Блок питания для лампового усилителя – Вячеслав Юрьевич. Импульсный блок питания из деталей компьютеров для лампового усилителя — Источники питания — Другое — Каталог статей и схем

БЛОК ПИТАНИЯ ЛАМПОВОГО УСИЛИТЕЛЯ

   Ничто так не выдаёт консерватизм, чем изготовление ламповых усилителей звука. А может это просто признак особого изысканного вкуса настоящих аудиофилов? В любом случае собрать такой УНЧ представляется прикольным и теоретически выгодным занятием. Как знать, сколько подобный шедевр будет стоить спустя 20 лет. Тут один только внешний вид лампового усилителя уже делает достойной установку его на самом видном месте кабинета. А звук.. Ну это каждый решит после прослушки для себя сам. В общем приступая к сборке самого усилителя, вначале продумайте сам блок питания. Это вам не 12В взятые из БП ATX. Здесь должны присутствовать минимум два напряжения разной величины и мощности. Напряжение накала берётся в пределах 5,5 — 6,5В и чаще всего подаётся на схемы переменным, сразу с обмоток трансформатора, а питание анодов достигает 300 и даже 500В. При уже постоянной форме тока.

   Несмотря на то, что в последнее время наметилась стойкая тенденция к импульсным источникам питания всего и вся, рекомендую всё-же забыть на время про электронные трансформаторы и задействовать старый добрый ТС180 (ТС160) от любого чёрно-белого лампового телевизора. Тому есть две причины. Во-первых обычный трансформатор прощает невнимательность монтажа и не взорвётся, как электронный, при случайных боках и замыканиях, а во-вторых цена ЭТ может быть весьма и ввесьма, в отличии от обычных ТС, коих у многих хватает в закромах. Представляется правильным собрать один универсальный блок питания с анодным и накальным напряжением, и питать от него или один конкретный ламповый усилитель (спрятав сам БП подальше), или собирая другие ламповые схемы переключать его при необходимости на них. На каждый ламповый УНЧ блоков питания не напасёшся:)

   Смотрим схему простого блока питания лампового усилителя:

   По питанию 220В ставим модный пластмассовый тумблер 250В 5А с зелёной подсветкой. Не забываем про предохранители — один на пару ампер по сети, второй трёхамперник по накалу, и третий по высоковольтному напряжению анода. В отличии от электронных трансформаторов, где предохранители сгорают последними, здесь они выполнят свою миссию, так как даже и без них блок питания выдержит кратковременные замыкания выходов. За что я и уважаю трансы в железе. Диоды для двухполупериодных мостов или собираем из советских КД202 с нужной буквой, или берём готовый диодный мост на подходящее напряжение и ток. Если у вас усилитель на пару ламп типа 6П14П с небольшой мощностью выхода, диодный мост выпрямителя пойдёт и советский коричневый КЦ405 или КЦ402. Накал выпрямлять следует только для входных ламп первого одного — двух каскадов. Дальше влияние постоянного накала сводится к нулю и это будет только расход тепла на диодах.

   Можно питать накал от моста с конденсатором 4700 — 10000мкФ, а можно и КРЕН5 поставить. и не стремитесь на входные лампы подавать строго 6,3В — лучше питать их немного заниженным напряжением вплоть до 5В. Так что обычная пятивольтовая КРЕНка и всё будет ОК. Обязательно советую поставить пару светодиодов — индикаторов напряжения анода и накала. Во-первых красиво, а во-вторых информативно, сразу видны возможные проблемы с питанием.

   Корпус лучше делать делезный, точнее из листового алюминия — он обрабатывается очень удобно. Или просто взять готовый подходящих размеров, где просверлить гнёзда под кнопку сети, светодиоды и разъёмы. Сеть тоже вводите в корпус не просто через дырку, а подключив штеккером к специальному сетевому гнезду. Лично я делаю только так на всех конструкциях — это удобно.

   Конденсаторы фильтров анода берём чем больше — тем лучше. Минимум два по 300 микрофарад. Напряжение на них должно быть на 100В выше, чем напряжение на выходе БП. Если у вас схема рассчитана на 250В, то берём конденсатор на 350. Конечно я это правило выполняю далеко не всегда, а бывает вообще ставлю один к одному, но вы так не делайте и в этом с меня пример не берите. Резистор на 47 Ом 5 ватт уточняем по конкретной схеме лампового усилителя. Для простого однотактного его хватит, а для мощного двухтактника надо вообще ставить дроссель. Выдиратся он из любого лампового телевизора и называется ДР-0,38. Трансформатор питания перед установкой в БП обязательно послушайте на предмт гудения и жужжания. А то купите, рассчитете и соберёте под него корпус, а он гудит громче вечернего Пинк Флойда. Будет большой облом. И напоследок порекомендую все диоды шунтировать конденсаторами на 0,01-0,1 мкФ с соответствующими напряжениеми. 

   Все вопросы — на форум по БП

   Обсудить статью БЛОК ПИТАНИЯ ЛАМПОВОГО УСИЛИТЕЛЯ

radioskot.ru

Блок питания для ламповых, усилителя мощности и винил корректора

Еще при «эскизном проектировании» — на уровне идеи, было принято решение вынести источники питания в отдельный корпус. Вообще говоря, изрядный смысл в таком «вольте» есть, особенно для подверженного всяким наводкам и фону, винил-корректору — удаление на некоторое расстояние источника мощных электромагнитных полей — трансформаторов. С другой стороны, источник питания в однотактном каскаде, находится в цепи сигнала и желательно минимизировать все соединения, словом — компромисс, как и всегда, как и везде. К преимуществам решения, можно также отнести, существенно более простую конструкцию усилителей, их компоновку. Меньший вес каждого блока — усилитель, не смотря на скромную мощность, получился очень тяжелым, с блоком питания, перемещать его в одиночку было бы затруднительно.

В блоках питания современных ламповых усилителей, часто применяют двухполупериодную схему со средней точкой обмотки трансформатора, выпрямители на кенотронах и фильтры с дросселями. Кроме ретро вида, такая схема построения оправдывается несколькими достоинствами, которые, тем не менее, экономнее и проще реализовать их на современной элементной базе. К преимуществам, можно причислить некоторые, свойственные вакуумным приборам особенности из за чего в выпрямителе не возникает помеха при переключении диодов в выпрямительном мосте. При применении классического диодного моста, от такой помехи, можно избавиться шунтированием каждого диода небольшим конденсатором емкостью около 100 нФ, на соответствующее напряжение и применением «быстрых» диодов.

Автоматическая задержка подачи анодного напряжения — по мере прогрева катода кенотрона. Дело в том, что ресурс приемно-усилительных ламп существенно увеличивается при подаче анодного напряжения, когда катод лампы уже прогрет. Обычно это занимает несколько десятков секунд. Здесь, предлагается, пожертвовав ресурсом кенотрона, продлить жизнь усилительных ламп, однако в наши дни и кенотроны имеют изрядную ценность, кроме того, задержку подачи высокого напряжения, довольно просто организовать простой схемой таймера с исполнительным элементом в виде электромагнитного реле, на современной элементной базе.

Здесь, стоит сказать, что для работы каскада на вакуумном триоде, требуется три напряжения — отрицательное напряжение смещения (иногда, при «автоматическом» смещении, получается падением напряжения на специальном резисторе), питание нити подогрева катода или самого «прямонакального» катода — напряжение «накала» и наконец — «анодное» напряжение. При применении в блоке питания стабилизации напряжения, недопустимо стабилизировать одно или только несколько напряжений. Требуется стабилизация всех, иначе, при изменении напряжения сети, режим радиолампы может выйти за допустимые пределы.

Описываемый блок питания, построен на полупроводниках, содержит в одном корпусе два независимых блока питания — для лампового усилителя мощности и лампового-же винил-корректора. Каждый из них, состоит из относительно сильноточного источника напряжения для питания накалов ламп и слаботочного, но высоковольтного для «анодного» напряжения. Все источники стабилизированы, задержка подачи анодного напряжения осуществляется вручную — переключением тумблеров. В блоке питания, есть возможность применять «ждущий» режим — подачу пониженного напряжения накала и анодного. Такой режим, позволяет не выключать полностью усилители при длительных перерывах в прослушивании, экономя ресурс радиоламп и электричество — как и любые приборы с нитью или спиралью накаливания, при подаче напряжения накала, происходит бросок тока из-за низкого сопротивления холодной спирали, он существенно снижает ресурс приборов — чаще всего, они выходят из строя именно в этот момент. Снимать же полностью анодное напряжение на относительно длительное время, оставляя разогретым только катод нельзя — в последнем наступают необратимые изменения, именуемые «отравлением катода». Алгоритм включения блока, обратный — снимаются анодные напряжения, через пять-десять секунд можно выключать напряжения накала.

Итак. Что понадобилось для работы.

Инструменты, оборудование.

Прежде всего, обычный набор инструмента для радиомонтажа, не повредят несколько более мощные, чем обычно кусачки. Паяльник, а лучше два — небольшой, для мелочей — 25…40Вт и покрупнее — 60…100Вт с принадлежностями. Мультиметр. Для работы с фанерными элементами корпуса, применялась небольшая циркулярная пила, плоскошлифовальная машинка. Для декоративного покрытия — кисти, посуда. Понадобилась электрическая дрель со сверлами, нечто, для сверления маленьких (0,8…1.5мм) отверстий на печатных платах. Специальный инструмент для рисования и изготовления печатных плат — рейсфедеры, специальная линейка, игла для корректирования дорожек, посуда для травления, небольшой удобный керн. Перманентный маркер, ножницы. Строительный или специальный, для радиомонтажа, фен для работы с термотрубками. Выдавливатель герметика. Для изготовления простейшей передней панели, понадобился доступ к компьютеру с принтером. Мелкий слесарный инструмент, «пистолет» для термоклея.

Материалы.

Кроме радиоэлементов и установочных деталей, понадобилась фанера 15мм для корпуса, фанера тонкая, 6мм для передней панели. ЛКМ, шлифовальная шкурка, ветошь хлопчатобумажная. Фольгированный стеклотекстолит для печатных плат, проволока медная луженная и провод монтажный различного сечения для монтажа. Термотрубка. Припой безсвинцовый, флюс, спирто-бензиновая смесь, химикаты для травления. Стяжки капроновые различной длины, герметик акриловый. Площадки капроновые для крепления стяжек. Радиаторы алюминиевые игольчатые, уголки перфорированные крепежные. Термопаста, прокладки слюдяные. Крепеж разный. Термоклей. Скотч малярный, бумага с липким слоем для печати на принтере.

Прежде всего, определился с общей концепцией. Высоковольтные источники — повышающие трансформаторы- выпрямительные мосты на быстродействующих диодах с шунтированием каждого керамическим конденсатором — стабилизаторы на высоковольтных полевых транзисторах. Высоковольтные электролитические емкости обычные, ширпотреб.

Выпрямитель-стабилизатор анодного напряжения, использовались в обоих усилителях, только настроенные на разные напряжения. Здесь, количеством и рабочим напряжением стабилитронов, устанавливают выходное напряжение стабилизатора. Транзистор Т1 – практически любой высоковольтный соответствующей структуры, диоды шунтировать пленочными или керамическими емкостями на 100…150нФ, 630В

Стабилизаторы напряжения накала ламп винил-корректора — на 7806, с добавочным кремниевым диодом в цепи общего провода (дает на входе стабилизатора прирост напряжения ~0,3 вольта). Выпрямитель — мост из диодов Шоттки, также шунтированных конденсаторами (не обязательно). Лампы усилителя мощности (6Э5П) по накалу, потребляют ток значительно больший, чем 6Н9, чтобы его снизить, применено последовательное соединение нитей накала двух ламп и задействованы интегральные стабилизаторы 7812 с диодами в цепи общего провода.

