Блока питания из компьютера – Блоки питания из компьютерных ИИП почти без переделки! — Источники питания — Другое — Каталог статей и схем

Содержание

Лабораторный блок питания из компьютерного

Нам понадобятся:



1. Блок питания от старого Пк (любой ATX) 
2. Модуль ЖК вольтметра 
3. Радиатор для микросхемы(любой, подходящий по размеру) 
4. Микросхема LM317 (регулятор напряжения) 
5. электролитический конденсатор 1мкФ 
6. Конденсатор 0.1 мкФ 
7. Светодиоды 5мм — 2шт.
8. Вентилятор 
9. Выключатель 
10. Клеммы — 4шт.
11. Резисторы 220 Ом 0.5Вт — 2шт.
12. Паяльные принадлежности, 4 винта M3, шайбы, 2 самореза и 4 стойки из латуни длиной 30мм. 

   Я хочу уточнить, что список примерный, каждый может использовать то, что есть под рукой. 

Общие характеристики блока питания ATX: 

   Блоки питания ATX, используемые в настольных компьютерах являются импульсными источниками питания с применением ШИМ-контроллера. Грубо говоря, это означает, что схема не является классической, состоящей из трансформатора, выпрямителя и стабилизатора напряжения. Ее работа включает следующие шаги: 
а) Входное высокое напряжение сначала выпрямляется и фильтруется. 
б) На следующем этапе постоянное напряжение преобразуется последовательность импульсов с изменяемой длительностью или скважностью (ШИМ) с частотой около 40кГц.
в) В дальнейшем эти импульсы проходят через ферритовый трансформатор, при этом на выходе получаются относительно невысокие напряжения с достаточно большим током. Кроме этого трансформатор обеспечивает гальваническую развязку между 
высоковольтной и низковольтными частями схемы.  
г) Наконец, сигнал снова выпрямляется, фильтруется и поступает на выходные клеммы блока питания. Если ток во вторичных обмотках увеличивается и происходит падение выходного напряжения БП контроллер ШИМ корректирует ширину импульсов и таким образом осуществляется стабилизация выходного напряжения.

Основными достоинствами таких источников являются: 
— Высокая мощность при небольших размерах 
— Высокий КПД 
   Термин ATX означает, что включением блока питания управляет материнская плата. Для обеспечения работы управляющего блока и некоторых периферийных устройств даже в выключенном состоянии на плату подаётся дежурное напряжение 5В и 3.3В. 

К недостаткам можно отнести наличие импульсных, а в некоторых случаях и радиочастотные помех. Кроме того при работе таких блоков питания слышен шум вентилятора. 

Мощность блока питания

   Электрические характеристики блока питания напечатаны на наклейке (см. рисунок) которая, обычно, находится на боковой стороне корпуса. Из нее можно получить следующую информацию: 

Напряжение — Ток 

3.3В   —   15A 

5В   —   26A 

12В   —   9А 

-5 В   —   0,5 А 

5 Vsb   —   1 A

Для данного проекта нам подходят напряжения 5В и 12В. Максимальный ток, соответственно будет 26А и 9А, что очень неплохо. 

Питающие напряжения

Выход блока питания ПК состоит из жгута проводов различных цветов. Цвет провода соответствует напряжению:

Нетрудно заметить, что кроме разъемов с питающими напряжениями +3.3В, +5В, -5В, +12В, -12В и земли, есть еще три дополнительных разъема: 5VSB, PS_ON и PWR_OK. 

Разъем 5VSB используется для питания материнской платы, когда блок питания находится в дежурном режиме. 
Разъем PS_ON (включение питание) используется для включения блока питания из дежурного режима. При подаче на этот разъем напряжения 0В блок питания включается, т.е. чтобы запустить блок питания без материнской платы его нужно соединить с общим проводом (землей).
Разъем POWER_OK в дежурном режиме имеет состояние близкое к нулю. После включения блока питания и формировании на всех выходах напряжений нужного уровня на разъеме POWER_OK появляется напряжение около 5В.

ВАЖНО: Чтобы блок питания работал без подключения к компьютеру необходимо соединить зеленый провод с общим проводом. Лучше всего это сделать через переключатель.

Модернизация блока питания

1. Разборка и чистка

Нужно разобрать и хорошо очистить блок питания. Лучше всего для этого подойдет пылесос включенный на выдув или компрессор. Нужно проявлять повышенную осторожность, т.к. даже после отключения блока питания от сети на плате остаются напряжения, опасные для жизни.

2. Подготавливаем провода 



Отпаиваем или откусываем все провода, которые не будут использованы. В нашем случае, мы оставим два красных, два черных, два желтых, сиреневый и зеленый. 
Если есть достаточно мощный паяльник — лишние провода отпаиваем, если нет — откусываем кусачками и изолируем термоусадкой. 

