнен из пластика, материал рассеивателя света – полистирол. Светильники комплектуются линейными люминесцентными лампами диаметром 26 мм и мощностью 20 ватт. Минимальная продолжительность аварийного освещения – 240 мин. Оснащены ЭПРА. Номинальное напряжение 230 В. Цветовая температура света 6400К. Имеется возможность автоматического или ручного включение света. Ручное управление будет только если выдернуть вилку из розетки, или нажать на кнопку (без фиксации) «тест», и если светильник включен в сеть, — он не включается.

Схема представляет собой обычный двухтактный блокинг генератор на транзисторах D882. На транзисторе С9012 собран ключ, в его коллекторной цепи стоит стабилитрон, его задача не допустить полного разряда, пока не заряжен конденсатор С2, запускается ключ на Q1, шунтирует резистор R4 на массу и через диод VD9 открывается транзистор Q2, питание поступает на преобразователь. А на стабилитроне сделана обратная связь, чтоб удерживать первый транзистор отрытым. Теперь при снижении напряжения, до 5,9..6,0 напряжения не хватает пробить стабилитрон — схема обесточивается. Подробнее о преобразователях для люминесцентных ламп читайте здесь. S1 — это выключатель имеющий две функции: включить сам процесс зарядки, или включить лампу, когда нет напряжения. А на диодах VD7, VD8 и транзисторе Q1 сделан детектор пропадания напряжения сети, схема заработает если катод диода VD9 будет относительно массы, а его подпирает напряжение через открытый диод VD7. Заряд,как в большинстве дешёвых китайских устройств, идёт напрямую с выпрямителя через резистор 2 Ома.

На плате установлен предохранитель на 2 А. Имеется так-же возможность кроме сетевого, питания и от автоаккумулятора на 12 В. Адаптер сети 220/7.5 В выполнен по бестрансформаторной схеме, как в зарядках мобильных телефонов.

Материал предоставил: -igRoman-. Вопросы и комментарии на ФОРУМ

   Схемы автоматики

elwo.ru

Профилактика и ремонт китайских настольных энергосберегалок

РадиоКот >Лаборатория >Аналоговые устройства >

Профилактика и ремонт китайских настольных энергосберегалок

Мяу, товарищи!) Всем доброго времени суток!) Это – первая моя статья, поэтому прошу больно не бить.) Сегодня я расскажу Вам, какие неприятности может принести китайская экономия Вашей настольной лампе, как их ликвидировать и предотвратить.


 

В общем, история такова. Подарили мне как-то на день рождения настольную лампу. С люминесцентной лампочкой!) Счастья было полный лоток!) Радовался я ей, радовался, да не долго… Проработала она у меня с пол-года, а потом я выдернул из той же розетки, куда была включена эта лампа, советскую лампу дневного света с дроссельно-стартерным пуском… Из настольной лампы раздался звук выстрелившего пистона, лампочка погасла, и по комнате пополз запах радио.((( Я так понял, что причиной стал выброс напряжения из-за резкого отключения индуктивной нагрузки (советской лампы). Вскрытие пациента показало стандартную китайскую халтуру: тёмный припой, остатки активного флюса на плате, и… Полное отсутствие каких-либо фильтров и защит на входе 220 платы. Мало того, что такая кончина этой лампы была неизбежна, так ещё она неплохо какала в сеть помеху во время работы (да, забыл сказать, что в лампе используется импульсный ЭПРА по стандартной схеме двухтактного автогенератора). После обследования пациента с помощью мультиметра, выяснилось, что сгорели оба транзистора автогенератора (их разорвало на части) и четыре резистора (стояли в базовой и коллекторной цепях сгоревших транзисторов). К сожалению, я не сфотографировал платы со взорванными транзисторами, все фотки сделаны уже после ремонта.

 

 

Вот, собственно, пациент)

 

А вот и коробка, в которой он продавался. Если у Вас такой – настоятельно рекомендую взглянуть на плату ЭПРА. Возможно, там тоже нет никаких защит.

 

 

Плата. Вид сверху.

 

 

Китайская пайка


 

Покупать новую лампу я не собирался, благо у меня лежит куча рабочих пускателей от дохлых энергосберегалок, а схемы ЭПРА у них и пациента практически совпадают. Поэтому можно просто заменить горелые компоненты с одной платы на такие же с другой. Главное – проверить мультиметром исправность компонентов-доноров, иначе бабах может повториться). Замена компонентов занимает от силы 10 минут. В моём случае немного различаются номиналы резисторов (так я поставил 1 Ом вместо 1,2 Ом в эмиттерные цепи транзисторов и 10 Ом вместо 12 Ом – в базовые), но это вполне терпимо. А вот с транзисторами может получиться небольшая пакость. Дело в том, что у разных транзисторов может различаться цоколёвка. Так, у родных транзисторов 13001 цоколёвка была БКЭ, а у доноров 13002 цоколёвка уже ЭКБ, хотя оба выпускаются в одинаковых корпусах ТО-92. Называется, повернись избушка… Этот момент нужно учесть при замене транзисторов, иначе, в лучшем случае, генератор может не запуститься.