Подобраны радиаторы достаточной площади и подходящие трансформаторы. Для питания нитей накала ламп усилителя мощности, нашелся стандартный ТН, для анодного напряжения ТА. Габаритная мощность оказалась с изрядным запасом, что неплохо — трансформаторы не гудят, не греются. Наличие большого количества обмоток, позволило подобрать нужное напряжение на входе стабилизатора, чтобы не перегревать регулирующий транзистор. Также, оказалось возможным ввести режим ожидания — со сниженным напряжением накала и анодным, для экономии ресурса ламп.

Трансформатор питания винил корректора — комбинированный ТАН, в нем есть как высоковольтные обмотки, для анодного напряжения, так и низковольтные сильноточные для накала. Большое количество обмоток, также позволило организовать ждущий режим.

В соответствии с размерами радиаторов, разработаны печатные платы для мелких элементов выпрямителей и стабилизаторов. Элементы, требующие охлаждения — микросхемы стабилизаторов и полевые транзисторы, в корпусах ТО-220, смонтированы навыворот и прижаты металлическим фланцем через слюдяную прокладку к радиатору. На стороне платы «к радиатору» отсутствуют токопроводящие дорожки — весь монтаж выполнен на противоположной стороне платы, «печатным» способом сформованы опорные площадки для выводов мелких элементов. Таким образом, монтаж напоминает объемный, риск замыкания на радиатор охлаждения не велик.

Аналогичным образом был смонтирован стабилизатор усилителя мощности на Г-807.

Всего радиатора два, на каждом, закреплена монтажная плата с полным набором напряжений для одного устройства — возможно, решение не слишком удачное в смысле компоновки блока питания в целом, позволило однако, удобно работать при макетировании и настройке устройств, когда блоки питания не были собраны в едином корпусе.

Конструкция корпуса своеобразная — радиаторы вынесены в заднюю открытую часть блока, при этом, платы с высоковольтными элементами несколько утоплены, случайно коснуться их рукой практически невозможно, тем более учитывая расположение блока питания в нише стеллажа.

Корпус блока собран на саморезах, стенки из толстой 15мм фанеры. В передней части блока, винтами к нижней панели закреплены трансформаторы. Центр тяжести, получился смещен к передней панели, но это удобно — при любых манипуляциях с органами управления, отдельно стоящий блок не нужно придерживать.

Вокруг трансформаторов, этакими ведьмиными кругами установлены специальные площадки для крепления к ним нейлоновых стяжек. Учитывая большое количество проводов и жгутов из них, количество площадок не излишнее — практика показала, что практически все они оказались задействованы.

Соединение блока питания с усилителями выполнено толстым многожильным кабелем. Большое количество жил, позволило формовать необходимые группы в зависимости от пропускаемого тока и назначения кабеля.

В процессе монтажа, такого рода, непременно нужно применять, хотя бы технологическую маркировку, это очень облегчает жизнь.

Блок питания без крышки и передней панели. Усилители были собраны некоторое время назад и работали с открытыми макетами своих блоков питания. В том виде было очень удобно делать настройку — подбирать напряжения, контролировать работу и прочее. Сейчас же, только проверка работоспособности и устранение возможных ошибок монтажа.

Передняя панель блока была выпилена из тонкой фанеры, после лакирования, на нее наклеиваются вычерченные в Автокаде и распечатанные на принтере блоки с поясняющими надписями. Для защиты надписей, наклейки также покрыты слоем лака. В соответствующих местах, высверлены отверстия для установки тумблеров, неоновых лампочек индикации и колодки предохранителя. Параллельно колодке, также установлена неоновая лампочка, индицирующая перегорание предохранителя.

Практика длительного использования блока, показала, что блок надежен, обладает всеми заданными электрическими параметрами. К недостаткам, следует отнести некоторую сложность коммутации режимов — тумблерами. Если предполагается делать аналогичное устройство, для использования «в чужих руках», лучше применить специальное устройство, реализующее нужные алгоритмы автоматически при помощи электромагнитных реле. Кроме того, столкнулся с необходимостью раздельных блоков питания — для каждого устройства свой, правда, это был «нештатный режим» — при переездах.

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Изучаем резонанс. Часть 2. Импульсный БП для лампового усилителя

Следующей темой для моего исследования источника питания LLC resonant converter на микросхеме FAN7621 стала тема питания лампового усилителя.

Все же в кругах радиолюбителей не утихает интерес к лампам, а медных трансформаторов остается все меньше и меньше.
Естественно мной движет чисто исследовательский интерес, и сам усилитель я врядли буду делать – поглядим что вообще получится и как будет работать.

Техзадание

Попробую сформировать техзадание, а заодно поковыряю трансформатор.
Большинство ламповых усилителей для домашнего использования имеют примерно одинаковые энергетические характеристики.
Я возьму за основу РР на 6П3С, смещение автомат, стандартная схема.
Это как правило по 3 баллона в канале – пред/фазик – двойной триод типа 6Н8С и пара 6П3С на выходе.
Нам нужно просто анодное – 250-280В 0.5А-0.8А. И накал – 6.3В 3-4А. Примерно.
Так как большого размера окна, куда можно накрутить много витков вторички у нас нет, то начну с малого, с того, что точно поместится.

Итак, есть схема:

И плата:

В общем то ничего сложного, пересчитать трансформатор и все.

Но когда я сел за расчеты, то понял, что в лоб проблему не решить.


В расчете дано, что вторичное напряжение одно, ток фиксирован, и изменение нагрузки не планируется.
У меня же минимум два напряжения, одно регулируемое, второе прицепом. Мощность тоже различная.
В общем по расчетам, требуемое число витков первички у меня получилось от 24 до 26.5, в зависимости от минимальной рабочей частоты для данного трансформатора.

Расчеты я делал на бумажке, приготовился уже мотать, но решил не заморачиваться, и соблюсти только расчетные данные по резонансной цепи. С напряжениями потом разберемся.
Поэтому намотал я его по аналогии с трансформатором из предыдущего описания – точнее из даташита, с корректировкой вторичных обмоток.

А именно:
Первичка – 36 витков – литц 60×0.1 мм.
Самопитание – 3+3 витка – одножильный 0.4 мм.
Вторичка – 6.3В – 1+1 виток – литц 85×0.1 мм
Вторичка – 250В – 40 витков – 0.4 мм одножильный провод.
Сердечник ER3542, секционирован на две секции.

Порядок намотки:
На  «длинную» секцию наматываю первичку.
Получается примерно 3.5 слоя.
Между слоями прокладка из липкой ленты.
Поверх первички – обмотка самопитания.
На  «короткой» секции мотаю анодную, так-же, с межслойной изоляцией, следом накал.
Все поместилось, крышка одевается с большим зазором.

Собрал – померил:


Стянутый – нормально!

Теперь индуктивность рассеяния – она тут получается повыше – так как на вторичке витков поменьше…
Проверим в работе…

Осталось подобрать зазор и можно запускаться.
Для организации нужной индуктивности в этом трансформаторе оказалось достаточно проложить стандартный лист 80 гр/м2 в один слой по центральному керну и с боков.

Ну что? Стартуем? Естественно первое включение через лампочку!

Нагрузка – на накал автомобильная лампа 12В 21+5Вт, на анод лампа от подсветки холодильника 220В 15Вт.


Старт прошел успешно, к сожалению ничего не взорвалось, напруга регулируется, частота тоже.

Ну на лампочку от холодильника любой дурак сможет работать, да и автолампа не нагрузка.
Давай- ка мы тебя подгрузим?

В качестве нагрузки я решил использовать «тяжелые» по накалу лампы, из найденных в запасах – 6Н13С. Ток накала на один баллон – 2.8-3А, почти как у четырех 6П3С. По аноду проблем нет, есть куча лампочек на 220В 40-60Вт.
То есть 100Вт нагрузки хватит в анод – даже с сильным запасом на «средний» домашний push-pull.
Пробую включить – запуск – и тут же останов!

Защита, ктоторая в даташите указана как OVP (Over-Voltage Protection) не дремлет и честно отрабатывает свою функцию!
Как я уже говорил, при работе в резонансном режиме, напряжение пропорционально увеличивается на всех обмотках трансформатора. Поэтому растет и самопитание контроллера.

А теперь надо подумать, как сделать так, чтоб БП тянул нужную мне нагрузку и при этом не падал в OVP.
Может все же намотать транс ближе к моим расчетам? То есть уменьшить число витков в первичке?
Отматываю от первички 6 витков. Откусываю хвост, понимая, что домотать его обратно не получится. Собираю.
Индуктивность уменьшилась, пришлось убрать прокладки с боковых частей магнитопровода.

Пробую через лампочку. Запустилось. Отключаю лампочку, включаю напрямую. Тишина! То есть даже запуска нет! Хотя питание контроллера – 15.4В – в норме для пуска… Ставлю назад лампу в цепь 220В – есть запуск!
Да что за ерунда?

На свой страх и риск, поставив минимальные нагрузки, пробую запустить при закороченной токовой защите.
Есть запуск! Странно…
С меньшим числом витков первички при резком росте питания видимо происходит выброс в цепи токовой, который «лочит» контроллер напрочь…
А через лампу происходит своего рода «софт старт» по высокой стороне, и если и есть какой выброс – то он не достаточен для срабатывания токовой.
Почему это происходит, я не выяснил, может разводка ПП как-то влияет…
Интересно, а прибор его не успевает засечь, как я не пытался…
Но факт есть факт – коротишь токовую – все работает.

А это не нормально!
Значит надо вернуть все назад и домотать тогда накальную обмотку, чтоб получить 6.3В под нужной нагрузкой, и не вылезти за OVP на самопитании.

Перематываю первичку – теперь там снова 36 витков. А на накал мотаю 2×1.5 Витка.
Так как для такого малого напряжения невозможно намотать целое число витков – приходится колхозить вывод средней точки на верх транса.


Запуск с новыми данными – все стартует – отлично!

Нагрузка – лампа 6Н13С и пара ламп — 220В 15Вт и 220В 60Вт.

Подтыкаю еще одну 6Н13С – и опа, снова OVP! …

Да. Для маленького РР усилителя все нормально. Суммарная нагрузка около 100Вт .Но мне же надо понять, где его предел? Когда же сработает токовая не от КЗ, а от нагрузки?
И так уже токоизмерительный резистор состоит из двух резисторов по 0.33 Ома…
Все же придется делать стабилизатор на питание контроллера…
И отказаться от OVP.
Для мощных решений.
Отключаемый стаб, если что. Как то так…

Ну, а пока вешаю сопли… Не люблю макетные платы, и навесной монтаж. Но перед изготовлением новой ПП надо все проверить!
В том числе и тепловой режим стаба. Я использую LM317. Этот стабилизатор легко конфигурить, он достаточно надежен.
Можно было бы повесить резистор и стабилитрон, но это на любителей рискнуть.
Особенно при таком диапазоне входных напряжений на стабилитроне.
Там 15.6 на старте, и на 23.5 отключается БП – значит бывает и будет явно выше!

Я почему думаю про OVP? В принцпие, это полезная фишка. В отличие от OLP (Overload Protection), которая отслеживает ток через силовые ключи, OVP позволяет отследить проблемы в ОС. Ведь если отключить обратную связь, то контроллер начнет снижать частоту, что вызовет рост напряжений на всех вторичках. Хорошо, если это «отловит» токовая? А если нет – первыми полягут электролиты и далее со всеми вытекающими…

Но сдругой стороны, в даташитной схеме стоит стабилизатор изначально и OVP нужна только для защиты контроллера от перенапряжения при питании от собственного транса.

В общем ваяю наколенный стаб на 17-18В и пробую!


И вот оно счастье то!:)
Нагрузка около 40W.

И далее нагрузка 2×6Н13С+ автолампа, 220В 60Вт+40Вт+15Вт.