3. Изготовление передней панели. 



   Сначала нужно выбрать место для размещения передней панели. Идеальным вариантом та будет сторона блока питания, с которой выходят провода. Затем делаем чертеж передней панели в Autocad или другой аналогичной программе. При помощи ножовки, дрели и резака из куска оргстекла изготавливаем переднюю панель.

4. Размещение стоек

   Согласно отверстий для крепления в чертеже передней панели просверливаем аналогичные отверстия в корпусе блока питания и прикручиваем стойки, которые будут держать переднюю панель.

5. Регулировка и стабилизация напряжения

    Для возможности регулировки выходного напряжения нужно добавить схему регулятора. Была выбрана знаменитая микросхема LM317 из-за ее простоты включения и невысокой стоимости.
LM317 представляет собой трехвыводный регулируемый стабилизатор напряжения, способный обеспечить регулировку напряжения в диапазоне от 1.2В до 37В при токе до 1.5А. Обвязка микросхемы очень простая и состоит из двух резисторов, которые необходимы для задания выходного напряжения. Дополнельно данная микросхема имеет защиту перегрева и перегрузки по току. 
Схема включения и распиновка микросхемы приведены ниже: 


   Резисторами R1 и R2 можно регулировать выходное напряжение от 1.25В до 37В. Т.е в нашем случае, как только напряжение достигнет 12В, то дальнейшее вращение резистора R2 напряжение регулировать не будет. Чтобы регулировка происходила на всему диапазону вращения регулятора необходимо рассчитать новое значение резистора R2. Для расчета можно использовать формулу, рекомендуемую производителем микросхемы: 

   Либо упрощенная форма этого выражения: 

Vout = 1.25(1+R2/R1) 

   Погрешность при этом получается очень низкой, так что вторую формулу вполне можно использовать.

   Принимая во внимание полученную формулу можно сделать следующие выводы: когда переменный резистор установлен на минимальное значение (R2 = 0) выходное напряжение составляет 1.25В. При вращении ручки резистора выходное напряжение будет возрастать, пока не достигнет масимального напряжения, что в нашем случае составляет чуть меньше 12В. Другими словами максимум у нас не должен превышать 12В. 
 
   Приступим к расчету новых значений резисторов. Сопротивление резистора R1 возьмем равным 240 Ом, а сопротивление резистора R2 рассчитаем: 
R2=(Vout-1,25)(R1/1.25) 
R2=(12-1.25)(240/1.25) 
R2=2064 Ома 

Ближайшее к 2064 Ом стандарное значение сопротивления резистора равно 2 кОм. Значения резисторов будут следующие: 
R1=240 Ом,  R2=кОм 

На этом расчет регулятора закончен. 

6. Сборка регулятора 

Сборку регулятора выполним по следующей схеме: 

Ниже приведу принципиальную схему: 

   Сборку регулятора можно выполнить навесным монтажем, припаивая детали напрямую к выводам микросхемы и соединяя остальные детали при помощи проводов. Также можно специально для этого вытравить печатную плату или собрать схему на монтажной. В данном проекте схема была собрана на монтажной плате. 

   Еще обязательно нужно прикрепить микросхему стабилизатора к хорошему радиатору. Если радиатор не имеет отверстия для винта, тогда оно делается сверлом 2.9мм, а резьба нарезается тем же винтом М3, которым будет прикручена микросхема. 

Если радиатор будет прикручен напрямую к корпусу блока питания, тогда необходимо изолировать заднюю часть микросхемы от радиатора кусочком слюды или силикона. В этом случае винт, которым прикручена LM317 должен быть изолирован с помощью пластиковой или гетинаксовой шайбы. Если же радиатор не будет контактировать с металлическим корпусом блока питания, микросхему стабилизатора обязательно нужно посадить на термопасту. На рисунке можно увидеть, как радиатор крепится эпоксидной смолой через пластину оргстекла:

7. Подключение 

Перед пайкой необходимо установить светодиоды, выключатель, вольтметр, переменный резистор и разъемы на переднюю панель. Светодиоды отлично вставляются в отверстия, просверленные 5мм сверлом, хотя дополнительно их можно закрепить суперклеем. Переключатель и вольтметр держатся крепко на собственных защелках в точно выпиленных отверстиях  Разъемы крепятся гайками. Закрепив все детали, можно приступать к пайке проводов в соответствии со следующей схемой: 

    Для ограничения тока последовательно с каждым светодиодом припаивается резистор сопротивлением 220 Ом. Места соединений изолируются при помощи термоусадки. Коннекторы припаиваются к кабелю напрямую или через переходные разъемы  Провода должны быть достаточно длинными, чтобы можно было без проблем снять переднюю панель. 