 

Схема преобразователя

При замене транзисторов я бы рекомендовал не изобретать велосипед и ставить транзисторы серий 13001-13007, т.к. они специально разработаны для таких преобразователей, и их легко достать. Если таковых транзисторов у Вас нет – открываем даташит на родные транзисторы и смотрим максимальные напряжение коллектор-эмиттер, напряжение база-эмиттер, ток коллектора и коэффициент передачи тока h31.  В моём случае Uke = 400V, Ube = 9V, Ik = 300mA, h31 = 8. Подбираем транзисторы-доноры по параметрам так, чтобы они были не хуже родных. Да, с составными транзисторами эта схема скорее всего не запустится, т.к. не хватит напряжения, даваемого коммутирущим трансформатором, для их открывания. И ещё, при замене транзисторов всегда меняем пару, а не один транзистор, даже если второй подаёт признаки жизни, причём транзисторы-доноры тоже должны быть из одного полумоста. В противном случае можно получить перекос напряжения на выходе преобразователя и нестабильную работу лампы.

Итак, горелые детали заменили на исправные, включаем первый раз лампу в сеть последовательно с лампочкой накаливания на 60 Вт. Лампочка в пациенте должна зажечься, а 60-ваттная лампа – максимум моргнуть при старте. Если лампа так и не заработала – продолжаем искать неисправные компоненты и ещё раз проверяем цоколёвку транзисторов. В первую очередь проверяем все полупроводниковые компоненты (диоды и транзисторы). Также часто пробиваются высоковольтные конденсаторы, подключаемые к лампочке. Для прозвонки нужно выпаивать компонент, т.к. низкоомные резисторы и обмотки трансформатора могут шунтировать цепи.Причём проверка мультиметром при низком напряжении показывает, что конденсатор исправен. В этом случае помогает проверка заменой. Также не забываем проверить целостность лампочки пациента и её нитей накала.

 


 

Ну вот, лампу мы-то отремонтировали, но надолго ли? Если у Вас нет на входе защит и фильтров (как у меня), то ближайший всплеск напряжения в сети снова поджарит транзисторы в преобразователе. Причём, не обязательно выдёргивать советскую лампу из соседнего гнезда одной розетки – такой импульс даст отключение от сети любого более-менее мощного трансформатора. Поэтому я настоятельно рекомендую всем владельцам ламп без защит поставить таковую в лампу, тем более что собрать её можно из платы любой более-менее нормальной платы ЭПРА от энергосберегалки, а места в лампе-пациенте для фильтра достаточно. Итак, смотрим схему:

 

Конденсаторы C1, C2 (47 нФ * 400В) и дроссель L1 берутся из платы ЭПРА энергосберегалки  (находятся возле входа 220В). Они образуют двусторонний П-образный ФНЧ, задача которого – не пропускать высокочастотные помехи от автогенератора в сеть и обратно.

Варистор VU1 находится в ларьке, торгующем электронными компонентами или в компьютерном блоке питания. Предназначен для подавления всплеска напряжения на входе сети. Можно взять диаметром 5-15 мм (больше может не влезть) и напряжением срабатывания 430-470В. Я использовал 14-KVR431, что обозначает варистор диаметром 14 мм и напряжением срабатывания 431 -> (43 * (10^1)) = 430В.

Предохранитель F1 – выводной, от сгоревшей энергосберегалки. Обозначения на нём не было, но точно больше 0,5А, т.к. полуамперный предохранитель сгорел на втором пуске, хотя суммарная ёмкость фильтрующих конденсаторов 1,65 мкФ.

Всё это хозяйство можно смонтировать на небольшую плату, но, т.к. деталей в фильтре мало, я собрал его навесным монтажом и закрутил изолентой. В любом случае, нужно надёжно заизолировать все токоведущие части друг от друга и от окружающей среды, что избежать замыканий между компонентами фильтра и платой преобразователя. Полученный «кокон» укладываем в корпус преобразователя, находящийся в основании лампы, благо места там предостаточно. Я пытался приклеить его к стенке корпуса «моментом», но пластик пациента это клей не взял.(

 

Фильтр в изоленте

 

Вот на этом всё.) Разрешите откланяться. Да, не забывайте, что в данной схеме мы имеем дело с сетевым напряжением, что вполне себе смертельно опасно. Поэтому не забываем ВЫКЛЮЧАТЬ ЛАМПУ ИЗ РОЗЕТКИ, прежде чем что-то делать.