Теперь при любой нагрузке размах импульсов одинаков, что видно на синей осциллограмме.
Обратите внимание на зависимость частоты от нагрузки – здесь это хорошо видно.

Ну и самое главное, наконец-то добился срабатывания токовой!
Дело в том, что на холодные лампы БП стартует, и через секунду валится в защиту.
Если отключить или лампу 40Вт из анодной или вынуть одну 6Н13С – старт нормальный. Потом, после прогрева накала ламп – можно подтыкать на ходу что угодно – уже не отключается.
Это видно на желтой линии при максимальной нагрузке – размах приближается к расчетным 0.6В для срабатывания токовой защиты.

Но это не беда. В токовую установлены сопротивления 2×0.33Ом, что соответствует току около 4А, при которых может сработать защита. Для современных полевиков это даже еще не рабочий ток, не говоря об аварийном. А «растолкать» холодную лампу не так просто – это самая большая проблема.

Да и в реальной схеме, даже если не использовать задержку подачи анодного, ток через лампу будет течь только после прогрева катодов, и поэтому на момент старта анодная обмотка будет работать только на емкость фильтра, и аварийной ситуации с перегрузкой просто не возникнет.

Ну, а захочется большего – ничего не мешает поставить резисторы меньшего сопротивления.
Но это если уж очень надо…

Итак, окончательная схема:

Так как при внесении изменений в разводку, плата вынужденно увеличилась в ширину – то решил добавить еще и обмотку смещения с выпрямителем. Вдруг пригодится когда?
Запуск с новой платой прошел без эксцессов.

В общем все нормально.
Измерил пульсации под нагрузкой на анодном и накале.

Синий – анод. Желтый – накал.
Что удивило – в аноде стоит один кондер – пленка на 1 мкФ 630В – никаких элетро

datagor.ru

Ламповые усилители, блок питания и применение кенотронов

Согласно утверждениям «аудиофилов» классический ламповый усилитель непременно должен быть построен с применением кенотронов в выпрямителях блока питания. По здравому размышлению могу заключить, что это собачий бред. Однако выглядит идея симпатично. И запрос обчественности на такое чудо существует, поэтому привожу основные сведения, необходимые для применения кенотронов, а также практические конструкции. Для применения кенотронов с традиционным трансформатором питания анодов лампового усилителя нужно иметь пару симметричных обмоток, рассчитанных прямо на номинальное напряжение анодов. Например для пары 6П3С с напряжением под нагрузкой +400 вольт в аноде к кенотрону нужно иметь две анодные обмотки трансформатора с напряжением около ~310-320 вольт каждая. На батарее конденсаторов напряжение подскочит до +450 вольт. Но вольт 30 просядет в кенотронах, вольт 30 просядет в медных проводах. И останется как раз +390-400 вольт. А если обмотки анодного трансформатора дохлые, намотанные тонким проводом, то и +390 не выйдет. Применение кенотронов не всегда приемлемо именно по условию наличия пары симметричных обмоток. В случае с кенотронами нужен добротный силовой трансформатор, который стоит денег. А это не всегда возможно и не всегда целесообразно. Нередко анодное напряжение приходится собирать из мелких обмоток, не свегда симметричных. Главнее при этом оказывается другое условие — мелкий ток холостого хода всех трансформаторов. А блок питания лампового усилителя при этом создаётся как автономный модуль, со всеми дополнительными устройствами внутри, компактный модуль с автоматикой и микроконтроллером, в котором кенотроны просто излишни. Именно такой принцип конструирования лампового усилителя является правильным. Я бы сказал — единственно правильным. Убавьте понты, мало цености в конструкции, создаваемой как солянка из кучек трансформаторов и ламп, которые вначале раскладывают как пасьянс на общем каркасе, а затем собирают навесным монтажом, заранее закладывая конструкционные ошибки. А затем начинают борьбу с фоном переменного тока. Проектировать и конструировать ЛУМЗЧ нужно иначе, принципиально иначе. Выделить нужно в прокте два главных модуля: 1.Блок питания с автоматикой и 2.Усилитель звука (выходные трансформаторы и лампы — 2 комплекта). После их раздельного проектирования, моделирования, конструктивной проработки, сопряжения решений, изготовления, испытания и тщательной настройки модули соединяют. Но при этом следует хорошо продумать конструкционную и электромагнитную совместимость всех узлов в рамках выбранного дизайна. Вот так.

6Ц4П — кенотрон под пальчиковый цоколь. Сравнительно удобный и малогабаритный кенотрон. Его применение будет уместным в ламповых конструкциях, построенных на пальчиковых лампах. В этом случае дизайн будет единым, а конструкция вполне лаконичной. Ну о достоинствах применения кенотронов говорить бессмысленно, поскольку таковых просто нет. Недостатков огромное количество, начиная с большого внутреннего сопротивления и большой потери напряжения на лампе. При пиках нагрузки просадка напряжения питания может приводить к дополнительным искажениям сигнала. Надёжность ламповой конструкции снижается пропорционально увеличению в усилителе электронных компонентов. Есть в применении кенотронов и проблема пусковой (пиковой) перегрузки выпрямителя. Приходится жестко ограничивать броски токов, особенно в случае применения батарей конденсаторов повышенной ёмкости. Кроме того, потребляется явно излишнее количество электроэнергии и нагревается усилитель существенно больше.

Но  зато в дизайне усилителя появляются новые разноцветные огоньки горящих лампочек. Количество понтов в ламповом усилителе с применением кенотронов увеличивается, поэтому ценник естественно уходит в гору. Ну и ладно, помашем ему рукой. Клиент пусть платит за свои капризы.

6Ц5С — мелкий кенотрон под октальный цоколь. Сравнительно малогабаритный кенотрон, использование которого будет уместным в ламповых конструкциях, построенных с применением ламп под октальную панельку. Это кенотрон считают почти полным аналогом показанного выше пальчикового кенотрона 6Ц4П, но нагревается он поменьше. Если в усилителе не нужны большие токи анода, то применение таких кенотронов вполне приемлемо. При увеличении мощности УМЗЧ до определенного предела можно рекомендовать применение сдвоенных мелких кенотронов, при параллельном включении их анодов. Конечно панелек придётся потратить вдвое больше. При этом эквивалентный ток накала будет существенно меньше, чем у здоровенных кенотронов, показанных ниже. По моему разумению применение кенотронов на 6,3 вольта предпочтительнее, чем с накалом на 5 вольт. Выше коэффициент использования накальных обмоток трансформатора и меньше токи и больше удельная мощность, загоняемая в накалы. По соображениям удобства и безопасности лучше применять кенотроны и косвенным накалом.

5Ц3С — кенотрон повышенной мощности под октальный цоколь. Указанный кенотрон может обеспечить питание одного канала мощного двухтактного лампового усилителя на 6П3С. Это довольно неплохой результат. Для питания анодов «токовых» ламп такого кенотрона уже недостаточно. Естественно, что можно применить пару 5Ц3С или перейти в следующий габарит, например использовав 5Ц8С. Излагаю вам обыкновенные тривиальные сведения, которые может рассказать столь же обыкновенный школяр. Многим инженерам и телезрителям очевидны удобства и неудобства применения тех или иных ламп. А есть у меня ещё и сведения, которые многим просто невдомёк. Но это серьёзная и основательная информация, к которой большинство лампостроителей просто не готово.

Излагаю пример. У меня есть фактические доказательства крайней вредности присутствия в ламповой конструкции нескомпенсированных переменных токов, амплитудой 4,5 и 7 ампер. А об чём собственно идёт речь? А вот об чём. Это токи питания накальных цепей ламповых монстров — кенотронов 5Ц3С и 5Ц8С. Собственно эта неприятность и является причиной моего отказа от таких ламп и вынужденной их замены мелкими собратьями. Дело всё в том, что большие переменные токи служат причиной интенсивного электромагнитного поля, создающего ощутимые наводки на звуковые цепи. Причём это взаимодействие крайне затруднительно подавить комплексом мер, описанных у классиков. Даже экранирование ферромагнитными оболочками имеет неидеальности. Ради собственного любопытства, была построена параметрическая математическая модель одного из моих ламповых усилителей. Исследование квазистационрного электромагнитного поля и совокупности нестационарных режимов выполнено с применением профессионального программного пакета Ansys. Удалось выполнить математическое моделирование полей мощного двухтактного ламповика с разными краевыми условиями. Удалось оценить импульсные электромагнитные помехи при пуске. Прозрачной стала динамика векторов плотности полной мощности и векторного магнитного потенциала в материалах разных экранов, в сердечниках трансформаторов, в горячекатанной стали, в меди обмоток. Кроме того, были получены предварительные сведения о характере распределения векторов напряженности магнитного поля в подвале стального каркаса. Оказалось, что последствия накальных синусоидальных токов большой амплитуды просто чудовищные. При особенно неудачной компоновке они могут стать причиной возникновения электрических напряженностей в мелких проводниках входных цепей величиной до 110-150 мкВ/м. Поэтому применение таких мер, борьбы, как заземление средней точки накальных цепей, с моей точки зрения, не лучше чем применение малинового варенья в борьбе с инфекционной пневмонией.

Несколько более позитивные результаты дает смещение катодов в область положительных электрических потенциалов. Однако это решение, было получено уже в области цепного представления лампового усилителя, с применением упрощенных моделей электронных ламп. Собственно поэтому результаты исследования такой гибридной цепно-полевой задачи в подсистеме анализа нелинейных цепей в известной мере следует считать приближенными. Вполне возможно, что это результаты, расположенные на уровне погрешности вычислительных методов. Как оказалось, наиболее радикальным способом противостояния фону переменного тока и электромагнитным помехам является не что иное, как питание накальных цепей постоянным током. Такое решение обеспечило крайне высокий уровень электромагнитной совместимости цепей силового питания и входных цепей первых ламп, уменьшив плотность магнитного потока рассеяния в подвале почти на два порядка. Но как получить на практике идеальный постоянный ток по 5 ампер на каждый кенотрон? А если например в двухтактном оконечном каскаде двухканального усилителя поставить 6С33С с амплитудами переменных токов в накалах около 10 ампер на каждый баллон. Это же означает присутствие в общем проводе тока с амплитудой до 40 ампер! Жесть! А вот значение эквивалентного постоянного тока выгодно отличается. Это всего 26 ампер. Но как на практике разумно обеспечить эти амперы? Полученные в исследовании результаты требуют детализации. Объём информации просто колоссальный, нужно её осмыслить и систематизировать. Некоторые картинки результатов моделирования электромагнитного поля лампового усилителя будут приведены на этом сайте позднее в специальном цикле статей. Кроме того, попутно решена задача моделирования нестационарного температурного поля ЛУМЗЧ и получены довольно любопытные результаты по теплу. В любом случае, заинтересованных телезрителей у меня будет чем порадовать. Кроме всех прочих соображений есть определённая уверенность, что рассмотрение особенностей конструирования ламповых усилителей с позиций классической теории электромагнитного поля обладает новизной. Скорее всего будут подготовлены материалы для центральной печати, возможно к исследованиям в этой области будут привлечены некоторые аспиранты.

5Ц8С — кенотрон повышенной мощности, под цоколь ПЛК-50, совместимый с лампами типа ГУ-50. Весьма дубовый, крепкий и надёжный выпрямительный баллон. Выделяет много тепла, поскольку рассеиваемая в единице мощность может достигать 30 Вт. Можно рекомендовать применение пары таких кенотронов в комплекте с четвёркой упомянутых выше 6С33С, особенно при построении теплового электрического обогревателя, успешно рассеивающего мощность 300-350 Вт.

Ну  как тут не назвать бредом сивой кобылы мысли некоторых «матёрых» авторов о малозначности таких факторов как неразумные массогабаритные показатели трансформаторов и чудовищное электропотребление самопальных ламповых усилителей, создаваемых с претензией на категорию Hi-End.

