Триггер rs – RS-триггер. Принцип работы и его типовая схема на логических элементах.

RS-триггер. Принцип работы и его типовая схема на логических элементах.

Устройство и принцип работы RS-триггера

Одним из важнейших элементов цифровой техники является триггер (англ. Trigger — защёлка, спусковой крючок).

Сам триггер не является базовым элементом, так как он собирается из более простых логических схем. Семейство триггеров весьма обширно. Это триггеры: T, D, C, JK, но основой всех является самый простой RS-триггер.

Без RS триггеров невозможно было бы создание никаких вычислительных устройств от игровой приставки до суперкомпьютера. У триггера два входа S (set) — установка и R (reset) — сброс и два выхода Q-прямой и Q— инверсный. Инверсный выход имеет сверху чёрточку. Триггер бистабильная система, которая может находиться в одном из двух устойчивых состояний сколь угодно долго. На рисунке показан RS-триггер выполненный на элементах 2ИЛИ – НЕ.

Точно так же триггер может быть выполнен и на элементах 2И – НЕ.

Единственная разница это то, что триггер на элементах И – НЕ активируется, то есть переводится в другое состояние потенциалом логического нуля. Триггер, собранный на элементах ИЛИ – НЕ активируется логической единицей. Это определяется таблицей истинности логических элементов. При подаче положительного потенциала на вход S мы получим на выходе

Q высокий потенциал, а на выходе Q низкий потенциал. Тем самым мы записали в триггер, как в ячейку памяти, единицу. Пока на вход R не будет подан высокий потенциал, состояние триггера не изменится.

На принципиальных схемах триггер изображается следующим образом.

Два входа R и S, два выхода прямой и инверсный и буква Т означающая триггер.

Хорошо отображает принцип работы RS-триггера несложная схема, собранная на двух элементах 2И – НЕ. Для этого используется микросхема 155ЛА3, которая содержит четыре таких элемента. Нумерация на схеме соответствует выводам микросхемы. Напряжение питания +5V подаётся на 14 вывод, а минус подаётся на 7 вывод микросхемы. После включения питания триггер установится в одно из двух устойчивых состояний.

Исходя из того, что сопротивление переходов транзисторов логических элементов не может быть абсолютно одинаковым, то триггер после включения питания, как правило, принимает одно и то же состояние.

Допустим, после подачи питания у нас горит верхний по схеме светодиод HL1. Можно сколько угодно нажимать кнопку SB1 ситуация не изменится, но достаточно на долю секунды замкнуть контакты кнопки SB2 как триггер поменяет своё состояние на противоположное. Горевший светодиод HL1 погаснет и загорится другой — HL2. Тем самым мы перевели триггер в другое устойчивое состояние.

На данной схеме всё достаточно условно, а на реальном триггере принято считать, что если на прямом выходе «Q» высокий уровень то триггер установлен, если уровень низкий то триггер сброшен.

Основной недостаток рассматриваемого триггера это, то, что он асинхронный. Другие более сложные схемы триггеров синхронизируются тактовыми импульсами общими для всей схемы и вырабатываемые тактовым генератором. Кроме того сложная входная логика позволяет держать триггер в установленном состоянии до тех пор пока не будет сформирован сигнал разрешения смены состояния триггера.

RS-триггер может быть и синхронным, но двух логических элементов для этого мало.

На рисунке изображена схема синхронного RS-триггера. Такой триггер может быть собран на микросхеме К155ЛА3, которая содержит как раз четыре элемента 2И – НЕ. В данной схеме переключение триггера из одного состояния в другое может быть осуществлено только в момент прихода синхроимпульса на вход «C«.

На рассмотренной выше схеме переключение триггера осуществляется с помощью кнопок. Такой вариант используется достаточно часто и именно для кнопочного управления какой-либо аппаратурой. В электронике существует понятие «дребезг контактов» то есть, когда мы нажимаем кнопку, на вход устройства проникает целый пакет импульсов, который может привести к серьёзным нарушениям в работе. Использование RS-триггера позволяет избежать этого.

Благодаря своей простоте и недорогой стоимости RS-триггеры широко применяются в схемах индикации. Часто для повышения надёжности и устранения возможности случайного срабатывания RS-триггер собирается по так называемой двухступенчатой схеме. Вот схема.