Удачи и всего самого наилучшего!) 73!)




Все вопросы в
Форум.


Как вам эта статья?

Заработало ли это устройство у вас?

www.radiokot.ru

ЧТО ТАКОЕ ТРАНЗИСТОР

   Транзистор — главный компонент в любой электрической схеме. Эта статья именно о них и написана для начинающих радиолюбителей. Транзистор — своего рода усилительный ключ, принцип работы похож на тиристора. Без транзисторов в электронике никак не обойтись, на них собирают буквально все — простейшие мигалки, транзисторные усилители мощности низкой частоты, радиоприемники и передатчики, телевизионная и видео аппаратура и многие другие устройства. Транзисторами можно увеличить или снизить первоначальное напряжения источника питания, если они используются в схемах преобразователей. 

   Сам транзистор — полупроводниковый прибор, в основном кристалл транзистора делают из кремния или германия. Транзисторы бывают двух видов — однополярные и двухполярные, соответственно полевые и биполярные. По проводимости тоже бывают двух видов — транзисторы прямой проводимости (п — н — п) и транзисторы обратной проводимости (н — п — н). Н -П — от латыни негатив и позитив. На схемах легко можно отличить какой проводимости транзистор использован — если стрелка эмиттера входит в транзистор, значит он прямой проводимости, если же выходит из транзистора, значит транзистор имеет обратную проводимость тока. 

   Для работы транзистора на базу подают маленький ток, впоследствии которого транзистор открывается и может пропустить более большой ток через эмиттер — коллектор, то есть подавая сравнительно маленький ток на базу мы можем управлять более большим токам. Иными словами, прилагая лёгкое усилие поворачивая водопроводный кран, мы управляем мощным потоком воды. Транзистор может находится в двух состояниях, он открыт — когда на базу подано напряжение (рабочее состояние транзистора) и закрыт, когда ток не течет на базу (состояние покоя транзистора).

   По рабочей частоте часто всего используют низкочастотные и высокочастотные транзисторы. Низкочастотные транзисторы применяют для силовых цепей преобразователей напряжения, усилителей мощности в блоках питания и так далее. Низкочастотные транзисторы как правило бывают большей мощности. Высокочастотные транзисторы работающие на частотах в несколько гигагерц тоже применяются очень часто. В основном они нашли широкое применения в радиоприёмной и передающей аппаратуре, в усилителях высокой частоты и во многих других приборах. Такие транзисторы имеют сравнительно маленькую мощность, они незаменимы в области радиоприема и передачи.

   Транзисторы бывают самых разных форм и размеров — от невидимого для человеческих глаз чип элементов для поверхностного монтажа, до мегамощных транзисторов размером с дом.

   Последние могут иметь мощность до сотни мегаватт, их в основном используют в электростанциях и на заводах. Для лучшей проводимости тока по контактам транзистора высокой частоты часто наносят тонкий слой золота или серебра, но в последнее время такие транзисторы встречаются очень редко, в основном такие транзисторы использовались в радиоаппаратуре времен советского союза. Новичкам уверен данный материал помог разобраться что к чему и прояснить вопросы по транзисторам — Артур Касьян (АКА).

   Форум по теории

   Обсудить статью ЧТО ТАКОЕ ТРАНЗИСТОР

radioskot.ru

Транзистор как выключатель-функция полупроводника

Какую функцию выполняет в современных схемах такой элемент как выключатель?

Он обеспечивает открытую схему (незамкнутую), когда он находится в выключенном состоянии и обеспечивает замкнутую схему, когда находится во включенном состоянии. Это очень важная функция, без которой деятельность многих устройств была бы просто немыслима.

 

Другими словами, можно сказать, что выключатель обеспечивает бесконечное сопротивление или полное сопротивление во время своего выключенного состояния, и он обеспечивает нулевое сопротивление или полное сопротивление во время своего включенного состояния.

 

Отсюда получается, что выключатель можно назвать этаким резистором с контролируемым включением/выключением, который обеспечивает и нулевое и бесконечное сопротивление для схемы без какого-либо среднего значения. Да, возможно, кому-то подобное название покажется не самым точным, но оно более-менее передаёт суть деятельности выключателя в краткой форме.