6Ц10П — демпферный диод, пальчикового исполнения, компактный, с очень приличной вольтамперной характеристикой. Применение в блоке анодного питания лампового усилителя такой электронной лампы вполне может составить конкуренцию кенотронам. По напряжению диод очень хорош, даже для питания ГУ-50 и ГИ30, а характеристика падения напряжения такого демпфера превосходит большинство кенотронов. Есть на сайте отдельная статья про этот диод.

Ниже представлены практические схемы применения кенотронов в блоках питания ламповых усилителей. Как правило, показанные схемы есть воспроизведение и доработка известной схемотехники применительно к конкретному усилителю, поэтому приводимые катринки чаще всего особенностей не имеют. Возможны и ошибки, их рассматриваю как стимул для научения и преодоления трудностей при воспроизведении. В первой схеме применен плавный пуск анодного питания диодов. Накальные цепи питаются без задержки. От обмотки 20 вольт можно запитать модуль с реле, например РЭС9. Этот модуль на схеме не показан, он задерживает на 30-40 секунд замыкание контактов К1.1, пока конденсаторы не зарядятся примерно до половины напряжения через эквивалентный резистор 3 кОма. За это время параллельные резисторы изрядно нагреваются, поэтому их шесть штук. Можно применить и меньшее число резисторов, но вероятность их выгорания будет больше.

Применение балластных резисторов это стандартный приём заряда БК. Он позволяет ограничивать анодный ток при пуске. При таком подходе есть возможность увеличить в разумных пределах ёмкость батреи конденсаторов. Это весьма полезно для уменьшения пульсаций по анодному питанию усилителя. Нужно заметить, что показанные на схеме кенотроны довольно мелкие, поэтому их накальные токи сравнительно не велики. Вместе с тем, это пример не очень правильного включения накальных цепей. Можно включить накалы лучше, применив выпрямитель с импульсным регулятором. Это избавит усилитель от фона, обусловленного влиянием сильночных цепей переменного тока. 

Схема, показанная ниже, несколько лучше, поскольку накалы кенотронов включены церез импульсный источник DC-DC. В остальном картинка особенностей не имеет. Трансформатор ТАН62 выдаёт напряжения вполне пригодные для анодного питания. 

Уважаемые телезрители, помните, что применение кенотронов в блоке питания лампового усилителя, это индивидуальная прихоть, не имеющая под собой объективных показаний. Желание подчеркнуть собственную «особость» не следует порицать. Нужно просто отдавать себе в этом отчёт. Особость звучания усилителя на кенотронном питании никем не доказана и не может быть доказана в принципе. Соображения о специфическом «аудиофильском» звучании имеют под собой какие-то основания, но не имеют физического материального подтверждения. Человеку очень приятно выделить себя умением отличить качество по звуку. Желание выделиться вполне нормально, хуже обстоит дело с объективными фактами и практическим обоснованием. Среди таковых обоснований я признаю только основания типа симпатии, когда человек говорит, что ему это нравится и не признаю барабашек. Ну и пусть нравится, в добрый путь. Человеку нужно иметь почву под ногами, чтобы было за что себя любимого уважать. Если не хватает знаний и квалификации, пусть пробавляется любовью, эмоциями, заблуждениями, пусть себе пляшет с бубном в руках. Пусть оценивает искажения и качество звучания на слух. Запретить это людям никто не имеет права.

                                 Евгений Бортник, Красноярск, Россия, октябрь 2016 года

paseka24.ru

Ламповый усилитель. Блоки питания ТАН, концепция

Блок питания с ТАН-трансформаторами для лампового усилителя относят к классическим БП- «традиционной ориентации». К построению блока питания ЛУМЗЧ следует отнестить несколько серьёзнее, нежели это описано у Юрия Игнатенко. В самую первую очередь, вместо шаманских манипуляций и двигания трансформаторов по шасси в поисках минимальных наводок, следует позаботиться о надлежащем качестве трансформаторов. Ток холостого хода и поле рассеяния трансформаторов должны быть минимально возможными. Наилучшие результаты дают тороидальные трансформаторы, с током холостого хода в несколько миллиампер. Но это нередко дороговато и об этом несколько позднее. Можно применить ТАНы, но их следует тщательно отфильтровать. Телезрители нередко радуются и подпрыгивают от удовольствия, дёшево купив в интернете ТС или ТАН. Им в голову не приходит измерить ток холостого хода. А когда соберут ламповый усилитель, то частенько получается гудящее дерьмецо, в котором ТС или ТАН надрывно звенит от холостого тока. Радоваться нужно только тогда, когда есть выбор и он прошел успешно. По моим наблюдениям 90% продаваемых щас трансформаторов обыкновенная некондиция. Если я продаю трансформатор или готовый блок питания ЛУМЗЧ, то это довольно дорого, поскольку трансформатор этот качественный, не гудит и потребляет маленький ток холостого хода. Барахло я продаю в интернете сравнительно дёшево и это нужно просто понимать. Сам же блок питания с трансформаторами следует собирать монолитным. Кустаршина и босячество — это когда в корпусе усилителя протянуты сопли проводов и раскиданы в разных местах разнообразные детали. Блок из трансформаторов ТАН (1-2 штуки) дополняют выпрямителями, мощной батареей конденсаторов, модулями задержки подачи анодного напряжения, накальными приспособлениями и другой начинкой. Не возбраняется даже использование контроллеров и другой цифровой чепухи. И такой блок делают, по возможности, максимально компактным, чтобы удобно смонтировать его в корпус усилителя. Для экранирования всех блоков применяют железные колпаки, позволяющие уменьшить влияние магнитного поля трансформаторов и ослабить фон.

Системный подход к построению лампового усилителя заставляет выделить ряд этапов, среди которых немаловажным следует считать разработку конструкции и изготовление блока питания (БП). Нормальный усилитель следует создавать блочно-модульным. Блок питания является ядром всей конструкции, и именно с изготовления источника питания начинают конструирование лампового УМЗЧ. Прочитав эти строки незадачливый, но самолюбивый изготовитель ламповых усилителей должен понять, что невежда действует с точностью до наоборот. Изготовить БП следует аккуратно в виде законченного узла внутри общего корпуса, заранее собрать и испытать, а подключать БП предпочтительно через разъёмы или клеммник. Вначале естественно разрабатывают схему блока питания. Это весьма ответственный этап, поскольку от выбора элементной базы и технических решений зависит результат построения самого усилителя. Традиционно для блока питания ЛУМЗЧ применяют силовые трансформаторы на частоте 50 герц. Однако это совсем не единственное и далеко не оптимальное решение. Как правило, к такому решению склоняются любители особенного лампового звука, причём кроме трансформаторов промышленной частоты в конструкции ортодоксального «аудиофила» присутствуют кенотроны. Нередко сетевые трансформаторы применяют просто от лени, чтобы не искать новые решения, а довольствоваться простотой и обыденностью схемотехники. Во всех случаях применения сетевых трансформаторов могу рекомендовать выбор трансформаторов с возможно меньшим током холостого хода, в единицы или десятки миллиампер (< 20-30мА). И ни в коем случае не следует применять гудящие трансформаторы. Однако сходу качественный трансформатор добыть вряд ли удастся, не нужно тешить себя иллюзиями. Под ногами обычно валяется всякое барахло, с током более 70-100 мА. Примечательно, что трансформаторы серии ТС от старых телевизоров следует применять в самом-самом-самом крайнем случае, для самого-самого-самого малобюджетного изделия. Как правило, никакие манипуляции по пропитке и стяжке гудящего сердечника не помогают горю любителя дешевого железа. Пропитывать нужно заведомо хороший трансформатор. Только достаточно длинные полки на моём складе (по современному — инвестиции), позволяют мне найти самые удачные трансформаторы стандартных серий. Будучи уже не молодым и достаточно опытным в некоторых практических вопросах, могу засвидетельствовать, что стараюсь избегать контактов с людьми, применяющими в БП ламповых усилителей силовые трансформаторы серии ТС. Опасаюсь я таких чудаков.

При разработке БП, опираясь на сведения из справочников, необходимо сконфигурировать нужные напряжения и токи для имеющихся образцов, соблюдая принцип максимального использования трансформатора по мощности. При этом обязательно нужно помнить про просадку выпрямленного напряжения под нагрузкой. В популярной литературе вопросы разработки блоков питания рассмотрены поверхностно. Поэтому и результат нередко получают весьма посредственный. Блок питания нужно проектировать весьма тщательно, предусмотрев все необходимые напряжения и обеспечив токовые режимы в заданном диапазоне температур, ведь трансформатор нагревается в работе. Есть и другая крайность — нередко в БП применяют трансформаторы с большим запасом, а это неразумно, поскольку в результате получают тяжеловесного монстра с мышиными характеристиками.

Применение типовых анодно-накальных трансформаторов (ТАН). Это довольно непростая задача, причём достаточно дорогостоящая в реализации, поскольку хороший ТАН дёшево купить вряд ли удастся. Очевидно, что, унифицированные трансформаторы морально устарели и требования сейчас значительно выше, чем 40 лет назад. А конкретно ТАНы спроектированы не особенно удачно. Серия построена таким образом, что мощностей накальных обмоток в них маловато. Это особо характерно для броневых трансформаторов, поэтому приходится искать стержневые трансформаторы от 110 Вт и более. Выходом из положения можно считать применение спаренных ТАНов. В этом случае удаётся обеспечить питание цепей накала достаточно мощного двухканального двухтактного лампового УМЗЧ. Мне показалась любопытной, замеченная мною особенность ТАНов – довольно большой ток холостого хода, 150 мА и выше. Видимо это случайность, но 99% ТАНов в моих закромах имели просто конский ток холостого хода, особенно здоровенные, 200-300-400 Вт. Примечательно то, что даже если трансформатор ТАН рассчитан на 127/220 вольт, то включить его на крайние отпайки, для снижения Iхх, как правило, не удаётся. Причина тому – уменьшение напряжения накальных цепей, а это не есть хорошо. Без сомнения большинству понятно, что применить трансформатор ТАН72 или ТАН76 в блоке питания весьма удобно. Но что делать, если таких типономиналов нету? Ниже показаны примеры применения произвольных ТАН-трансформаторов из складских запасов. Показаны довольно простые схемы для конкретных типов и образцов силовиков, которые оказались наиболее пригодными в блоке питания. Ошибки в схемах конечно присутствуют. Но их исправить довольно нетрудно.

Применение трансформаторов ТАН70 показано ниже. Пару трансформаторов ТАН70 можно включить по схеме, показанной в тексте. Это вариант включения, пригодный для высоковольтного лампового усилителя на лампах ГУ50, EL34 или 6551. Параметры силового трансформатора показаны в таблице, а схема обмоток далее.

Особенностью схемы блока питания на ТАН70 в том, что батареи конденсаторов в этой схеме раздельные. Если места не много, то можно применить не особенно мощные конденсаторы БК, и каждая БК работает на свой выпрямитель. В схемы питания анодов каждого канала, напряжения в выходные каскады следует подавать через собственный электромагнитный дроссель. Лучше если на выходе дросселя также будет электролит, причем достаточно большой ёмкости 470-820 мкФ. Именно П-образная схема LC-фильтра будет эффективна для фильтрации пульсаций под нагрузкой. Задержку подачи анодного напряжения проще всего сделать также модулем на реле.

