1 и 2 закон кирхгофа формулы – Закон Киргофа. 1 и 2 закон Кирхгофа. Определение, формула

Содержание

Формулы законов Кирхгофа

Законы Кирхгофа применяют для составления систем уравнений из которых находят силы тока, которые текут в элементах рассматриваемой цепи.

Любую точку цепи, в которой сошлись три или более проводников с токами называют узлом.

Формула первого закона Кирхгофа (правило узлов)

   

Выражение (1) означает, что алгебраическая сумма токов в любом узле цепи (при учете знаков токов) равна нулю. Знаки токов выбирают произвольно, но при этом следует считать, например, все токи, входящие в узлы положительными, тогда все токи, исходящие из узлов отрицательными. При решении одной задачи важно не путать знаки. Для того, чтобы не допускать ошибок со знаками при составлении суммы токов, часто на схемах силы токов изображают стрелками с направлениями от узла или к узлу.

Первый закон Кирхгофа — следствие закона сохранения заряда. Так как при постоянном токе никакая точка проводника (или участок цепи) не могут накапливать заряд. В противном случае токи не были бы постоянными.

Формула второго закона Кирхгофа (правило контуров)

   

Формула (2) означает, что произведение алгебраической величины силы тока (I) на сумму вешних и внутренних сопротивлений всех участков замкнутого контура равно сумме алгебраических значений сторонних ЭДС () рассматриваемого контура.

Направление положительного обхода выбирают для всех контуров одинаковым в одной задаче. При составлении уравнений, используя правила Кирхгофа необходимо внимательно следить за расстановкой знаков токов и ЭДС. Знак ЭДС выбирается положительным, если при движении по контуру в положительном направлении первым встречается отрицательный полюс источника. (За положительное направление обхода контура принимают направление обхода цепи либо по часовой стрелке, либо против нее).

Втрое правило Кирхгофа является следствием обобщенного закона Ома.

Примеры решения задач по теме «Законы Кирхгофа»



Понравился сайт? Расскажи друзьям!



ru.solverbook.com

Каждый закон Кирхгофа прост и понятен :: SYL.ru

Густав-Роберт Киргоф, выдающийся немецкий физик и математик позапрошлого века, открыл и сформулировал два электротехнических закона, названных в его честь.

Открытия Кирхгоффа

При всей видимой простоте и понятности, законы Кирхгофа стали фундаментальными основами современной науки и базой для методов схематических расчетов. Их практическое значение трудно переоценить. Базой для научных изысканий профессора Кирхгофа стали законы сохранения заряда и энергии, открытые ранее. Некоторые специалисты считают, что правильнее называть описанные Кирхгоффом закономерности правилами, чтобы не путать их с другими замечательными открытиями этого физика, касающимися способностей тел излучать и поглощать энергию, а также зависимости скорости протекания химических реакций от температуры. Однако в научной и технической литературе принято все же пользоваться термином «закон Кирхгофа», тем самым подчеркивая заслуги этого великого ученого в области электротехники. Итак, их два.

1. Закон Кирхгофа о токах в узлах

Узлами в электротехнике называют точки соединения проводников в количестве не менее трех. Для того чтобы понять действие Первого закона Киргофа, достаточно представить себе обычный водопроводный тройник. Если в одну из труб подается вода, то в две остальные она вытекает. Возможен и другой вариант, когда отводная труба одна, а приточных две, но в любом случае, сколько воды в тройник затечет, столько же и вытечет. Теперь задачу можно усложнить, допустив, что количество входов и выходов в узле сколь угодно большое. Однако результат будет тот же, количество поступающей и уходящей жидкости будет равным, то есть, говоря языком математики, алгебраическая сумма расходов равна нулю. Первый закон Кирхгофа рассматривает электрические токи в узлах, которые ведут себя так же, как и вода в тройнике. Если есть входящие и выходящие токи, то их сумма с учетом знака будет нулевой. При этом величина входящих токов обозначается положительным знаком «плюс», а выходящих – отрицательным «минус». Математическая формула выглядит примерно так:

∑(I вх., … I вых.) = 0

где I вх. — величины входящих токов со знаком «+»;

I вых. — величины выходящих токов со знаком «-».