Здесь можно видеть два совершенно одинаковых синхронных RS-триггера, только для второго триггера синхроимпульсы инвертируются. Первый триггер в связке называют

M (master) — хозяин, а второй триггер называется S (slave) — раб.

Допустим на входе «С» высокий потенциал. М-триггер принимает информацию, но низкий потенциал на входе синхронизации S-триггера блокирует приём информации. После того как потенциал поменялся на противоположный информация из M-триггера записывается в S-триггер, но приём информации в M-триггер блокируется.

Такая двухступенчатая система намного надёжнее обычного RS-триггера. Она свободна от случайных срабатываний.

Для более наглядного изучения работы RS-триггера рекомендую провести эксперименты с RS-триггером.

Главная &raquo Цифровая электроника &raquo Текущая страница

Также Вам будет интересно узнать:

 

go-radio.ru

Эксперименты с RS-триггером.

Схемы RS-триггеров на микросхемах

После знакомства с принципом работы различных триггеров у начинающего радиолюбителя возникает естественное желание опробовать работу этих самых триггеров в «железе».

На практике изучение работы триггеров гораздо интересней и увлекательней, кроме того происходит знакомство с реальной элементной базой.

Далее будут рассмотрены несколько схем триггеров, выполненных на цифровых микросхемах так называемой жёсткой логики. Сами по себе схемы не являются завершёнными готовыми устройствами и служат лишь для наглядной демонстрации принципов работы RS-триггера.

Итак, начнём.

Для ускорения процесса сборки и тестирования схем применялась беспаечная макетная плата. С её помощью удаётся быстро сконфигурировать и изменить схему в соответствии с потребностями. Пайка, естественно, не применяется.

Схема RS-триггера на микросхеме К155ЛА3.

Данная схема уже приводилась на страницах сайта в статье про RS-триггер. Для её сборки потребуется сама микросхема К155ЛА3, два индикаторных светодиода разного цвета свечения (например, красный и синий), пара резисторов номиналом 330 Ом, а также стабилизированный блок питания с выходным напряжением 5 вольт. В принципе, подойдёт любой маломощный блок питания на 5 вольт.

Для дела сгодится даже 5-ти вольтовый зарядник от сотового телефона. Но стоит понимать, что не каждый зарядник держит стабильное напряжение. Оно может гулять в пределах 4,5 – 6 вольт. Поэтому всё-таки лучше использовать стабилизированный блок питания. При желании можно собрать блок питания своими руками. К выводу 14 микросхемы К155ЛА3 подключается «+» питания, а к 7 выводу «-» питания.

Как видим, схема очень простая и выполнена на логических элементах 2И-НЕ. Собранная схема имеет всего лишь два устойчивых состояния 0 или 1.

После того, как на схему будет подано напряжение питания, загорится один из светодиодов. В данном случае загорался синий светодиод, который подключен к инверсному выходу триггера (Q).

При однократном нажатии на кнопку Set (установка), RS-триггер устанавливается в единичное состояние. При этом должен засветиться тот светодиод, который подключен к так называемому прямому выходу Q. В данном случае это красный светодиод.

Это свидетельствует о том, что триггер «запомнил» 1 и выдал сигнал об этом на прямой выход Q.

Светодиод (синий), который же подключен к инверсному выходу

Q, должен погаснуть. Инверсный – это значит обратный прямому. Если на прямом выходе 1, то на инверсном 0. При повторном нажатии на кнопку Set, состояние триггера не изменится – реагировать на нажатия кнопки он не будет. В этом и заключается основное свойство любого триггера – способность длительное время сохранять одно из двух состояний. По сути, это простейший элемент памяти.

Чтобы сбросить RS-триггер в нуль (т.е. записать в триггер логический 0) нужно один раз нажать на кнопку Reset (сброс). При этом красный светодиод погаснет, а синий загорится. Повторные нажатия на кнопку Reset состояние триггера не изменят.

Показанную схему можно считать примитивной, так как собранный RS-триггер не имеет никакой защиты от помех, а сам триггер является одноступенчатым. Но зато в схеме применяется микросхема К155ЛА3, которая очень часто встречается в электронной аппаратуре и поэтому она легкодоступна.