Нужно заметить, что для группы анодных трансформаторов задержку по аноду сделать несколько легче, нежели для трансформаторов ТАН. Простым решением можно считать совмещение задержки с плавным пуском питания трансформаторов, когда в первый момент после включения питания последовательно в цепи анодного питания присутствует мощный гасящий резистор, а затем с выдержкой 40 секунд реле шунтирует резистор контактами реле. Таким образом, половинное напряжение поступает на БК анодного фильтра, заряжая его существенно меньшим током не доводя напряжение до номинала, а уже после включения реле полное напряжение поступает на БК и аноды. Такое решение характерно щадящим режимом эксплуатации реле, поскольку в отсутствии дребезга, работающие на замыкание контакты изнашиваются меньше, чем в режиме размыкания цепи при полном анодном напряжении и сравнительно большом токе. Высокое напряжение питания анодов, около +600 вольт, в первой схеме получают последовательным включением пары выпрямителей, каждый из которых выдает примерно 300 вольт. Силовые выпрямители одинаковые, напряжение питания каждого выпрямителя получено последовательным включением обмоток 56-56-40-40-16 вольт. Можно несколько увеличить указанные напряжения, изменив узлы подключения отпаек 2-3 и 5-6 первичных обмоток. Это имеет смысл, поскольку несколько увеличивает напряжение накальных обмоток. Получаемый запас по напряжению накалов будет растрачен в выпрямителе, используемом для питания накальных цепей первых ламп. Однако подобные переключения по первичной обмотке допустимы, если ток холостого хода трансформатора достаточно мал. Выпрямитель лучше использовать двухполупериодный со средней точкой от двух обмоток по 6,7-6,8 вольта, затем включить батарею мелких электролитов, а на выходе установить миниатюрную плату импульсного регулируемого преобразователя LM5694. Диоды выпрямителя лучше использовать низковольтные (можно даже германиевые), с малым внутренним сопротивлением в виде сборки – модуля SK3040 с диодами Шоттки. Свободные обмотки трансформаторов используют для создания выпрямителя смещения. В отсутствие компактных высоковольтных электролитов можно применить последовательное включение устаревших электролитов на 200 вольт, каждый из которых шунтируют выравнивающим резистором. Можно рекомендовать изготавливать блок питания таким образом, чтобы в сборке с трансформаторами была смонтирована печатная плата с выпрямителями, конденсаторами и реле узла задержки. Если места мало, то силовые конденсаторы БП можно разместить отдельно и подключить к блоку питания транзитом как можно более короткими и весьма толстыми проводами. В качестве испытательной нагрузки во всех схемах здесь показан нагрузочный резистор, подключаемый на выходе блока питания после дросселя. Естественно, что после испытания готового Блока питания этот резистор не нужен.

Следует помнить, что на практике под нагрузкой напряжение холостого хода любого БП просядет на 30-50 вольт, особенно если батареи конденсаторов не обладают большой ёмкостью. Перед монтажом в усилитель блок источника питания следует испытать. В качестве нагрузочного балласта применяют последовательно-параллельные батареи нагрузочных резисторов, например ПЭВ, достаточно большой мощности, ватт 200 или больше (8-12 штук по 25 ватт). Эквивалентный нагрузочный резистор включают к выходу дросселя, через миллиамперметр постоянного тока на 500 мА. Вначале нагружают готовый БП плавно, регулируя входное напряжение силового трансформатора ЛАТРом. После проверки безошибочности монтажа и исправности электролитов можно проверить работоспособность узла задержки питания и отрегулировать выдержку. Далее питание подключают уже тумблером. По осциллографу оценивают уровень пульсаций выпрямленного напряжения, а также определяют просадку напряжения питания под нагрузкой. При необходимости варьируют число вторичных обмоток трансформаторов, подключенных к выпрямителю. Примечательно, что более стабильным оказывается напряжение источника питания, нагруженного ламповым усилителем, в режиме А. Для режима АВ колебания анодного напряжения БП окажутся более существенными, при изменении нагрузки по анодам от малой громкости до максимально возможной. В некоторых публикациях рекомендуют применение стабилизированного анодного напряжения. Это хорошее намерение, однако схемотехника импульсных устройств довольно непростая. Идея применения импульсных высоковольтных стабилизаторов вполне разумна, поскольку режим потребления по аноду выходных ламп, а особенно стабильность смещения следует настраивать весьма точно. Однако импульсники — довольно сложные устройства и дорогие. Нередко стабилизированное напряжение для предварительных каскадов получают с применением электровакуумных стабилитронов. Это тоже неплохо, для мелких токов такой подход срабатывает, однако приводит к увеличению в усилителе количества ламп и панелек. Для некоторых конструкций БП со сдвоенными трансформаторами в тексте приведены фотографии, а некоторые блоки питания уже установлены вовнутрь усилителей, поэтому фотографий нету. Пример схемы блока питания на паре ТАН70, пригодной для мощного двухтактного усилителя на запараллеленных лампах 6П3С показан ниже.

Поскольку напряжение питания анодов 6П3С поменьше, чем ГУ50, есть смысл отказаться от последовательного включения слаботочных секций вторичных обмоток, рассчитанных на 56 вольт. В этом случае их можно включить параллельно. Со второго трансформатора ТАН70 придётся взять только часть анодных обмоток, чтобы получить холостое напряжение выпрямителя примерно 420 вольт. Под нагрузкой напряжение БП просядет до 380 вольт, что вполне приемлемо для 6П3С. Остальные обмотки используют для выпрямителя смещения. Кроме того, обмотки 12-16 вольт используют для питания узла релейной задержки подачи анодного напряжения, постоянно потребляющего до 50-80 мА. Уйти от применения пары трансформаторов ТАН при большом количестве ламп как правило не удаётся, поскольку накальных обмоток одного трансформатора не хватает для полноценного питания всех стеклянных баллонов мощного двухтактного УМЗЧ. Либо приходится ставить дополнительный силовой накальный трансформатор ТН.

Примеры схем блоков питания на паре силовых анодно-накальных трансформаторов ТАН27. Схема обмоток и параметры самого силового трансформатора ТАН27 показаны ниже. Для этого трансформатора характерны низковольтные секции по 28 вольт и пара симметричных накальных обмоток по 1,6 ампера, что довольно мало.

Картинка с габаритными размерами и магнитопроводами показана ниже. Как правило, при нормальном инженерном подходе, для всех применяемых трансформаторов приходится создавать векторную картинку в реальных размерах, с прорисовкой узла крепления к корпусу. Из картинок всех узлов формируют библиотеку компонентов, которую используют при проектировании корпуса усилителя. В библиотеке обычно присутствуют модели для ламп, реле и других габаритных узлов. Далее по векторной картинке довольно не сложно построить математическую модель каждого компонента конструкции, используемую при моделировании режима электромагнитной совместимости и в анализе теплового поля. При построении ламповой самоделки следует понимать, что вполне можно обойтись без компьютерного проектирования и математического моделирования режимов. При этом, в большинстве случаев результат будет вполне приемлемым. Если быть внимательным к типовым рекомендациям любителей и исключить грубые ошибки при изготовлении и монтаже, то явных косяков можно избежать. Во всяком случае в результате «прослушивания» большинство людей остаются довольными результатами. Такой подход и есть творчество самодельщика, и это предмет его самоуважения. Большинство рассуждений в сетях о качестве звука мотивированно именно человеческим самолюбием и бахвальством. Это вполне естественно, но это не имеет никакого отношения к понятию точный инженерный расчёт лампового усилителя и к понятию качество звука. Именно отсутствие сведений о задаче математического моделирования электромагнитной совместимости сложной конструкции, именно отсутствие представления о современных средствах и возможностях расчета, создают на форумах всевозможные байки и бредятину от малоквалифицированной публики. Пожалуйста, помните, что сделать руками ламповый усилитель вполне возможно, но утверждать о его качестве можно только по результатам инструментальной оценки, но никак не на слух. Кроме того, возможность получения спрогнозированного результата — усилителя высочайшего качества без предварительного математического моделирования весьма затруднительна. У большинства авторов траектория построения усилителя обусловлена опытом и навыками, которые отсекают ошибочные решения. Но моделирование электромагнитных режимов в усилителестроении не применяет практически никто, ввиду его сложности. Отсюда и следуют безграмотные высказывания о преимуществах навесного монтажа и рукопашное колдовство над распайкой правильным припоем элитных конденсаторов и кошерных резисторов внутри корпуса. Если бы дело было в качестве фольгированного текстолита или в качестве «бескислородной» меди проводов, то средства математического моделирования легко подтвердили бы результат. Следует просто уйти от глупых рассуждений на эту тему, понимая, что человеку не удалось бы достигуть никаких достижений в микросхемотехнике и электронном оборудовании космических кораблей, если бы подобные рассуждения про «барабашек» имели под собой реальную почву.

Для питания накалов пальчиковых тетродов обмоток ТАН27 достаточно, а вот для четырёх ламп 6П31С токов накальных обмоток единственного трансформатора маловато. Поэтому приходится комбинировать, например, питать от одной и той же пары обмоток накалы входных ламп (через выпрямитель) и выходных ламп – переменным током, с регулятором фона в виде подстроечного резистора. Применение балансировочного резистора это вынужденная мера в борьбе с фоном переменного тока. Однако результаты этого схемного решения вовсе не гарантированы и в значительной мере зависят от качества компоновочных решений при проектировании корпуса. В некоторых случаях, при грубых ошибках в монтаже, положительного эффекта, такой подход не даёт вовсе. А причиной тому может служить употребление наивным телезрителем говнянных силовых трансформаторов. Несколько большим эффектом обладает техническое решение по подавлению фона путём подачи в накал положительного смещения.

Правильные накальные выпрямители с электролитами и импульсными платами питания конечно можно не применять, особенно в целях экономии, при ограниченном бюджете, а также в изнурительной борьбе за «чистоту рядов». Пользуйтесь другими средствами, поскольку подача положительного анодного смещения на накал даёт реальный эффект, моделирование это подтвердило. Однако лампы при этом желательно проверить на качество изоляции катода. В любом случае, слабые накальные обмотки ТАНов и их недостаточное количество резко ограничивают возможности применения ТАН-трансформаторов в качественном ламповом проекте. Для снижения фона можно рекомендовать применение принципа разукрупнения источника питания. Не следует идти по пути применения чрезвычайно мощного трансформатора, особенно из серии ТАН. Достоверно проверено, у больших трансформаторов весьма большой ток холостого хода и огромное поле рассеяния. Нередко ситуация с качеством ТАНов настолько плохая, что он не просто тихо гудят при напряжении 220 вольт, а даже подвывают или звенят. С мелкими ТАНами обстановка получше. Поэтому параллелить их вполне возможно, тем самым уменьшая габариты экранирующих колпаков и размеры самого усилителя. Помните, что при соблюдении правил электромагнитной совместимости применение двух трансформаторов с токами по 50-60 мА предпочтительнее использования одного трансформатора с током холостого хода в 100-120 мА. Для питания слаботочных цепей ЛУМЗЧ можно рекомендовать применение удвоителей напряжения. Это прежде всего цепи питания сеточного смещения, а также цепи питания узлов автоматики. А вот для питания мощных анодов диодное удвоение напряжения от низковольтных обмоток я рекомендовать не стану. Это плохое решение, поскольку при высоковольтном питании от удвоителя силового каскада падение напряжения тоже окажется удвоенным, по сравнению с обычным выпрямителем.

Ниже показана схема блока питания +260В (с добавкой +120В), построенного на тех же трансформаторах ТАН-27, но предназначенного для мощного триодного двухтатктного усилителя. Решения по стабилизированном питанию накалов и по задержке питания применены точно такие же как и верхней схеме. Можно рекомендовать спроектировать несколько универсальных печатных плат, на которых надо смонтровать несколько совершенно однотипных узлов задержки, а также модулей для узлов выпрямления или удвоения напряжения. Эти печатные платы можно заказать или изготовить самостоятельно, но массовым способом, что удешевляет себестоимость. Именно такие печатные модули комбинируют в необходимую конфигурацию при построении конкретного блока питания. Нужно стремиться к выработке унифицированных модулей, чтобы их компоновка и минимально возможные размеры позволяли встраивать их в корпус блока питания, под размер ферромагнитного колпака.