2. Закон Кирхгофа о сумме падений напряжений

Второй закон Кирхгофа понять несколько сложнее, у него нет столь прямых и наглядных ассоциаций как у первого, тем не менее, он тоже несложен. Для начала следует представить себе замкнутую простейшую электрическую цепь, состоящую из источника питания и активной нагрузки в виде сопротивления. При замыкании клемм выключателя через резистор пойдет ток, и все подаваемое напряжение на нем же упадет. Задача вновь усложняется, и количество сопротивлений изменяется. Теперь их много, и у всех разная величина. При прохождении через них электрического тока он будет в цепи одинаковым и, согласно закону Ома, равен напряжению источника, поделенному на сумму всех сопротивлений. На каждом из них будет падать его часть. Так вот, Второй закон Кирхгофа гласит, что общая сумма падений напряжений на каждом из участков цепи равна величине напряжения питания. Говоря иными словами, общая алгебраическая сумма вместе с источником равна нулю.

Простейшая математическая формула описывает Второй закон Кирхгофа следующим образом:

∑U ц = 0

где U ц – падения напряжений на разных участках замкнутой электрической цепи (контура).

www.syl.ru

Закон Кирхгофа в элекротехнике

В расчетах электрических цепей переменного и постоянного тока кроме знаменитой формулы Ома также применяется закон Кирхгофа. Человек, работа которого связана с электротехникой, должен даже среди ночи без запинки дать определения для каждого из двух законов. Часто это необходимо не столько для выполнения расчетов, сколько для понимания происходящих процессов.

В далеком 1845 году германский физик Густав Кирхгоф на основании трудов Максвелла (сохранение заряда и свойства электростатического поля) сформулировал два Правила, позволяющие указать соотношение между током и напряжением в замкнутой электрической цепи. Благодаря этому стало возможно решать практически любые прикладные задачи, связанные с электричеством. Закон Кирхгофа, используемый для расчета линейной электрической цепи, дает возможность получить классическую систему линейных уравнений, учитывающих напряжения и токи, которые становятся известными после решения поставленной задачи.

Формулировка предполагает использование терминов электрических «контур, узел и ветвь». Ветвь – это любой двухсторонний участок цепи, произвольный ее отрезок. Контур – это система зацикленных ветвей, то есть, начав мысленное движение из произвольной точки по любой ветви, в итоге все равно попадешь в место, откуда движение началось. Более понятно ветви называть «закольцованными», хотя это не совсем корректно. Узел – это точка, в которой сходятся две или более ветвей.

1 закон Кирхгофа очень прост. Он основывается на фундаментальном законе сохранения заряда. Первый закон Кирхгофа гласит: сумма токов (алгебраическая), стекающихся по ветвям к единому узлу, равна нулю. То есть, I1+I2+I3=0. Для расчетов принято считать, что значение втекающих в узел токов имеет знак «+», а вытекающих «-». Поэтому расширенная формула приобретает вид I1 + I2 — I3 = 0. Другими словами: количество втекающего в узел тока равно количеству вытекающего. Этот закон Кирхгофа очень важен для понимания принципов работы электрооборудования. Например, он поясняет, почему при соединении обмоток электрического двигателя по схеме «звезда» или «треугольник» не происходит межфазного короткого замыкания.

2 закон Кирхгофа обычно используют для расчета замкнутого контура с определенным количеством ветвей. Он непосредственно взаимосвязан с третьим законом Максвелла (неизменное магнитное поле). Правило гласит, что алгебраическая сумма падений напряжений на каждой из веток контура приравнивается к сумме значений ЭДС для всех ветвей рассчитываемого контура. Очевидно, что при отсутствии в замкнутой цепи источников электрической энергии (ЭДС), итоговое падение напряжений также будет равняться нулю. Говоря более простым языком, энергия источника лишь преобразуется на потребителях, а при возвращении стремится к своему исходному значению. Использование данного закона имеет ряд особенностей, как и в случае с первым.