Также стоит отметить, что на этой схеме выводы установки S, сброса R, прямого Q и инверсного выхода Q показаны условно – их можно поменять местами и суть работы схемы не изменится. Это всё потому, что схема выполнена на неспециализированной микросхеме. Далее же мы разберём пример реализации RS-триггера на специализированной микросхеме-триггере.

Схема RS-триггера на микросхеме КМ555ТМ2.

В данной схеме используется специализированная микросхема КМ555ТМ2, в составе которой 2 D-триггера. Эта микросхема выполнена в керамическом корпусе, поэтому в названии присутствует сокращение КМ. Также можно применить микросхемы К555ТМ2 и К155ТМ2. Они имеют пластмассовый корпус.

Как мы знаем, D-триггер несколько отличается от RS-триггера, но у него также присутствуют входы для установки (S) и сброса (R). Если не использовать вход данных (D) и тактирования (C), то на базе микросхемы КМ555ТМ2 легко собрать RS-триггер. Вот схема.

В схеме применён только один из двух D-триггеров микросхемы КМ555ТМ2. Второй D-триггер не используется. Его выводы никуда не подключаются.

Так как входы S и R микросхемы КМ555ТМ2 являются инверсными (отмечены кружком), то переключение триггера из одного устойчивого состояния в другое происходит при подаче на входы S и R логического 0.

Чтобы подать на входы 0, нужно просто соединить эти входы с минусовым проводом питания (с минусом «-»). Сделать это можно как с помощью специальных кнопок, например, тактовых, как на схеме, так и с помощью обычного проводника. Кнопками, конечно, это делать гораздо удобнее.

Жмём кнопку SB1 (Set) и устанавливаем RS-триггер в единицу. Засветится красный светодиод.

А теперь жмём кнопку SB2 (Reset) и сбрасываем триггер в нуль. Засветится синий светодиод, который подключен к инверсному выходу триггера (Q).

Стоит отметить, что входы S и R у микросхемы КМ555ТМ2 являются приоритетными. Это значит, что сигналы на этих входах для триггера являются главными. Поэтому если на входе R нулевое состояние, то при любых сигналах на входах C и D состояние триггера не изменится. Это утверждение относится к работе D-триггера.

Если найти микросхемы К155ЛА3, КМ155ЛА3, КМ155ТМ2, К155ТМ2, К555ТМ2 и КМ555ТМ2 не удастся, то можно использовать зарубежные аналоги этих микросхем стандартной транзисторно-транзисторной логики (ТТЛ):

74LS74 (аналог К555ТМ2), SN7474N и SN7474J (аналоги К155ТМ2), SN7400N и SN7400J (аналоги К155ЛА3).

Главная &raquo Цифровая электроника &raquo Текущая страница

Также Вам будет интересно узнать:

 

go-radio.ru

Микросхемы.

Микросхемы ТТЛ (74…).

На рисунке показана схема самого распространенного логического элемента — основы микросхем серии К155 и ее зарубежного аналога — серии 74. Эти серии принято называть стандартными (СТТЛ). Логический элемент микросхем серии К155 имеет среднее быстродействие tзд,р,ср.= 13 нс. и среднее значение тока потребления Iпот = 1,5…2 мА. Таким образом, энергия, затрачиваемая этим элементом на перенос одного бита информации, примерно 100 пДж.

Для обеспечения выходного напряжения высокого уровня U1вых. 2,5 В в схему на рисунке потребовалось добавить диод сдвига уровня VD4, падение напряжения на котором равно 0,7 В. Таким способом была реализована совместимость различных серий ТТЛ по логическим уровням. Микросхемы на основе инвертора, показанного на рисунке (серии К155, К555, К1533, К1531, К134, К131, К531), имеют очень большую номенклатуру и широко применяются.