Практика показала, что построение хорошего источника питания ЛУМЗЧ непременно выливается в здоровенный монолитный блок. Желательно в пределах колпака размесить электролиты конденсаторной батареи и дроссели. И это оказывается очень не простой задачей, ввиду их сравнительно больших габаритов. Как правило, приходится разукрупнять электролиты, применяя параллельное включение более мелких номиналов. Кроме того, нередко вместо электрмагнитных дросселей приходится применять их аналоги, собранные на полевых транзисторах. Цепи анодного питания предварительных каскадов триодного лампового усилителя вполне допустимо питать от удвоителя напряжения, особенно в условиях недостаточного количества свободных обмоток трансформаторов. Если анодного напряжения +260 для триодов многовато, то можно перекинуть одну-две мелких секций от второго трансформатра ТН27 в удвоитель анода предварительного каскада, питаемого от первого трансформатора. Внимательно следите за фазировкой первичной обмотки обоих трансформаторов, чтобы вместо суммирования не получить вычитание напряжений.

Пример схем для изготолвения блока питания на симметричной паре силовых трансформаторов ТАН31. Схема обмоток и параметры силового трансформатора показаны ниже. Анодные обмотки в ТАН31 имеют напряжения побольше чем ТАН27, а токи поменьше.

Поэтому для питания двухканального УМЗЧ слабые анодные обмотки, при равных напряжениях включают параллельно. Их совокупной мощности вполне достаточно. Нужно помнить, что трансформатор блока питания в абсолютном большинстве случаев используется не на 100%, поэтому запас здесь особо не нужен. В режимах максимального токопотребления легко можно допускать перегрузку до 40%. Качественные совдеповские трансформаторы легко переваривают такие режимы даже в течение часа.

Если силовой трансформатор будет нагреваться до 90-100 градусов С при больших нагрузках, то ничего страшного с ним в усилителе не случится. Трансформатор должен весьма сильно греться, особенно монолитный, он залит компаундом именно для улучшения условий охлаждения. Можно уверенно допускать перегрузку обмоток силового трансформатора, однако для этого желательно иметь образец с маленьким током холостого хода и переключить регулировочные отводы первичной обмотки следует в сторону повышения выходного напряжения. Ток холостого хода при этом несколько увеличится, но это должно быть значение, находящееся в разумных пределах. Следует помнить, что по классике в правильной установке уровень мощности, затрачиваемой на нагрев меди должен соответствовать уровню мощности потерь в железе. Напомню, что маленький ток холостого хода это следствие очень хорошего качества сборки сердечника, поскольку число витков обмотки у серийных трансформаторов одинаковое. Мимоходом отмечу, что накальные обмотки в габарите ТАН-31 также слабые.

Схема блока питания особенностей не имеет (возможны ошибки). Секции обмоток включены параллельно, а полные обмотки – последовательно. Накальные нити выходных ламп, если они на 12,6 вольта, подключают на переменный ток к узлам 19-24. А цепи смещения и автоматики питают от обмоток с обозначеннием на схеме буквами a-б и в-г. Если накальные цепи на 6,3 вольта, то используют раздельные секции 19-21 и 22-24 или применяют выпрямители и стабилизаторы — как на схеме. Для питания кенотронов 5Ц3С и 5Ц4С используют секции 19-20 и 22-23 накальных обмоток трансформаторов ТАН.

При построении блока питания лампового усилителя следует помнить, что кроме схем выпрямления мостом или со средней точкой есть схемы выпрямителей с удвоением или умножением напряжения. При этом от низковольтных обмоток легко получить высокие напряжения. Однако особенностью схем удвоения является удвоенная просадка напряжения под нагрузкой в сравнении с обычным выпрямителем. Это оказывается неприятным сюрпризом для новичков, поскольку при серьёзной нагрузке такого БП напряжение просаживается уже не на 30-40 вольт, а на все 60-80, по отношению к холостому режиму. Кроме того, следует помнить, что удвоение напряжения в выпрямителе потребует двойного расхода тока от обмоток низковольтного трансформатора, поскольку чудес не бывает. Значит, при большом потреблении тока от удвоителя, запас по габариту трансформатора должен быть непременно. В связи с изложенным, схемы удвоения напряжения предпочтительнее применять для выпрямителей смещения, а не для анодных выпрямителей. Если двухканальный усилитель выполнен в едином корпусе, то целесообразнее применить общую батарею конденсаторов единого анодного выпрямителя, обеспечив её повышенную мощность. Это практически универсальная рекомендация. Поэтому равноценные обмотки разных трансформаторов для увеличения допустимого тока включают параллельно. А вот далее от общей батареи конденсаторов питание каждого канала выполняют через собственный дроссель, причём в каждом канале на выходе дросселя устанавливают конденсатор фильтра сравнительно большой ёмкости. Если двухканальный усилитель выполнен из моноблоков, то в каждом изготавливают свой блок питания. 

Пример схемы блока питания на ТАН41-ТАН27 рассмотрен ниже. Параметры силового трансформатора показаны в таблице, схема подключения обмоток тоже есть. Накальные обмотки в ТАН41 рассчитаны на ток 1,9 ампера, что позволяет применить в ламповом усилителе баллоны 6П3С. Кроме того, с небольшой перегрузкой, позволительно подключить такие обмотки к накальным цепям ГУ50 при напряжении 12,6 вольта.

Накальные обмотки ТАН27 при этом можно использовать для полноценного питания входных ламп. Анодные же обмотки с токами 0,38-0,48 ампера следует использовать от обоих трансформаторов в последовательном включении. Размещение силовых трансформаторов блока питания на пластине из текстолита показано на фотографиях.

Схема блока питания особенностей не имеет и секции обмоток включены последовательно, поскольку напряжения секций не велики и составляют всего 28 вольт. Для питания цепей сеточного смещения может быть сделан отбор мощности от обмоток на 28 вольт. Можно поступить по другому, поставить блок удвоения напряжения и использовать накальные обмотки любого трансформатора.

Нагрузочный резистор анодной цепи показан пунктиром. Электролиты можно использовать на 330мкФ на 200 вольт, совсем недорогие, в том числе б/у, от компьютерных блоков питания. Более мощные электролиты можно добыть из устаревших мониторов ЭЛТ, подлежащих утилизации. Наиболее распространены номиналы 270 мкФ на 450 вольт.

Пример схемы блока питания на анодно-накальных трансформаторах ТАН27-ТАН14 показан ниже в тексте. Схема обмоток и параметры силового трансформатора ТАН14 в габарите 50 Вт показаны ниже.

Анодные обмотки можно скомбинировать по требуемому уровню напряжения. А накальных обмоток будет достаточно для питания двухканального двухтактного усилителя на 6П6С. Накальных обмоток пары ТАНов в аккурате хватает для питания ламп. На входе в каждом канале обычно 6Н2П и 6Н1П в каждом канале (ТН14 обеспечит 1+1 ампер) и двух пар 6П18П по выходу (ТН27 обеспечит 1,6+1,6 ампера). Узлы для подключения накалов выходных ламп обозначены буквами a, b, c. Узлы подключения выпрямителей для цепей накала первых ламп каждого канала обозначены буквами d, e, f. Учитывая, что аноды 6П18П низковольтные, анодных обмоток вполне достаточно для питания двухтактного лампового каскада. Четыре обмотки по 28 вольт ТАН27 дают 112 вольт. Параллельно включенные обмотки 56+40+16 вольт ТАН14 дают ещё 112 вольт. Итого получают 224 вольта, что вполне приемлемо для усилителя. Кроме того, есть дополнительные обмотки I-II, которые можно использовать для питания цепей смещения и автоматики. 

Нужно заметить, что применение в цепях накала дидных мостов и интегральных аналоговых интегральных стабилизаторов не рационально. Для них характерно большое падение напряжения, а запаса напряжения от накальных обмоток, как правило, нет. Поэтому применять следует только импульсные модули, причём уже готовые изделия в виде малогабаритных плат китайских производителей. В платах установлены подстроечные резисторы со шлицевым регулятором. По осциллографу легко наблюдать установку минимального уровня пульсаций в 3-4 мВ при достаточно большом наборе батареи низковольтных конденсаторов (10 шт) 2200-3300 мкФ фильтра.

Если добавить к ТАНам один анодный трансформатор, например ТА58, то можно получить более ловкий блок питания, схема которого показана ниже.

Как видно из схемы, такой комбайн позволяет отжать для анодов напряжение +420 вольт. Этот уровень вполне достаточен для раскачки двухканального усилителя на 6П3С. Можно использовать такой блок питания для усилителя на Г807. И не следует заморачиваться применением особенных диодов в анодных выпрямителях. Быстроходности обыкновенных совдеповских диодов вполне достаточно для любого лампового усилителя. Важен лишь запас по уровню допустимого обратного напряжения. А для китайских диодом и диодных мостов следует зарезервировать пятикратный запас по току и 10-20 кратный запас по частоте (для импульсников). Пожалуйста помните, если в статье квалифицированного автора начинаются рассуждения про применение в анодном выпрямителе ультрафастов, то читателю явно предлагают маркетинговую приманку. Либо автору статьи просто больше нечего сказать, чтобы показать собственную уникальность. А если рассуждения про шунтирующие цепочки исходят от дилетанта, то его нужно просто пожалеть, ибо его обманул коварный «Гуру».

Пример схемы блока питания на паре ТАН81. Схема обмоток и параметры силового трансформатора показаны ниже. Обмотки трансформатора рассчитаны на большие напряжения 315 вольт, поэтому можно рекомендовать такой трансформатор для сравнительно мощного усилителя с лампами типа ГИ30.

Анодные обмотки при этом группируют в симметричные секции и включают параллельно. А вот токов накальных обмоток в трансформаторе ТАН81 традиционно маловато. Для питания накалов нормального усилителя от одного трансформатора не хватает примерно половины ампера. Схема блока питания на трансформаторах ТАН81 показана ниже.

Обмотки трансформатора рассчитаны на напряжение 315 вольт, но слаботочные. Однако есть возможность параллельного включения всех обмоток, если секцию на 280 соединить последовательно с секцией на 35 вольт. В этом случае получается допустимый ток каждого трансформатора около 270 мА. Этого вполне достаточно для питания анодов мощных тетродов при небольшом падении напряжения по аноду. Узлы обмоток 6,3В с индексами а-б и в-г предназначены для подключения накальных цепей мощных выходных ламп раздельно для каждого канала. Слаботочные выпрямители на микросхемах импульсного источника питания предназначены для подключения накалов первых ламп усилительного канала. Показанные на фотографиях сборки по 2-3 силовых трансформатора это первый шаг в построении полноценного блока питания нормального лампового усилителя. Далее в ходе конструирования сборка трансформаторов обрастает кронштейнами с выпрямителями, конденсаторами и электронными платами. Только после заврешения монтажа всех компонентов блока питания, готовый модуль с пульсирующими токами закрывают стальным колпаком. Вовнутрь стального шасси усилителя, например на клеммник, вводят готовые к применению напряжения, которые далее разводят мощными жгутами витых проводов. Другие подходы к интеграции силовых трансформаторов на 50 Гц для БП в конструкцию лампового усилителя это анахронизм и наследие прошлого века. Это типичный пример неведения или полного пренебрежения законами электромагнитной совместимости. Как учёный утверждаю, что примеры фотографий в Интернете самых элитных усилителей с колпаками на обособленных силовых трансформаторах служат индикатором их невысокого класса. Это наглядное и совершенно очевидное маркетинговое противоречие, показывающее небрежное отношение к законам теории электромагнитного поля, демонстрирующее их незнание проектировщиками. Присутствует претензия на кошерность схемотехники и остальной матчасти. «Элитный» усилитель не может стоить заявленных колоссальных денег, если изготовитель пропустил мимо ушей фундаментальное знание, а налицо банальные понты.