Составляя уравнение цепи, принято считать, что численное значение ЭДС имеет положительный знак, если изначально принятое направление обхода контура (обычно по часовой стрелке) совпадает с ее направлением, и отрицательное, если направления противоположны. То же самое касается резисторов: если направление движения тока такое же, как у выбранного обхода, то падению напряжения на нем приписывается знак «+». Например, E1 — E2 + E3 = I1R1 — I2R2 + I3R3 + I4R4…

В результате обхода всех ветвей, входящих в контур, составляется система линейных уравнений, решив которую, удается узнать все токи ветвей (и узлов). Решаются полученные соотношения с помощью метода контурных токов.

Сложно переоценить значение законов Кирхгофа для электротехники. Простота написания формул и их решение с помощью способов классической алгебры явились причиной для широкого их использования.

fb.ru

Второй закон Кирхгофа — третий кит электротехники

Удивительно не то, как просто всё рассчитывается, когда знаешь два понятных всем правила расчёта — первый и второй Законы Кирхгофа, а то, как гениально это было придумано.

Ведь не было тогда бытовой электрической сети. Куда просто вкрутил лампочку, нажал выключатель, и всё — заработало напряжение, побежал ток, разогрелась спираль лампочки и засиял свет. Вот она, понятная работа электричества. Её нам сейчас ничуть не труднее осознать, чем бурчание воды в отоплении или гудение воздуха в инструменте трубача.

Закон Ома — первый кит электротехники


А когда Георг Симон Ом, изучая гальванические, как тогда называли, цепи, вывел своё простейшее соотношение, этого понять не мог никто, кроме немногих посвящённых. Просто потому, что обыденный мозг тогда сразу упирался в нечто невообразимое, а значит, непреодолимое: что это за течение такое, ток частиц, которых не то что пощупать, но и представить нельзя ввиду абсолютно исчезающей малости. Да ещё «текущих» в металле, твёрдом предмете. Уж не то, что попытаться составлять какие-либо точные формулы.

Теперь это соотношение кажется простым и ясным, как удар молнии. Видимо, он сумел почувствовать это явление — электрическое напряжение. Если цепь разомкнута, то тока ещё никакого нет, ничего не нагревается и не пузырится (как вода под током), а напряжение вот оно — попробуй, тронь! Видимо, как-то сумел гений потрогать и попробовать.

Собственно, вся любая электрическая цепь и описана законом Ома. Источник, дающий напряжение и нагрузка, подставляющая напряжению своё тело, отчего получается электрический ток. Соотношение простейшее — чем больше напряжение, тем больше ток. А конкретно каким он получится, определяет пропускная способность нагрузки, G, или проводимость.

I=U*G

Удобнее и нагляднее оказалось вместо проводимости пользоваться понятием сопротивления, R, величиной обратной проводимости (R=1/G).

И обозначения на первой электросхеме самые простейшие: прямоугольничек — нагрузка, две линии поперёк тока — батарейка.

Самая первая электрическая схема

Видимо, и подключали поначалу что-то одно к чему-то одному. Но вот и эта схема «под напором реальности» усложняется. Во-первых, сама батарейка имеет сопротивление.

Как это изобразить, вот так?

Некрасиво.

Лучше располагать рядом так:

Есть искушение поставить этот прямоугольничек на другую сторону, рядом с нагрузкой, а нельзя, всё-таки батарейка и её внутреннее сопротивление — одно нераздельное физическое устройство.

Чтобы видеть действие тока, лучше в качестве нагрузки использовать лампочку. Понятно, с выключателем.

Мы получили последовательную цепочку.

Ток во всех её частях обязан быть одним и тем же, то есть одинаковый везде.

Это логично, и если включить выключатель, лампочка сразу загорится.

При этом никто и не задумывается, что если у нас через лампочку течёт ток всего в один ампер, то это значит, что каждую секунду через неё пробегает:

6 квинтиллионов 241 квадриллион 509 триллионов 125 миллиардов 493 миллиона 690 тысяч с небольшим электронов.

И все они вышли из небольшой батареечки и в неё же и вернутся с другой стороны.

Если поставить вместо одной лампочки две одинаковых, то они загорятся вполнакала, то есть ток I, протекающей последовательно из батарейки через выключатель сначала в лампочку Л1, потом в лампочку Л2 и снова в батарейку, станет меньше, чем был, когда стояла одна лампочка.