 

С другой стороны, транзистор может быть рассмотрен как контролируемый резистор, ведь сопротивление между эмиттером и коллектором контролируется током в переходе базы-эмиттера. За счёт того, что ток на базе эмиттере производит контроль, сопротивление на эмиттере-коллекторе может быть установлено бесконечным, но подобным образом не получится сделать сопротивление равным нулю (результат не будет идеален). Впрочем, несмотря на то, что идеального значения не получается, это не мешает быть транзистору весьма популярным в качестве выключателя.

 

Транзистор обеспечивает довольно большое сопротивление для схемы, но оно не идеально бесконечно. Транзистор также обеспечивает очень маленькое сопротивление, но оно также не идеально нулевое.

В характеристиках транзистора имеется 3 области:

— область выключения;

— линейная область;

— область насыщения.

В линейной области, для того чтобы напряжение на коллекторе-эмиттере (VCE) имело широкий диапазон, ток на коллекторе (IC) сохраняется неизменным. В силу того, что напряжение имеет широкий диапазон и ток на коллекторе почти неизменный, будет очень сильная потеря энергии, если транзистор действует в этой области.

Но на практике, в выключателе, когда он выключен, напряжение, которое через него проходит, будет равно напряжению на открытой схеме, но ток при этом равен нулю, отсюда следует, что не происходит потери энергии. Подобным образом, когда выключатель включен, ток, проходящий через выключатель настолько силён, насколько силён ток на замкнутой схеме, но напряжение, которое проходит через выключатель, равно нулю, откуда следует, что также не происходит потери энергии.

Если нужно сделать так, чтобы транзистор действовал как выключатель, то нужно сделать, чтобы он работал таким образом, чтобы потери энергии во время включенного и выключенного состояния были бы близки к нулю, или очень низки. Единственный случай, когда это возможно, когда транзистор действует только в предельной области характеристик. Есть две предельные области в характеристиках транзистора. Это область выключения и область насыщения.

На рисунке, где ток на базе-эмиттере или просто ток на базе равен нулю, ток коллектора (IC) будет иметь очень маленькое неизменное значение для большого диапазона напряжения на коллекторе-эмиттере (VCE). Так что если транзистор действует с током на базе равным нулю или меньше нуля, то ток, проходящий через коллектор на эмиттер (IC) очень слабый.

Отсюда транзистор в выключенном состоянии, но в то же время, потеря энергии через транзистор (выключатель) i.e. IC x VCE несущественна в силу того, что IC очень мал. Отсюда вытекает, что транзистор работает как выключатель на открытой схеме или как выключающий переключатель.

Теперь, допустим, что транзистор подсоединён в серию с нагрузкой сопротивления RL. В нормальном состоянии напряжение, проходящее через нагрузку, является VL. Отсюда ток, проходящий через нагрузку, составляет:

Если транзистор действует с током на базе I1, для которого ток на коллекторе C1 больше, чем IL, то транзистор работает в области насыщения. Тут, для любого тока (C1), проходящего через коллектор транзистора на его эмиттер (IC), будет очень маленькое напряжение на коллекторе-эмиттере (VCE).

Отсюда следует, что в этой ситуации ток, проходящий через транзистор, настолько силён, насколько ток на нагрузке, но напряжение, проходящее через транзистор, (VCE) довольно низкое, откуда вытекает то обстоятельство, что потеря энергии в транзисторе опять несущественна.

Транзистор ведёт себя примерно как выключатель на замкнутой схеме или переключатель включения. Так что для использования транзистора как выключателя, необходимо убедиться в том, что применяемый на базе-эмиттере ток достаточно силён для того, чтобы удержать транзистор в области насыщения для обеспечения тока на нагрузке.

Как уже было сказано, потеря энергии в транзисторе, который является выключателем, очень низка, однако не равна нулю. Отсюда следует, что это не идеальный выключатель, но он приемлем для специфических устройств. Теперь, для регулирования энергии постоянного тока на входе, на нагрузке, необходимо использовать транзистор-выключатель таким образом, чтобы он периодически то включал схему, то выключал, обеспечивая тем самым желаемую энергию на выходе.

Для этого понадобится специфическая форма волны тока на базе, благодаря которой транзистор переходит в свои область выключения и область насыщения, периодически, для обеспечения тока на нагрузке. Типичная периодическая форма волны тока на базе в целом достигается за счёт импульсного генератора на базе микропроцессора.

Когда выбирается транзистор для использования в качестве выключателя, необходимо проявлять осторожность в отношении номинального значения транзистора. Дело в том, что во время включенного состояния, весь ток на нагрузке будет течь через транзистор. Если этот ток больше, чем безопасное значение способности транзистора к выдерживанию тока на коллекторе-эмиттере, то транзистор может перманентно выйти из строя из-за того, что перегреется.