Ниже показан ещё один показательный пример преодоления дилетантства. На рисунке показана схема мощного блока питания, предназначенного для энергообеспечения мощного двухтактного двухканального усилителя на триодах ГМ-70. В сети встречаются примеры высоковольтных выпрямителей для ГМ-70. Причём нередко задачу решают в лоб, путём применения высоковольтных обмоток и последовательного включения выпрямительных столбов. А это совсем не нужно. Для построения хорошего блока питания достаточно иметь пару трансформааторов ТА252 (по 210W) и одын штюк ТА236 (170W). Возможны другие комбинации трансформаторов. Важно обеспечить достаточный набор напряжений и большую мощность анодного питания. 

Включив последовательно все секции трансформатора получают отдельный выпрямитель от каждого транса. Каждый выпрямитель нагружают на собственный конденсатор-электролит, например 1600-4700 мкФ для 450 В. Щас появились такие импортные конденсаторы, итальянские, американские, английские Kendeil capacitor. Их используют в шине постояного тока частотных IGBT-преобразователей. Получив три автономных выпрямителя на невысокие напряжения (около 400В) их просто включают последовательно. В каждом отдельном источнике ставят собственное реле плавной подачи анодного напряжения. Конденсаторы шунтируют резисторами. Достоинства очевидны, плавный пуск, отсутствие высоковольтных диодов, небольшие габариты трансформаторов, большой КПД и высокий коэффициент использования. Ну конечно же нужно ещё навешать в схему варисторы и разрядники. Кроме того, придётся позаботиться о грамотном проектировании корпуса, а также о применении дополнительной изоляции и принудительного охлаждения. Таким образом банальным схемным решением получают безобиднейший источник питания колоссальной мощности, обеспечивающий при 1200 вольтах 0,7-0,8 ампера анодного тока. Но работать с таким высоковольтным источником следует крайне осторожно. Заряд электролитов сохраняется долго и может шибануть насмерть.

В завершение изложения можно сказать, что приспособить в источник питания лампового усилителя можно практически любой качественный силовой трансформатор, с не слишком высоким напряжением обмоток. Мелкие напряжения это как раз не проблема. Чаще всего проблема заключается в обеспечении надлежащего качества трансформаторов. Под понятием качество здесь следует понимать в первую очередь мизерное поле рассеяния трансформатора при минимальном токе холостого хода и абсолютное отсутствие в трансформаторе гудения и вибрации.

                          Евгений Бортник, Красноярск, Россия, июль 2016

paseka24.ru

Импульсный блок питания из деталей компьютеров для лампового усилителя.

 Рассказывается, как
делался импульсный источник питания из деталей от сломанных или устаревших
компьютеров для небольшой ламповой конструкции стереофонического усилителя
мощности на два канала, каждый по 4 лампы. Приводится схема преобразователя для
анодного напряжения, даются советы по сборке и регулировке. А также
рассматривается простой способ питания накала ламп и задержки включения
анодного напряжения. Чисто практический подход.

Пашин усилитель.Для него будем делать
блок питания.
Вид со стороны монтажа.

    Вот он, ламповый усилитель,
точнее будет назвать усилитель мощности. Схема из журнала «Моделист конструктор».
Статья называется «Стерео-усилитель на лампах». Техника оживших звуков. Старый
журнал за 5 1977 год. Да и усилитель тоже давно сделан, но так до конца и не
оформлен.  У нас с Пашей было
соревнование. Я делал усилитель на лампах 6П3С, а он на лампах 6П14П. Свой я
собрал за неделю, используя вечера после работы, торопился, как мог, а Паша
свой собрал за один вечер. Нет, это не шутка. За один вечер, он это не только
мне говорил. Паша может. В те года он ещё радиомонтажником работал. Это сейчас
он крупный специалист-электронщик, чтобы получить консультацию, в очередь надо
записываться. А как сделал усилитель, так мне его подарил и уже лет так 15
спрашивает:

 — Ну, ты доделал его
до конца?

 — Да погоди ты, время
ещё не пришло, он должен отлежаться, состариться, стать раритетом….

 Ну вот, видимо, время
 пришло, будем доделать ламповый
усилитель, а начнём

                        
с блока питания, его то и не хватает на фотографии.

Кстати, когда описывался приёмник ретро, я ни одним словом
не обмолвился о блоке питания, вот сейчас восполню этот пробел.

Мой усилитель.
Он с блоком питания.

.

 Использование компьютерного блока питания в качестве источника  накального напряжения.

 В комнату невозможно
было войти, везде лежали провода, накальные и анодные трансформаторы, запчасти
от компьютеров, старые запылившиеся колонки, проигрыватель дисков и
недоделанная конструкция стереофонического лампового усилителя. Только чёрная
кошка  Барся помогала мне всё
подсоединять. Сбросив со стола очерёдной резистор, играя, подкатила его мне.

 — Ладно, подойдёт.

 Говорю я, откусывая
часть вывода, превращаю его в пульку для рогаток и соединяю в разъёме зелёный с черным провода выходящие из компьютерного блока питания. Красный и чёрный — стабилизированное напряжение накала, 5 вольт и 40 ампер подсоединяю к накалам
радиоламп, какие бы не были броски по сети, радиолампам больно не будет.
Включение тумблера и зашелестел вентилятор, знакомые с детства спирали накала
порозовели. Включаю анодное напряжение, и кошка под музыку прыгает на диван, и
с удивлением смотрит на звуковые колонки, я присаживаюсь рядом.

 — А что, фон то пропал! Попса 70-х, предельно!

 Первая проба прошла
на отлично, но 5 вольт (на нагрузке напряжение стало 5,2 вольта)  маловато будет для всей конструкции, не
укладываюсь в 10 — 15 % разброс по напряжению накала. Вроде напряжение вполне
нормальное, всё работает неплохо, но повышается отравление катодов радиоламп
остаточными газами.

 Остаётся напряжение 12 вольт (жёлтый и чёрным),
правда ток в 2 раза меньше, то же годится. Надо только перераспределить накал,
последовательно включать по две одинаковые лампы, то есть с одинаковым током
накала, таким образом, на каждой лампе распределится напряжение по 6 вольт, причём постоянное и
стабилизированное
как раз то, что нужно. Для стереоусилителя это сделать
удобно, всегда есть пара одинаковых ламп.

 Избавиться бы от
трансформаторов совсем, насколько бы легче и компактней стала бы ламповая
конструкция. А не использовать ли мне преобразователь с 12 на 220 вольт, для
бытовой техники, чтобы получить от него анодное напряжение после выпрямителя?
Анодное от 12 вольт и накал от 12 вольт, тогда усилитель можно поставить в
машину, вот будет классно!

 Надо бы у Паши
проконсультироваться, Паша знает.

        От 12
вольт к постоянному напряжению 200.

       Всех, кто не прошёл инструктаж по технике
безопасности

при работе на установках до 1000 вольт, просьба покинуть страницу!

 — Зачем тебе ещё один
преобразователь, тем более они ненадёжные. Фон в 50 Гц устранить сложнее, да и
синусоида там будет не чистая, много высших гармоник, причём в звуковом
диапазоне.  Надо с этого же компьютерного
блока, его уже низкое пульсирующее, напряжение преобразовать в высокое с
последующим выпрямлением. Высокую частоту от 40 кГц, легко сгладить и от сети
дополнительная защита. Я так делал.

Говорит он, доставая из своей барахолки такую же плату
питания, компьютерного блока, выпаивает из неё трансформатор и припаивает к выходным
обмоткам трансформатора моей платы, этими же, выходными обмотками. Теперь
входные обмотки нового трансформатора должны выдать высокое напряжение.

 Время пробовать. Я
пошёл к своему рабочему столу и был уверен, что Паша сейчас тоже подойдёт и,
когда я включу тумблер, хлопнет в ладоши над ухом, изображая короткое
замыкание, но ошибся, ибо он наблюдал за моими действиями с трёх метров. Ага,
решил я, значит здесь не всё так просто. В общем, оказался прав, нужного
напряжения при нагрузке в 60 Вт так и не удалось получить, максимум, что я смог
отжать – это 130 вольт, мало, даже обрадовался, когда шкатулка моя задымилась и
больше не включалась, потому как помучился с ней достаточно. С этой радостной
вестью я опять пошел за советом.

 — Вовремя пришёл.

Сказал Паша. Он, в это время, направив широкое дуло пистолета,
прицельно нажимал на курок, производя, таким образом, зачистку материнской
платы компьютера.

        Как быстро снять радиодетали с
материнской платы.

 Нет, неправильно
поняли. Ему не нужна была плата, он строительным феном сдувал с неё
радиодетали, с кусками припоя они падали на расстеленную газету. Фен надо
направить на печать, добиться, чтобы припой стал мягким, после этого сильно
стряхнуть плату или ударить об твёрдый предмет.  Несмотря на то, что все двери и окна были
открыты и работали все вентиляторы, дышать было невозможно. Поэтому в квартире
лучше этой процедурой не заниматься. Желательно на улице, в крайнем случае, на
балконе.

 — Вот ключи на
полевых  n-канальных транзисторах 30 вольт, 20
ампер, собирай на них преобразователь.

 — Такие маленькие и
такой большой ток держат? Без радиаторах на плате стоят.

 -У них маленькое сопротивление переходов, 5 -7 милиОма, от того и не греются.

   Изготовление макета повышающего
преобразователя напряжения, используя трансформатор компьютерного блока питания
и ключевых.
n-канальных транзисторов материнской
платы.

 Настроение моё совсем
упало, тем более блок питания  с пол
пинка не получился, но желание проверить, как будет работать ламповый усилитель
от импульсного блока, было настолько захватывающим и интересным, что я даже
остался после работы и, затратив один час, сделал простенький его макет. Терпеть
не могу собирать импульсные схемы, ноль — единица, поди, разбери, кто во что
перевернётся, вот плавно меняющиеся процессы, меня больше успокаивают, а
поэтому решил, что просто собираю генератор с широтно-импульсной модуляцией.
Правда, когда собрал схему и подсоединил осциллограф, понял, что не напрасно
провел время. Нет, люблю логические схемы, потому как думать не надо, если, и
забыл сигнал перевернуть, ещё раз через инвертор пропускаешь. Короче отлично
всё получилось. Тонкие импульсы будут штурмовать ключевые транзисторы и
трансформатор по очереди, не давая деталям перегреваться.

Осциллограмма на затворах
ключевых транзисторов.

                                                                                  
 А вот сама схема, на
самом деле отладочный макет, то есть сделан только для проверки, хотя вполне
работоспособен.  Отличает его от конечной
схемы — отсутствие унифицикации, минимальной однотипности наименований,
например микросхем, или транзисторов, одних и тех же номиналов резисторов и
конденсаторов и т. д  Вот и Паша
посмотрел и сказал: «Да здесь всё на одном микропроцессоре можно сделать!».
Паша может.

Рис. 1. Схема импульсного блока питания.
На выходе таймера.

 Вот микросхема ICM 7555 MAX, называемая таймером, выдаёт
импульсы со скважностью 2, совершенно не удел, была просто под рукой, и
поставил. Мультивибратор можно сделать на транзисторах или на логических
элементах уже используемой  серии CD..HC00.

Зато в процессе настройки и испытаний, используя эту микросхему,
я мог покачать импульсы по частоте, используя вывод 5 управления, или сделать
линейный передатчик сверхдлинных частот, добавив усилитель с микрофоном к тому
же выводу, или ультразвуковой отпугиватель кротов, если конечно, блок питания
не получится. С детства люблю играть в конструктор.

После дифференцирующих цепочек.

 Импульсы с микросхемы
приходят на два одинаковых (верхний и нижний) канала управления ключевыми
транзисторами, но приходят в противофазе и с задержкой благодаря первому
нижнему инвертору, а дифференцирующие 
цепочки по ходу процесса их укорачивают, затем логические элементы их
восстанавливают до ровных форм.