Динамические параметры микросхем ТТЛ серии

ТТЛ серия Параметр Нагрузка
Российские Зарубежные Pпот. мВт. tзд.р. нс Эпот. пДж. Cн. пФ. Rн. кОм.
К155 КМ155 74 10 9 90 15 0,4
К134 74L 1 33 33 50 4
К131 74H 22 6 132 25 0,28
К555 74LS 2 9,5 19 15 2
К531 74S 19 3 57 15 0,28
К1533 74ALS 1,2 4 4,8 15 2
К1531 74F 4 3 12 15 0,28

При совместном использовании микросхем ТТЛ высокоскоростных, стандартных и микромощных следует учитывать, что микросхемы серии К531 дают увеличенный уровень помех по шинам питания из-за больших по силе и коротких по времени импульсов сквозного тока короткого замыкания выходных транзисторов логических элементов. При совместном применении микросхем серий К155 и К555 помехи невелики.

Взаимная нагрузочная способность логических элементов ТТЛ разных серий

Нагружаемый
выход
Число входов-нагрузок из серий
К555 (74LS) К155 (74) К531 (74S)
К155, КM155, (74) 40 10 8
К155, КM155, (74), буферная 60 30 24
К555 (74LS) 20 5 4
К555 (74LS), буферная 60 15 12
К531 (74S) 50 12 10
К531 (74S), буферная 150 37 30

Выходы однокристальных, т. е. расположенных в одном корпусе, логических элементов ТТЛ, можно соединять вместе. При этом надо учитывать, что импульсная помеха от сквозного тока по проводу питания пропорционально возрастет. Реально на печатной плате остаются неиспользованные входы и даже микросхемы (часто их специально «закладывают про запас») Такие входы логического элемента можно соединять вместе, при этом ток Ioвх. не увеличивается. Как правило, микросхемы ТТЛ с логическими функциями И, ИЛИ потребляют от источников питании меньшие токи, если на всех входах присутствуют напряжения низкого уровня. Из-за этого входы таких неиспользуемых элементов ТТЛ следует заземлять.

Статические параметры микросхем ТТЛ

Параметр Условия измерения К155 К555 К531 К1531
Мин. Тип. Макс. Мин. Тип. Макс. Мин. Тип. Макс. Мин. Макс.
U1вх, В
схема
U1вх или U0вх Присутствуют на всех входах 2 2 2 2
U0вх, В
схема
0,8 0,8 0,8
U0вых, В
схема
Uи.п.= 4,5 В 0,4 0,35 0,5 0,5 0,5
I0вых= 16 мА I0вых= 8 мА I0вых= 20 мА
U1вых, В
схема
Uи.п.= 4,5 В 2,4 3,5 2,7 3,4 2,7 3,4 2,7
I1вых= -0,8 мА I1вых= -0,4 мА I1вых= -1 мА
I1вых, мкА с ОК
схема
U1и.п.= 4,5 В, U1вых=5,5 В 250 100 250
I1вых, мкА Состояние Z
схема
U1и.п.= 5,5 В, U1вых= 2,4 В на входе разрешения Е1 Uвх= 2 В 40 20 50
I0вых, мкА Состояние Z
схема
U1и.п.= 5,5 В, Uвых= 0,4 В, Uвх= 2 В -40 -20 -50
I1вх, мкА
схема
U1и.п.= 5,5 В, U1вх= 2,7 В 40 20 50 20
I1вх, max, мА U1и.п.= 5,5 В, U1вх= 10 В 1 0,1 1 0,1
I0вх, мА
схема
U1и.п.= 5,5 В, U0вх= 0,4 В -1,6 -0,4 -2,0 -0,6
Iк.з., мАU1и.п.= 5,5 В, U0вых= 0 В -18 -55 -100 -100 -60 -150

www.microshemca.ru

RS-триггер. Принцип работы, функциональные схемы, таблица переходов

Триггер – простейшее устройство, представляющее собой цифровой автомат. Он имеет два состояния устойчивости. Одному из этих состояний присваивается значение «1», а другому — «0». Состояние триггера, а также значение двоичной информации, которая в нем хранится, определяется выходными сигналами: прямым и инверсным. В том случае, когда на прямом выходе установится потенциал, который соответствует логической единице, состояние триггера называется единичным (при этом потенциал на инверсном выходе равен нулю). Если же на прямом выходе нет потенциала, то состояние триггера называется нулевым.