Снова в выключенном состоянии, всё напряжение на открытой схеме, на нагрузке, появится в транзисторе. Транзистор должен быть в состоянии выдержать это напряжение, в противном случае переход коллектор-эмиттер будет разорван, и транзистор станет включенным, вместо того чтобы быть выключенным.

Ещё одна деталь должна быть учтена при использовании транзистора как выключателя. Приёмник тепла подходящего размера и проектирование, которое всегда необходимо для транзистора. Каждый транзистор нуждается в некотором времени для перехода из выключенного состояния во включенное состояние и наоборот.

Несмотря на то, что это самое время очень мало и оно может быть менее нескольких микросекунд, но это всё-таки не ноль. Во время периода, в течение которого выключатель находится во включенном состоянии, ток (IC) будет усиливаться, в то время как напряжение на коллекторе-эмиттере (VCE) будет падать к нулю.

Так как ток усиливается с нуля (в идеале) до своего максимума, и напряжение падает со своего максимального значения до нуля (в идеале), будет возникать момент, когда оба они будут иметь свои максимальные значения. В этой точке происходит пиковая потеря энергии.

Таким же путём происходит и максимальная потеря энергии в транзисторе, когда он переходит в выключенное состояние из включенного состояния. Отсюда следует, что максимальная потеря энергии происходит в транзисторе во время переходного периода изменения состояния, но растрата энергии всё ещё вполне средняя, так как переходный период довольно невелик.

Для работы с низкой частотой генерируемое тепло может быть средним. Но если частота работы весьма высока, то будет существенная потеря энергии и соответствующая генерация тепла. Стоит заметить, что генерация тепла не происходит только в течение переходного состояния. Она также происходит во время включенного или выключенного состояния транзистора. Однако количество тепла в течение постоянного состояния довольно мала и несущественна.

Возможно, кому-то использование транзистора в качестве выключателя покажется сложным после вышесказанного, однако это не так. Просто нужно обратить внимание на некоторые необходимые моменты и запомнить определённые вещи. Теоретическая часть, охватывающая эту тему, хоть и не маленькая, но относительно простая.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

 

elektronchic.ru

Транзисторы или лампы?

Современный транзистор

Современная лампа

За всю историю создания усилителей мощности звуковой частоты разработано огромное количество схемотехнических решений.

Как показывает практика, транзисторные усилители при их правильном использовании по объективным техническим характеристикам значительно превосходят ламповые. Тем не менее, многие специалисты отдают предпочтение ламповым усилителям, несмотря на их заоблачную стоимость.

Принято считать, что ламповый усилитель имеет более правильное звучание, характеризуемое терминами «прозрачность», «четкость», «детальность» и т.д. Строго говоря, такое мнение не совсем субъективно.

Чтобы предугадать разницу в звучании ламповых и транзисторных усилителей необходимо рассмотреть на физическом уровне различия между транзисторами и лампами.

ПоказателиЛампа — триодПолевой транзисторБиполярный транзистор
Тип проводимостиЭлектронная(через вакуум)Электронная или дырочная (через канал в кристалле кремния)Электронная или дырочная (через 2 барьера: эмиттер – база и база — коллектор)
Входная нелинейностьОтсутствуетОтсутствует на НЧПропорциональна величине тока коллектора и обусловлена нелинейностью ВАХ база — эмиттер
Выходная нелинейностьПропорциональна корню третей степени из величины тока анодаПропорциональна квадратному корню величины тока стокаПропорциональна величине тока коллектора
ТермочувствительностьОтсутствуетТок стока и крутизна зависят от мгновенной температуры кристаллаТок коллектора и коэффициент усиления по току зависят от мгновенной температуры кристалла
Выходное сопротивлениеВ два раза меньше сопротивления нагрузкиКак правило, больше сопротивления нагрузкиБольше сопротивления нагрузки

Биполярный транзистор отличается от лампы термочувствительностью основных параметров, большей нелинейностью входных и выходных характеристик. Кроме этого, лампа превосходит транзистор удобством согласования своего внутреннего сопротивления с сопротивлением громкоговорителя. Полевой транзистор занимает среднее положение между биполярным транзистором и лампой-триодом.

На первый взгляд, в качестве усилительных элементов, предпочтительнее использовать лампы. Несмотря на кажущуюся очевидность, такое решение не является взвешенным.

На помощь транзисторам приходит схемотехническая хитрость – «отрицательная обратная связь» (ООС). Практически все усилители мощности охвачены местными и общими обратными связями. Они линеаризуют усилитель, уменьшают его выходное сопротивление, расширяют диапазон частот, делают его работу стабильной и независимой от колебаний температуры кристаллов. В итоге, транзисторные усилители обладают великолепными техническими характеристиками. Кроме того, применение биполярных и полевых транзисторов обеспечивает более высокий КПД, массогабаритные показатели и, что немало важно, существенно меньшую стоимость.