Это значит, что сопротивление стало больше: было R у одной лампочки, стало R+R, то есть 2R.

Токи и напряжения в сети

Точную величину тока можно подсчитать, если применить закон Ома ко всей нашей цепи, общее сопротивление которой есть сумма сопротивлений всех её нагрузок.

(1) А если оставить в формуле сопротивление только одной лампочки, то, зная, что ток у нас везде один и тот же, можно вычислить напряжение Uл конкретно для этого потребителя, лампочки.

Это напряжение, которое падает именно на нашу лампочку, так и называется «падение напряжения». Оно примерно вдвое меньше нашего напряжения питания U. Примерно — потому что в формуле (1) среди сопротивлений есть ещё небольшой довесок в виде r, внутреннего сопротивления нашей батареи. Что делать, она не идеальна, и вместе со всеми остальными потребляет энергию (свою же собственную) и даже греется от этого. Хотя сопротивление её достаточно малое.

А теперь взглянем на нашу цепь как на единый контур, который можно обходить по часовой или против часовой стрелки. Ток наш идёт, как нарисовано, против часовой стрелки. Двинемся по этому направлению с любого места и пройдём всё, складываем падения напряжения на всех попадающихся по дороге приборах.

Для токов — узлы, для напряжений — контуры

Получится:

Последним напряжением добавлено то, которое вырабатывается батареей, только со знаком минус, так как оно работает не на потребление, а наоборот, вырабатывается и поставляется в сеть нашей героической батареей. И что у нас получилось?

Правило Кирхгофа для напряжений (2й закон)

А получилось ровно 0. Потому что вся энергия от батареи потребляется лампочками + внутреннее сопротивление батареи. И понятно, это есть высшая справедливость природы. То есть второй закон Кирхгофа в действии.

И вдруг у нас случился… прорыв.

Правило Кирхгофа для токов (1й закон)

К нам в двух точках — А и B — подключились неизвестные, скорее всего, инопланетяне.

И начали качать от нас энергию. И теперь мы знаем, что ток I3 и ток I4 — не наши, они инопланетянские. И наша схема может быть безнадёжно испорчена.

Но!

А обойдём ка мы контур снова. Может быть, не всё ещё потеряно. И вот:

Ur=I1*r

Uл1=I2*R=Uл2

И, наконец:

U=Uг+Uл1+Uл2.

Потому что I1=I2+I3. И I1=I2+I4.

То есть сколько току вытекло в качестве тока I3 в точке А, столько его и вернулось к нам в точке B в виде тока I4. Высшая справедливость всё-таки восторжествовала. А помогло нам при этом здравое рассуждение, о том, что в любой точке цепи, где электрическая сеть разветвляется, общее количество тока, вытекающего из узла, то есть этой точки, равно количеству тока, втекающего в этот узел. Поэтому смело рисуем схему, зная, что нам помог уже первый, а не второй закон Кирхгофа:

Почему-то оказалось, что токи I3 и I4 оказались точно равными -I1, и значит… наши лампочки загорелись полным накалом.

Ох уж эти выдумки инопланетянские! С нашей стороны осталось только в схеме поставить стрелочки токов (и ЭДС у источника ЭДС Eин) в противоположное направление. Потому что мы сначала подумали, что инопланетяне плохие, а они оказались хорошими.

Расчёт цепи по законам Кирхгофа интуитивно понятен — правила позволяют рассчитывать электрические цепи, то есть определять все неизвестные параметры — токи, напряжения — любой, сколь угодно замысловатой цепи.

Применение законов Кирхгофа для расчёта сложных цепей

Цепь состоит из ветвей, соединяющихся в узлах. Ветвь — это несколько последовательно соединённых электрических приборов. В узлах могут соединяться три и более ветвей. Это значит, что через узел проходят токи, выходящие из ветвей, которые в нём соединяются.

Ну и теперь, вооружившись проверенными нами базовыми законами электротехники, решим пример, зная, что всё и для любой электрической цепи решаемо.

Смело решаем задачу.