Классифицируют триггеры по следующим признакам:

1. По способу записываемой информации (асинхронные и синхронные).

2. По способу управлением информацией (статистические, динамические, одноступенчатые, многоступенчатые).

3. По способу реализации логических связей (JK-триггер, RS-триггеры, T-тригер, D-триггер и других типов).

Основными параметрами всех типов триггеров являются наибольшее значение длительности входного сигнала, время задержки необходимого для переключения триггера, а также разрешающее время срабатывания.

В этой статье поговорим о таком типе устройств, как RS-триггер. Они бывают двух типов: синхронные и асинхронные.

Асинхронный RS-триггер конструктивно имеет два прямых (R и S) входа. Это устройство функционирует согласно таблице переходов.

Запрещенной для такого триггера является комбинация сигналов на входах устройства, вызывающая состояние неопределенности. Эта комбинация может быть выражена требованием RtSt=0. При минимизации карты Карно выводится закон функционирования триггера, который называют характеристическим уравнением: Q(t+1)=St V R’tQt. При этом RtSt будет равно нулю.

На функциональной схеме изображен RS-триггер асинхронного типа на элементах И-НЕ и во втором исполнении на элементах ИЛИ-НЕ.

Второй тип – синхронный RS-триггер. Такое устройство конструктивно имеет три прямых входа S, R, и C. Отличие триггера синхронного типа от асинхронного заключается в наличии входа синхронизации (С). Он необходим по следующим причинам: ведь на входы устройства (логического элемента) сигналы поступают не всегда одновременно. Это связано с тем, что они проходят через различные типы и количество узлов, которые обладают разной задержкой. Это явление называют «состязанием». В результате таких «состязаний» полученные значения сигналов будут накладываться на предыдущие значения других сигналов. Все это приводит к ложному срабатыванию устройства.

Это явление можно устранить подачей на вход устройства сигналов временного стробирования. А именно: на вход логического элемента, кроме непосредственно информационных сигналов, подаются ключевые синхронизирующие импульсы, к этому моменту информационные входные сигналы успеют зафиксироваться на входах.

Главное условие правильности работы срабатывания логических каскадов в RS-триггере и управляемых ими логических схем – недопустимость одновременного действия сигнала Rt или St, переключающего устройство, и съема информации с выхода Q(t+1) триггера. В связи с этим в потенциальных сериях элементов содержатся только синхронные.

RS-триггер синхронного типа представлен характеристическим уравнением: Q(t+1)=StCt V R’tQt V QtC’t.

На фото изображен RS-триггер синхронного типа на элементах И-НЕ.

Входные логические элементы И-НЕ передают переключающую логическую единицу с информационного входа S или R на необходимые входы асинхронного триггера типа RS с инверсными входами только при условии наличия на синхронном входе (С) сигнала с уровнем логической единицы.

fb.ru

rs-триггер Википедия

RS-триггер
(R1, R2 = 1 kΩ, R3, R4 = 10 kΩ).

Триггер (триггерная система) — класс электронных устройств, обладающих способностью длительно находиться в одном из двух устойчивых состояний и чередовать их под воздействием внешних сигналов. Каждое состояние триггера легко распознаётся по значению выходного напряжения. По характеру действия триггеры относятся к импульсным устройствам — их активные элементы (транзисторы, лампы) работают в ключевом режиме, а смена состояний длится очень короткое время.

Отличительной особенностью триггера как функционального устройства является свойство запоминания двоичной информации. Под памятью триггера подразумевают способность оставаться в одном из двух состояний и после прекращения действия переключающего сигнала. Приняв одно из состояний за «1», а другое за «0», можно считать, что триггер хранит (помнит) один разряд числа, записанного в двоичном е.

При включении питания триггер непредсказуемо принимает (с равной или неравной вероятностью) одно из двух состояний. Это приводит к необходимости выполнять первоначальную установку триггера в требуемое исходное состояние, то есть подавать сигнал сброса на асинхронные входы триггеров, счётчиков, регистров, и т. д. (например, с помощью RC-цепочки), а также учитывать, что ячейки ОЗУ, построенного на триггерах (память статического типа), содержат после включения произвольную информацию.