Однако не стоит забывать, что в каждом явлении имеются как положительные, так и отрицательные стороны. Интермодуляционные искажения в выходном сигнале, его размывание по времени и разрушение «фазовой картины» – плата за использование отрицательной обратной связи. Присутствие в музыкальном сигнале даже небольших по величине продуктов интермодуляции высших порядков вызывает у слушателя ощущение «металличности», «жесткости». Чаще всего такое звучание характеризуют как ненатуральное. Обилие реактивностей в усилительных каскадах приводит к «многопутевому» распространению сигнала и фазовой деструктуризации.

Размывание сигнала вызвано тем, что через цепь обратной связи он многократно возвращается на вход усилительного каскада. В результате, на выходе, помимо самого сигнала, появляется множество откликов задержанных по времени и смещенных по фазе. Время размывания сигнала для общей обратной связи может достигать 100мс и более. В итоге, наиболее заметным последствием действия на звук общей ООС является ухудшение динамики и ослабление энергичности музыкального звучания.

Необходимо отметить, что в транзисторном усилителе без ООС не обойтись, так как для того чтобы обеспечить даже скромные значения нелинейных искажений и приемлемое выходное сопротивление, усилитель на транзисторах должен иметь, как минимум, глубокие местные ООС. Местные ООС лучше чем общие ведут себя на звуке, и обеспечивают меньшие по величине задержки и более короткий период размывания сигнала. Применение качественных «звуковых» транзисторов позволяет отказаться от общей ООС и получить от усилителя «четкость», «прозрачность», «динамичность» и «энергичность» воспроизведения.

Современные ламповые и транзисторные усилители

Ламповые усилители мощности с ООС, по изложенным выше причинам, практически не используются. Тем не менее, и в них есть элемент, ухудшающий качество звучания – выходной трансформатор, который предназначен для согласования выходного сопротивления усилителя и сопротивления нагрузки. Но вред от ООС оказывается большим, чем от применения выходного трансформатора.

Причина «натурального» звучания лампового усилителя заключается в его «гениальной» простоте. При этом его стоимость может достигать нескольких сотен тысяч долларов. В силу высокой стоимости, низкого КПД и низкой выходной мощности ламповые усилители звуковой частоты сегодня интересны только истинным ценителям музыки и занимают почетное место только среди прочего Hi-End оборудования в звуковых студиях. А транзисторные усилители широко используются, поскольку имеют высокую надежность, большую выходную мощность и удобство в эксплуатации.

В настоящее время ведущими производителями усилителей мощности звуковой частоты по праву считаются Pass Labs, Unison Research, McIntosh, Accuphase, Denon, NAD, Marantz, Pioneer, Yamaha, Arcam и др.

www.hifiaudio-spb.ru

Отличия транзисторов от ламп | Основы электроакустики

К сожалению, лампы, использующие управление пото­ком электронов, существуют только одной «проводимости» (с положительным напряжением на аноде). Транзисторы же существуют двух типов — n—р—п (с положительным напряжением на коллекторе) и р—n—р (с отрицательным напряжением на коллекторе). Это, наряду с большими токами коллектора (до десятков ампер) у мощных транзисторов, резко облегчает построение усилителей мощности с прямой (непосредственной) связью с нагрузкой.

Транзисторы намного надежнее ламп и меньше их по габаритам. У них нет нити накаливания, потребляющей дополнительную энергию и рано или поздно сгорающей, раскаленного нитью катода, эмиссия электронов кото­рым со временем ухудшается. Конечно, у мощных транзисторов возникает проблема отвода тепла. Она решается размещением их в корпуса больших размеров, у которых предусмотрены элементы крепления их теплоотводящие радиаторы. Транзисторы больше, чем лампы, подвержены электрическому пробою при превышении рабочих напря­жений (этот пробой обычно называют лавинным, так как он ведет к лавинообразному росту тока коллектора).

ВАХ транзисторов напоминает ВАХ ламповых пенто­дов. Но веерообразного исхода кривых из начала коорди­нат нет — все кривые как бы вкладываются в одну крити­ческую линию. Изгибы кривых при переходе из пологих участков (при больших напряжениях на коллекторе) выра­жены более резко, что способствует появлению в спектре усиливаемых сигналов гармоник с большими номерами. В целом нелинейность выходных характеристик транзис­торов выражена более резко, чем у ламп, так что при перегрузках транзисторы создают заметно большие нели­нейные искажения.

Входная ВАХ транзистора это, в сущности, ВАХ полу­проводникового диода. Она резко нелинейная — зависи­мость входного тока от входного напряжения близка к экспоненциальной.