Путь таков:

  1. Составляются уравнения для токов в узлах — работает первый закон Кирхгофа. Составляются уравнения для падений напряжений по всем независимым контурам — дело второго закона Кирхгофа.
  2. Уравнения сводятся в систему и решаются методами математики для системы из N линейных уравнений с N неизвестными.
  3. Делается проверка решения другим способом, например, подсчётом общей мощности сети

Составляем уравнения для токов, втекающих/вытекающих в узлы. Узлов сего три, значит, уравнений будет 3-1, то есть два.

Теперь составляем уравнения для контуров и падений напряжения в них. Контуров у нас независимых три (в которых в каждом есть хотя бы одна ветвь, не встречающаяся в других).

Вот и получается три уравнения по второму закону Кирхгофа: Собрав все пять уравнений вместе, получаем систему из пяти уравнений с пятью неизвестными.

Остальное — дело королевы наук, то есть математики. Такие системы она щёлкает не глядя.

И получаются вполне похожие на правду ответы:

А мы знаем, хорош тот ответ, который поддаётся проверке.

Сделаем-ка мы расчёт мощности, выделяемой на всех устройствах данной схемы при полученной нами картине токов и напряжений двумя способами, пользуясь немного разными определениями для мощности:

  • мощность как произведение тока на напряжение
  • мощность, как квадрат силы тока, умноженный на сопротивление

Как видим, всё у нас правильно, задача нашего непростого примера решена.

instrument.guru

Второй закон Кирхгофа, теория и примеры

Большое количество электрических цепей на практике являются сложными. Однако в цепь любого уровня сложности имеет элементы двух простейших видов. Это узлы и замкнутые контуры. Узел – это любая точка разветвления цепи, в которой сошлось три или более проводников, по которым текут токи.

Второе правило (закон) Кирхгофа является следствием обобщенного закона Ома. Так, если в изолированной замкнутой цепи есть один источник ЭДС, то сила тока в цепи будет такой, что сумма падения напряжения на внешнем сопротивлении и внутреннем сопротивлении источника будет равна сторонней ЭДС источника. Если источников ЭДС несколько, то берут их алгебраическую сумму. Знак ЭДС выбирается положительным, если при движении по контуру в положительном направлении первым встречается отрицательный полюс источника. (За положительное направление обхода контура принимают направление обхода цепи либо по часовой стрелке, либо против нее).

Формулировка второго закона Кирхгофа

Произведение алгебраической величины силы тока (I) на сумму вешних и внутренних сопротивлений всех участков замкнутого контура равно сумме алгебраических значений сторонних ЭДС () рассматриваемого контура:

   

Каждое произведение определяет разность потенциалов, которая существовала бы между концами соответствующего участка, если бы ЭДС в нем была равно нулю. Величину называют падением напряжения, которое вызывается током.

Второй закон Кирхгофа иногда формулируют следующим образом:

Для замкнутого контура сумма падений напряжения есть сума ЭДС в рассматриваемом контуре.

Правила Кирхгофа служат для того, чтобы составить систему уравнений, позволяющих найти силу тока для сложной цепи. Направление положительного обхода выбирают для всех контуров одинаковым. При составлении уравнений, используя правила Кирхгофа необходимо внимательно следить за расстановкой знаков токов и ЭДС.

Система уравнений, которая получается при использовании первого и второго закона Кирхгофа является полной и дает возможность отыскать все токи. При составлении уравнений, используя правила Кирхгофа, надо следить за тем, чтобы новое уравнение имело хотя бы одну величину, которая еще не вошла в предыдущие уравнения. Кроме того, необходимо, чтобы система уравнений имела число уравнений равное количеству неизвестных.

Второй закон Кирхгофа следует из того, что электрическое напряжение по замкнутому контуру равно нулю, то есть это правило является следствием основного свойства электростатического поля, которое заключается в том, что работа поля при движении заряда по замкнутой траектории равна нулю.

Примеры решения задач

ru.solverbook.com

Электричество и магнетизм

Приведем пример расчета токов в разветвленной цепи (рис. 4.25).