При изготовлении триггеров применяются преимущественно полупроводниковые приборы (обычно биполярные и полевые транзисторы), в прошлом — электромагнитные реле, электронные лампы. С появлением технологии производства микросхем малой и средней степени интеграции был освоен выпуск обширной номенклатуры триггеров в интегральном исполнении. В настоящее время логические схемы, в том числе с использованием триггеров, создают в интегрированных средах разработки под различные программируемые логические интегральные схемы (ПЛИС). Используются, в основном, в вычислительной технике для организации компонентов вычислительных систем: регистров, счётчиков, процессоров, ОЗУ.

История[ | ]

ru-wiki.ru

Двухступенчатый синхронный rs-триггер

Такой триггер состоит из двух синхронных RS-триггеров и инвертора:

При синхросигнале С=1 происходит запись информации с информационных входов в первый триггер(ведущий), при этом входы второго триггера(ведомого) закрыты, т. к. на его синхровход подается О. И только при изменении синхросигнала с 1 в 0 происходит перепись информации из ведущего триггера в ведомый. При этом закрыты информационные входы ведущего триггера, т. к. С=0. Таким образом ,двухступенчатый RS-триггер имеет динамическую снхронизацию и переключается по заднему фронту синхросигнала (инверсный синхровод), что отмечено соответствующим наклоном черты в его условном обозначении. Наличие 2-х ступеней триггеров(ведущий-ведомый) обычно обозначается двумя буквами Т.

Использование двухступенчатых триггеров позволяет строить сложные цифровые устройства с обратными связями, что часто весьма затруднительно при использовании одноступенчатых триггеров из-за неопределенности их переключений (так называемых «гонок»).

D-триггер(триггер задержки)

D-триггер имеет один иформационный вход D и синхровход С. D-триггер можно построить из двухступенчатого синхронного RS-триггера и инвертора:

Информация (логический 0 или 1) записывается в двухступенчатый D-триггер с входа D по заднему фронту синхроимпульса и сохраняется(задерживается) до прихода следующего синхроимпульса:

D-триггер (со статической синхронизацией) может быть построен и на основе одностурпенчатого RS-триггера:

Т-триггер

Т-триггер имеет один вход (Т) и изменяет свое состояние на противоположное с приходом каждого входного импульса. Т-триггер чаще выполняется по двухступенчатой схеме, например, с использованием двухступенчатого синхронного RS-триггера или двухступенчатого D-триггера:

Временные диаграммы Т-триггера:

Jk-триггер

JK-триггер состоит из двухступенчатого RS-триггера и двух элементов И:

Вход J аналогичен входу S двухступенчатого синхронного RS-триггера, а вход К – входу R. Если J=K=0, то осуществляется режим хранения информации. Если J=K=1 или J=K=C, то c приходом каждого синхроимпульса триггер изменяет свое состояние на противоположное, т. е. работает как двухступенчатый Т-триггер. Все изменения состояний такого JK-триггера осуществляется по заднему фронту синхроимпульса.

Таким образом, JK-триггер может выполнять функции двухступенчатых RS-, D- и Т –триггеров:

Кроме рассмотренных триггеров с инверсным динамическим синхровходом производятся триггеры и с прямым динамическим синхровходом, что отмечается противоположным наклоном черты в его условном обозначении.

Задание

  1. Используя компоненты Electronics WorkBench, соберите поочередно вышеприведенные схемы триггеров, дополнив их осциллографом и лампочками (или светодиодами) для снятия выходных сигналов, а также источником постоянного напряжения, переключателями и резисторами 1 кОм для подачи входных сигналов, по следующему образцу:

Следует учитывать, что в реальных схемах имеет место кратковременный «дребезг» контактов, возникающий при замыкании и размыкании механических контактов, который может приводить к ложным срабатываниям цифровых схем. Для подавления дребезга контактов может быть использована вышеприведенная схема на базе асинхронного RS-триггера. При этом два переключателя можно заменить одним.

  1. Задавая с помощью переключателей различные комбинации входных сигналов, составьте таблицы переходов триггеров и временные диаграммы. Для D- и Т – триггеров синхросигналы подайте от источника прямоугольных импульсов небольшой частоты 0,2…1 Гц.

studfiles.net