Принципиально важно то, что транзистор управляется, когда эмиттерный переход открыт. Так что достаточно изменений напряжения на эмиттерном переходе в доли вольта, чтобы транзистор из почти закрытого состояния перешел в открытое. Соответственно экспоненциальной является и передаточная характеристика — зависимость тока коллектора от напряжения на входе. Это означает наличие широкого спектра гармоник с высшими номерами.

Если напряжение на коллекторе открытого транзисто­ра падает до уровня напряжения на базе, коллекторный переход транзистора смещается в прямом направлении и коллектор, как и эмиттер, начинает инжектировать в базу носители. Они называются избыточными, а сам такой режим работы — режимом насыщения.

Вообще говоря, режим насыщения используется в ключевых схемах и там рассматривается как важное досто­инство транзистора — падение напряжения на нем при этом порою не превосходит долей вольта. Но в усилитель­ных схемах этот режим крайне нежелателен. Он не только ведет к резкой отсечке напряжения на коллекторе, но и удлиняет переходные процессы выхода транзистора в режим работы (когда напряжение на коллектор­ном переходе имеет обратную полярность).

audioakustika.ru

Транзистор IGBT-принцип работы, структура, основные характеристики

Силовой транзистор IGBT управляется с помощью напряжения, подаваемого на управляемый электрод-«затвор», который изолирован от силовой цепи. Полное название прибора: биполярный транзистор с изолированным затвором.

Характерная черта для этого транзистора – очень малое значение управляющей мощности, использованной для коммутационных операций существенных токовых значений силовых цепей.

Рис. №1. Эффективность использования технологий на основе мощных IGBT-транзисторов

Преобладающее значение приобрело его использование в цепях силового предназначения для частотных преобразователей, для двигателей переменного тока, мощность, которых может доходить до 1 МВт. По своим вольтамперным характеристикам он считается аналогом биполярному транзистору, однако качественные энергетические показатели и чистота коммутационных действий намного выше, чем качество работы других полупроводниковых элементов.

Постоянно совершенствующиеся технологии позволяют улучшить качественные характеристики транзисторов. Созданы элементы, рассчитанные на большую величину напряжения, выше 3 кВ и большие значения тока до нескольких сотен ампер.

Основные характеристики мощных IGBT-транзисторов

 

  • Напряжение управления – это разрешенная проводимость, которая отпирает или запирает прибор.
  • Открытое проводящее состояние характеризуется падением напряжения, определяемым пороговым напряжением и внутренним сопротивлением, величина максимально допустимого тока.

Для применения в конструкции регуляторов скорости используются транзисторы, рассчитанные на рабочие частоты в пределах до нескольких десятков килогерц.

Преимущества IGBT транзисторов

  • Высокая плотность тока.
  • Практически отсутствие потерь статического и динамического типа.
  • Отсутствие управляющего тока позволяет не прибегать к использованию гальванически изолированных схем для работы и управления с применением дискретных элементов и предоставляет возможность создания интегральных схем – драйверов.
  • Стойкость к воздействию короткого замыкания.
  • Относительная простота параллельного соединения.

При разработке схем включения с транзисторами IGBT необходимо обращать внимание на ограничение значения максимального тока. Для этой цели используются следующие методы – это: правильный выбор параметров тока защиты и подбор резистора затвора Rg, а также применение цепей, которые формируют траекторию переключения.

Структура IGBT

Закрытое состояние прибора характеризуется напряжением, приложенным к области n-, она находится между коллектором и эмиттером. Проводящий канал появляется при воздействии на затвор положительно заряженного потенциала в p-области, он обозначается как пунктирная линия. Ток из балласта идет из области n- (с минусом) в область n+. При этом происходит открытие МОП-транзистора, что делает возможным открытие биполярного транзистора с p-n-p перехода транзистора.

Рис. №2. Структура транзистора IGBT.

Эквивалентом структуре транзистора IGBT можно считать схему подключения транзистора, где n-канальный полевой транзистор выполнит роль промежуточного звена (динамического сопротивления), уменьшаемого в открытом состоянии IGBT. Он пропускает через базовую область биполярного транзистора с p-n-p-переходом, при этом происходит уменьшение остаточного напряжения в области n-. Опасность для схемы может представлять так называемый «паразитный биполярный транзистор», он может перейти в открытое состояние, называемое эффектом защелкивания, что влечет потерю управляемости.

Рис. №3. Схема включения транзистора IGBT эквивалентная структуре транзистора.

Применение IGBT-транзистора

Одной из важных сфер использования солового транзистора – это использование в сетях с напряжением 6,5 кВ для создания безопасной и гарантированно надежной работы электроустановок в режиме короткого замыкания.