Рис. 2.  Второй вариант импульсного блока питания.
Соединение сделано только на бумаге!

 Регулировка, ответственный момент.

 Без нагрузки всё было
приемлемо, но стоило подсоединить светильник с 60 Вт лампой, настроение стало
меняться в худшую сторону, а это означало, что напряжение сильно проседало с
нагрузкой, что говорило о том, что трансформатор требовал доработки. Но
заниматься переделкой не хотелось, так аккуратно я точно не доведу
трансформатор до ума. Получалось, что преобразователь тянул только один
стереофонический канал, а всего каналов два, ну и трансформаторов пусть будет
два – каждый на свой канал! Ведь делают так, на свой канал своя обмотка
трансформатора, как и в схеме Астахова, по которой мы собирали усилитель.

Трнсформатор.ERL35AL или 39.
Эти обмоттки использовал.
Розовый провод — питание (+12 В).
Макет импульсног источника питания
на один канал.

 Вечером, попив чаю, я
опять разворачивал ламповый усилитель. Подсоединял накал и анодные напряжения.
Зачарованно 30 минут слушаю песни 70-х, чтобы сделать потом выводы.

1. Анодное напряжение
175,
0 В. Теоретически маловато, хотя бы 200, но практически приемлемо. Не
зависимо от фонограмм  в числе 175 ничего
не менялось после запятой, но стоило поднять громкость выше средней, цифра 5
затряслась в так низким частотам от +2 до-2 вольта.
Громкость выше средней не понравилась моей жене, думаю, соседям тоже не
понравится, поэтому я не сильно расстроился.

2. Отличный тепловой режим. Ключевые транзисторы
и трансформатор нагрелись до температуры 36,6 градусов, Выпрямительные
диоды в мосте остались холодными.

 Нет мощных радиаторов во всей схеме!

3. Один канал на
одном трансформаторе потребляет ток при напряжении  12 вольт около 2-х ампер.

4. В
сглаживающем, высоковольтном фильтре отсутствуют
громоздкие
электролитические
конденсаторы!  
Подрезаю первый
электролит в усилителе мощности, в звучании ничего не меняется, но моя
доработанная Селга даёт понять, что усилитель превратился в передатчик, и теперь
попса звучит в двух диапазонах сразу. Вместо громоздкого электролитического
конденсатора ставлю обычный конденсатор номиналом 3,3 мкФ и передатчик опять
превращается в усилитель.

Возможно, громоздкие электролитические конденсаторы в самом
усилителе заменятся на малогабаритные неполярные.  В этом месте предстоит ещё работа.

  О задержке включения по времени анодного
напряжения после нагрева накала.

Все кто уважает ламповые конструкции, обязательно делают
задержку включения анодного напряжения. В старых схемах такие задержки
получались автоматически, пока выпрямительная лампа (кенотрон) не прогреется,
высокое напряжение не появится. В этой схеме (Рис. 1.) задержка обеспечивается
конденсатором большой ёмкости 3300 мкФ, который, заряжаясь после подачи напряжения,
откроет пару ключевых транзисторов (Т1, Т2), подав, таким образом, питание на преобразователь,  спустя 30 секунд.
 На Рис.3. представлен втой вариант схемы задержки включения питания. Эта схема опробована. Время задержки составляет 1,5 минуты. Сократить время задержки можно уменьшив номиналы резистора 27к или кондесатора ёмкостью 3300 мкФ.

 Рис.3.  Второй вариант схемы задежки включения питания
 с мультивибратором.

 О стабилизаторе на пять вольт. Он нужен
только в макете или в том случае, когда всё питание устройства происходит от
источника с одним напряжением в 12 вольт. При использовании компьютерного блока
питания можно использовать его же 5-вольтовое напряжение, но резистор 330 Ом, его надо заменить на 30 Ом, с
двумя блокирующими конденсаторами лучше оставить, сопротивление будет
предохранителем.

Мал — да — удал.

 Выпрямительные диоды BY 359Х ,
высоковольтные, высокочастотные с барьером Шоттки
, рассчитаны на ток в
несколько ампер. Обычные выпрямительные диодные сборки не подойдут, перегреются
в момент, частота достаточно высокая 50 кГц. А вот демпферная лампа 6Д20С такую
частоту и ток переваривает, у неё маленькая внутренняя ёмкость (10 пФ), но в
однополупериодной схеме выпрямления она проигрывает полупроводниковому
диоду  в 2 вольта. Нагрев ей привычен, ещё
бы, ток накала 1,9 А!

Сглаживающий фильтр,
он же убирает помехи.

  О сглаживающих
фильтрах,
которые должны убрать пульсации после выпрямления.

 Во вторичной обмотки трансформатора частота возрасла в 2 раза и составляет около 100 кГц. В мостовой схеме выпрямления частота пульсаций возросла в 2
раза и стала
200 кГц. Чем выше частота пульсаций, тем меньше ёмкость фильтра. Сам фильтр упрощается, но он
нужен, чтобы  высшие гармоники
передатчика, ой, преобразователя не забивали длинноволновый диапазон
приёмников.

Обычные платы фильтров, которые непосредственно крепятся на
сетевой разъём компьютерных блоков питания, я поставил после выпрямительных
диодов.

 О конструкции. Сам блок питания надо
экранировать, Трансформатор и провода излучает высшие гармоники от частоты 50
кГц. Возможно, я использую освободившийся корпус самого блока питания
компьютера. На два скреплённых корпуса оставлю один вентилятор, уменьшив его
скорость вращения.

  Я не прощаюсь, будет
продолжение. С ламповым стереофоническим усилителем надо ещё разбираться.

Перелистывая старые страницы, наткнулся не несколько схем
преобразователей для получения высокого напряжения.  Предлагаю посмотреть странички из книжки «Электронные
схемы 1300 примеров», перевод с английского, 
автор Р. Граф. Издательство Мир. 1989 год.



Кстати микросхема TL494 вполне доступна, мои знакомые молодые радиолюбители
собирают на ней конструкцию поющей молнии по сайту Tesla Coil.RU

dedclub.blogspot.com

Не совсем обычный взгляд на блок питания лампового усилителя

О предмете статьи. Здесь пойдет речь о классических схемах БП, на основе 50 Гц трансформаторов.  Импульсные БП пока оставим в стороне. И в основном будем обсуждать питание выходных каскадов усилителей мощности.

Казалось бы, чем таким особенным отличаются блоки питания для ламповых усилителей ?  Конечно, что первым приходит на ум, это наличие высокого напряжения, что в случае полупроводниковых усилителей не встречается. Но, оказывается, что у ламповых БП есть еще одна особенность, о которой обычно почему-то в литературе не упоминается.  Она связана с тем, что лампа в силу особенностей конструкции пропускает ток только в одном направлении – от катода к аноду. То есть, если полупроводники бывают n-  или p- типов с электронной или  дырочной проводимостью, то  электроны в вакуумной лампе могут двигаться только в одном направлении.

Давайте сначала посмотрим, как обычно устроены БП полупроводниковых усилителей.  В подавляющем большинстве случаев – это  симметричный диодный мост нагруженный на батарею конденсаторов, что-то типа этого:

Поставщиком энергии в этом случается является вторичная обмотка сетевого трансформатора.  Но давайте посмотрим, а как “видит” нагрузка ( то есть выходной каскад усилителя )  вторичную обмотку этого сетевого трансформатора ?   Во-первых, ни один полюс питания не связан напрямую с обмоткой. Во-вторых, если само собой, не учитывать различие в поляности подключения, узел питания симметричен – то есть, на пути электронов от вторичной обмотки трансформатора в каждом плече питания ( и в плюсовом и в минусовом ) поставлено одинаковое количество элементов – диодов и конденсаторов. В комбинации с применением в выходном каскаде полупроводникового усилителя транзисторов разной проводимости, мы получаем почти идеальную симметричность в следовании электронного потока от одного полюса БП  через выходной каскад усилителя к другому полюсу.

А теперь давайте посмотрим, а как чаще всего устроены БП ламповых усилителей ? Наиболее распостранена так называемая классическая двухполупериодная кенотронная схема

Ее особенностью является то, что она несимметрична. Все вентильные и фильтрующие устройства размещены в анодной ветке питания, а общий, минусовой провод соединен непосредственно с катодами ламп. Получается своего рода “пробка” в  цепи анода всех ламп – электроны, свободно и  эмиттрированные катодом от обмотки трансформатора, проходят через электронную лампу, и уже только тут настигают дроссель и катод самого выпрямительного устройства –  кенотрона. Понятно, что скорость движения электронов по проводам достаточно высока, чтобы такая схема в общем была бы работоспособной. Но вот в нюансах, которые весьма и весьма важно не упускать из виду при построении ламповых усилителей звука,  такая топология выпрямителя логичной уже не выглядит. Лишенная симметрии, она содержит выпрямительный элемент там, где его быть не должно – именно с анода электронный заряд должен стекать к источнику ( вторичной обмотке трансформатора ) беспрепятственно. В подтверждение моих слов упомяну, что не мной замечено, что ламповый удвоитель напряжения

часто  выглядит предпочтительнее классической кенотронной схемы – мне так кажется, что именно из-за более равномерного распределения выпрямительных элементов на пути движения электронов.

Вслед за классической кенотронной схемой питания, в ламповых усилителя часто используют и диодный мостовой выпрямитель. Но по какой-то непонятной традиции последующие фильтрующие элементы ( дроссели, электронные дроссели и т.п. узлы развязки ) ставятся именно в анодную цепь.

На что я намекаю ? А на то, что учитывая конструктивные особенности электронных ламп, их несимметричность и  необходимость обеспечить эффективный отток электронов с анода, было бы логичнее выпрямительные и фильтрующие  элементы ставить в отрицательный полюс БП.  Казалось бы – а конденсатор большой емкости следующий в конце БП ( к нему уже подключаются аноды ламп )  – разве он не обеспечивает отток электронов ? До определенного момента – да. Но когда мы вспомним про неидеальность электролитических конденсаторов и наличие у них паразитной индуктивности, то окажется, что электролит большой емкости в БП   – ничего по сути изменить не может – между ним и источником энергии ( “поглотителем” электронов –  вторичной обмоткой трасформатора ) стоит очень вредная “пробка” из дросселя и кенотрона, сильно замедляющие отток электонов и тем самым вносящие пусть даже незначительные, но негативно вляющие на работу электронной лампы искажения.

Чтобы проверить на практике как это работает, я сделал такой вот БП.

Трансформатор Tr2 -Это тор для питания галогенок мощностью 100 Вт у которого перемотана вторичка – две обмотки по 5 вольт размещены в разных половинках тора и тем самым изолированы друг от друга – между ними переменное напряжение достигает 1000 вольт.  Конденсатор С1 – МБГП-1, С2 – полипропиленовый MKP для запуска двигателей. Если сглаживание пульсаций не покажется достаточным, то можно после дросселя поставить и электролит.

У этого рода топологии есть еще одно преимущество – к положительному полюсу питания можно подключать любую дополнительную нагрузку без каких либо развязывающих фильтров, например второй канал усилителя.  Выглядит, что особенно полезна будет такая схематика БП для питания экранной сетки тетродов и пентодов.

Уже сейчас я его послушал с новой схемой  каскода на прямонакалах.  Обнадеживает !  Но подробнее результатах его испытания я сообщу позднее, потому что предмет все-таки требует более детального изучения. А сейчас только хотел поделиться как мне кажется перспективной идеей для тех, кто любит качественный звук.

Может показаться, что разницы нет куда поставить выпрямитель и поставив его в отрицательный источник питания мы перенесли  проблему неидеальности БП  из одного места в другое.   На самом деле это не совсем так.  Попробуйте.

__________________________________________________________________________________________

klimanski.com