Рис. 4.25. Пример разветвленной цепи 

Направления действия ЭДС показаны синими стрелками. В этой цепи у нас имеется два узла — точки b и d (m = 2), и три ветви — участок bаd с током I1, участок bd с током I2 и участок bcd с током I3 (n = 3). Значит, мы можем написать одно (m – 1 = 2 – 1 = 1) уравнение на основе первого правила Кирхгофа и два (nm + 1 = 3 – 2 + 1 = 2) уравнения на основе второго правила Кирхгофа. Как же это делается на практике? 

Шаг первый. Выберем направления токов, текущих в каждой из ветвей цепи. Как эти направления выбрать — совершенно неважно. Если мы угадали, в окончательном результате значение этого тока получится положительным, если нет и направление должно быть обратным — значение этого тока получится отрицательным. В нашем примере мы выбрали направления токов как показано на рисунке. Важно подчеркнуть, что направления действия ЭДС не произвольны, они определяются способом подключения полюсов источников тока (см. рис. 4.25). 

Шаг второй. Записываем первое правило Кирхгофа для всех узлов кроме одного (в последнем узле, выбор которого произволен, это правило будет выполняться автоматически). В нашем случае мы можем записать уравнение для узла b, куда входит ток I2 и выходят токи I1 и I3

(4.45)

Шаг третий. Нам осталось написать уравнения (в нашем случае — два) для второго правила Кирхгофа. Для этого надо выбрать два независимых замкнутых контура. В рассматриваемом примере имеются три такие возможности: путь по левому контуру badb, путь по правому контуру bcdb и путь вокруг всей цепи badcb. Достаточно взять любые два из них, тогда для третьего контура второе правило Кирхгофа будет выполнено автоматически. Направление обхода контура роли не играет, но при обходе ток будет браться со знаком плюс, если он течет в направлении обхода, и со знаком минус, если ток течет в противоположном направлении. Это же относится к знакам ЭДС.

Возьмем для начала контур badb. Мы выходим из точки b и движемся против часовой стрелки. На нашем пути встретятся два тока, I1 и I2, направления которых совпадают с выбранным направлением обхода. ЭДС также действует в этом же направлении. Поэтому второе правило Кирхгофа для этого участка цепи записывается как

(4.46)

В качестве второго замкнутого пути для разнообразия выберем путь badcb вокруг всей цепи. На этом пути мы встречаем два тока I1 и I3, из которых первый войдет со знаком плюс, а второй — со знаком минус. Мы встретимся также с двумя ЭДС, из которых  войдет в уравнения со знаком плюс, а  — со знаком минус. Уравнение для этого замкнутого пути имеет вид

(4.47)

 

Шаг четвертый. Мы нашли три уравнения для трех неизвестных токов в цепи. Решение произвольной системы линейных уравнений описывается в курсе математики. Для наших целей (цепь достаточна проста) можно просто выразить I3 через I1 из уравнения (4.47)

(4.48)

I2 через I1 с помощью уравнения (4.46)

(4.49)

и подставить (4.48), (4.49) в уравнение первого правила Кирхгофа (4.45). Это уравнение содержит лишь неизвестное I1, которое находится без труда

(4.50)

Подставляя это выражение в (4.48), (4.49), находим соответственно токи I2, I3

(4.51)

online.mephi.ru

Законы Кирхгофа — это… Что такое Законы Кирхгофа?

Зако́ны Кирхго́фа (или правила Кирхгофа) — соотношения, которые выполняются между токами и напряжениями на участках любой электрической цепи. Правила Кирхгофа позволяют рассчитывать любые электрические цепи постоянного и квазистационарного тока.[1] Имеют особое значение в электротехнике из-за своей универсальности, так как пригодны для решения многих задач теории электрических цепей. Применение правил Кирхгофа к линейной цепи позволяет получить систему линейных уравнений относительно токов, и соответственно, найти значение токов на всех ветвях цепи. Сформулированы Густавом Кирхгофом в 1845 году.

Формулировка

Для формулировки законов Кирхгофа, в электрической цепи выделяются узлы — точки соединения трёх и более проводников и контуры — замкнутые пути из проводников. При этом каждый проводник может входить в несколько контуров.

В этом случае законы формулируются следующим образом.