Для ограничения токов к. з. и приближению их к величине, которая не приведет к повреждениям оборудования. Они выполняют ограничение напряжения на затворе до уровня, не превышающем U = 15,3В. Это достигается с помощью применения следующих мер:

  1. Ограничение величины напряжения на затворе с помощью привязки к фиксированному уровню напряжения. Это возможно в том случае, если драйвер затвора обладает источником стабильного напряжения. Основной способ -добавление в схему диода с малым падением напряжения, например, диод Шотки. Высокая эффективность меры достигается снижением индуктивности цепи между клеммами источника и затвора.
  2. Ограничение значения напряжения на затворе с помощью присоединения в цепь между эмиттером и затвором — стабилитрона. Эффективность метода достигается максимально приближенным монтажом диодов к вспомогательным клеммам модуля. Для этой цели должны использоваться диоды с очень маленьким температурным дрейфом и разбросом, примером могут служить диоды ограничивающие переходные напряжения (диоды типа: 1,5КЕ6,8Са и 1,5КЕ7,5СА двунаправленные).
  3. Включение в схему отрицательной эмиттерной обратной связи. Этот метод возможен после подключения эмиттера драйвера затвора к основным клеммам эмиттера модуля. Эмиттерная связь обратного действия способствует эффективному ограничению напряжения на затворе.

Примеры расчета IGBT-транзистора

Выбор транзистора производится по следующим условиям, например, для преобразователей напряжения с резонансным контуром.

  • Транзистор должен переключался при значении нулевого тока.
  • Форма токовой синусоиды относительно силовых ключей должна быть аналогична к собственной частоте контура и составляет 100 кГц.
  • Амплитуда тока должна соответствовать средней мощности, например, как 40 А к 2000 Вт.
  • Определение максимального значения напряжения и максимальной частоты переключения транзисторов при условии, что плечи транзисторов должны работать в противофазе.

Для подбора драйвера IGBT транзистора руководствуются параметрами управления затвора, необходимого для коммутирования отпиранием и запиранием силового полупроводника. Для определения мощности управления нужно знать величину заряда затвора Q gate, частоту коммутации (fin) и реальный замеренный размах напряжения на выходе драйвера ΔVgate

 

Формула заряда затвора:

где время интегрирования должно не превышать время на управление выходных напряжений драйвера до их окончательных показателей, или при достижении выходного токового значения драйвера близкого к нулю.

Выбор максимальной величины тока управления  затвором определяется по упрощенной формуле:

Зависит от осцилляции величины тока на выходе. Если осцилляция тока управления затвором есть, то значение пикового тока должно быть очень большим, а его величина должна определяться исключительно с помощью измерения.

Не менее важны условия учета размаха выходного напряжения. Наихудший случай – это максимальное значение размаха на затворе, измеряется по реально существующей схеме.

Необходим учет максимальной рабочей температуры, руководствуются значением характерным для условия естественной конверсии без использования принудительного охлаждения.

Максимальная частота коммутации, она должна быть максимально-допустимая. На выбор оказывает влияние результирующая выходная мощность и рассеиваемая мощность резистора, используемого в цепи затвора.

Максимальный ток управления зависит от величины пикового тока, который может протекать через реальный контур управления затвором без появления осцилляций.

Проверка мощных IGBT-транзисторов

Проверка силового транзистора возникает при необходимости ревизии сгоревшего транзистора, например, при ремонте сгоревшего сварочного аппарата или с целью подбора пары для устройства, с тем, чтобы убедится, что это не «перемаркер». Проверку осуществляем с помощью мультиметра: прозваниваем вывода коллектора и эмиттера в обоих направлениях, так мы убедимся в отсутствии короткого замыкания. Входную емкость затвор-эмиттер заряжаем отрицательным напряжением. Осуществляется с помощью кратковременного и одновременного прикосновения щупом «СОМ» мультиметра затвора и щупом от гнезда «V/Ω/f» — эмиттера.

Рис. №4. Проверка транзистора IGBT.

Для проверки необходимо убедиться в рабочей функциональности транзистора. Заряжаем емкость на входе затвор-эмитер положительным напряжением. Это можно сделать, коротко прикоснувшись щупом мультиметра «V/Ω/f» — затвора, к щупу«СОМ» — эмиттера. Проверяем напряжение между коллектором и змиттером, оно должно быть не больше 1,5В, меньшая величина напряжения характерна для низковольтных транзисторов. Если напряжения мультиметра не хватает для открытия и проверки транзистора, входная емкость может заряжаться от источника постоянного напряжения со значением до 15 в.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

elektronchic.ru