Первый закон

Первый закон Кирхгофа (Закон токов Кирхгофа, ЗТК) гласит, что алгебраическая сумма токов в любом узле любой цепи равна нулю (значения вытекающих токов берутся с обратным знаком):

Иными словами, сколько тока втекает в узел, столько из него и вытекает. Данный закон следует из закона сохранения заряда. Если цепь содержит p узлов, то она описывается p − 1 уравнениями токов. Этот закон может применяться и для других физических явлений (к примеру, водяные трубы), где есть закон сохранения величины и поток этой величины.

Второй закон

Второй закон Кирхгофа (Закон напряжений Кирхгофа, ЗНК) гласит, что алгебраическая сумма падений напряжений по любому замкнутому контуру цепи равна алгебраической сумме ЭДС, действующих вдоль этого же контура. Если в контуре нет ЭДС, то суммарное падение напряжений равно нулю:

для постоянных напряжений
для переменных напряжений

Иными словами, при обходе цепи по контуру, потенциал, изменяясь, возвращается к исходному значению. Если цепь содержит ветвей, из которых содержат источники тока ветви в количестве , то она описывается уравнениями напряжений. Частным случаем второго правила для цепи, состоящей из одного контура, является закон Ома для этой цепи.

Законы Кирхгофа справедливы для линейных и нелинейных цепей при любом характере изменения во времени токов и напряжений.

Пример

На этом рисунке для каждого проводника обозначен протекающий по нему ток (буквой «I») и напряжение между соединяемыми им узлами (буквой «U»)

Например, для приведённой на рисунке цепи, в соответствии с первым законом выполняются следующие соотношения:

Обратите внимание, что для каждого узла должно быть выбрано положительное направление, например здесь, токи, втекающие в узел, считаются положительными, а вытекающие — отрицательными.

В соответствии со вторым законом, справедливы соотношения:

Особенности составления уравнений для расчёта токов

  • Законы Кирхгофа, записанные для узлов и контуров цепи, дают полную систему линейных уравнений, которая позволяет найти все токи и напряжения.
  • Перед тем, как составить уравнения, нужно произвольно выбрать:
    • положительные направления токов в ветвях и обозначить их на схеме;
    • положительные направления обхода контуров для составления уравнений по второму закону.
  • С целью единообразия рекомендуется для всех контуров положительные направления обхода выбирать одинаковыми (напр.: по часовой стрелке)
  • Если направление тока совпадает с направлением обхода контура (которое выбирается произвольно), перепад напряжения считается положительным, в противном случае — отрицательным.
  • При записи линейно независимых уравнений по второму закону, стремятся, чтобы в каждый новый контур, для которого составляют уравнение, входила хотя бы одна новая ветвь, не вошедшая в предыдущие контуры, для которых уже записаны уравнения по второму закону (достаточное, но не необходимое условие)

О значении для электротехники

Правила Кирхгофа имеют прикладной характер и позволяют наряду и в сочетании с другими приёмами и способами (метод эквивалентного генератора, метод контурных токов, метод узловых напряжений, принцип суперпозиции, способ составления потенциальной диаграммы) решать задачи электротехники. Правила Кирхгофа нашли широкое применение благодаря простой формулировке уравнений и возможности их решения стандартными способами линейной алгебры (методом Крамера, методом Гаусса и др.).

Существует мнение, согласно которому «Законы Кирхгофа» следует именовать «Правилами Кирхгофа», ибо они не отражают фундаментальных сущностей природы (и не являются обобщением большого количества опытных данных), а могут быть выведены из других положений и предположений.[источник не указан 912 дней]

Закон излучения

Закон излучения Кирхгофа — отношение излучательной способности любого тела к его поглощательной способности одинаково для всех тел при данной температуре для данной частоты для равновесного излучения и не зависит от их формы, химического состава и проч.

Примечания

Литература

  • Матвеев А. Н. Электричество и магнетизм — Учебное пособие. — М.: Высшая школа, 1983. — 463 с.
  • Калашников С. Г. Электричество — Учебное пособие. — М.: Физматлит, 2003. — 625 с.
  • Бессонов Л. А. Теоретические основы электротехники. Электрические цепи — 11-е издание. — М.: Гардарики, 2007.

biograf.academic.ru