    Перед подключением вольтметра, нужно внимательно разобраться со схемой подключения, рекомендованной производителем. 

Встречаются модели с внешним питанием и питанием от измеряемого напряжения.

В нашем случае для питания индикатора необходимо было постоянное напряжение 9-12В. Для этих целей подойдет плата от любого блока питания, способная выдавать требуемое напряжение или зарядное устройство от старого телефона. Также возможно использовать одно из фиксированных напряжений блока питания ATX.  

8. Последние штрихи 

   Первое, что мы можем сделать, так это приклеить четыре силиконовый ножки-подставки, чтобы не царапать стол, понизить уровень шума и способствовать лучшему охлаждению БП.

   Далее, необходимо закрыть боковые грани между блоком питания и передней панелью полосками оргстекла.  Ширина полосок должна быть такой же, как и высота стоек, которые мы использовали. Боковые панели соединяем с передней панелью при помощи дихлорэтана или клея. Для улучшения охлаждения сверлим отверстия напротив радиатора охлаждения. Так же, чтобы улучшить охлаждение нижнюю полоску можно не ставить.  

   Наш лабораторный блок питания почти готов, но для начала проведем с ним некоторые тесты. 

9. Испытания 

Измерения: 

При помощи мультиметра нужно измерить напряжение между общим разъемом и разъемами с напряжением. При измерении регулируемого выхода измерения проводятся минимального и максимального напряжения. Результаты следующие: 

Защита: 

Поскольку блок питания компьютера имеет защиту от перегрузки и короткого замыкания, мы можем это проверить. Для этого закорачиваем проводом общий разъем и разъем 5В или 12В. Блок питания должен отключиться. Для повторного его включения необходимо выключить и снова включить выключатель подачи 220В.  Регулируемый выход защищен микросхемой LM317. Защита в зависимости от температуры микросхемы срабатывает при превышении тока нагрузки 2-3А.

10. Улучшение 

   В процессе эксплуатации было замечено, что на микросхеме LM317 рассеивается очень большое количество тепла и радиатор достаточно горячий. Поэтому дополнительно, при помощи двух шурупов, был установлен 12-ти вольтовый вентилятор от видеокарты.

   Питание вентилятора берется с выхода 12В, и желательно запитать его через дополнительный выключатель, чтобы вставить его только тогда, когда это необходимо.

Результат



В основу написания легла статья с испанского сайта http://www.taringa.net

mynobook.blogspot.com

Зарядное устройство из блока питания компьютера — SDELAITAK24.RU

Дорогие друзья, я расскажу вам о простом способе переделки компьютерного блока питания в зарядное устройство для автомобильных аккумуляторов своими руками. Для переделки подойдут любые компьютерные блоки питания собранные на микросхемах TL494 или КА7500 с любым буквенным индексом в конце. Модель, дата производства, цвет и размер блока питания никакого значения не имеют. Самое главное, это наличие в блоке питания микросхемы TL494 или ее аналога КА7500. Снимите верхнюю крышку и проверьте на какой микросхеме собран блок.

Прежде чем приступить к переделке компьютерного блока питания в зарядное устройство, проверьте исправность блока питания. Как включить блок питания без компьютера? Замкните зеленый провод с любым черным. Блок должен включиться.

Для нормальной зарядки аккумулятора требуется напряжение 14,5 вольт, а на выходе из компьютерного блока питания напряжение 12 вольт.  Поэтому, надо сделать блок питания регулируемым, то есть поднять напряжение до максимального значения в 16 вольт. На этом рисунке изображена схема переделки компьютерного блока питания в зарядное устройство.

Схема переделки компьютерного блока питания в зарядное устройство

Скачать схему переделки компьютерного блока питания в зарядное устройство 

В каждом блоке питания, собранном на микросхемах TL494 или КА7500, имеется защита от короткого замыкания и высокого напряжения, которая отключает блок питания в случае нештатной ситуации. Чтобы повысить выходное напряжение до 16 вольт, надо отключить защиту. Для этого отрежьте дорожку от 4 ноги микросхемы. Далее 4 ногу микросхемы соедините куском провода на минус, это большой пучок черных проводов, обозначенных на плате GND. Чтобы сделать блок питания регулируемым, надо удалить резистор, через который подается напряжение с выхода блока питания, обозначенного на плате +12V (пучок желтых проводов)  на первую ногу микросхемы и на его место поставить переменный резистор сопротивлением 50 кОм или 100 кОм. Для каждого блока подбирается индивидуально ведь блоки питания у всех разные.

Для начинающих радиолюбителей это очень сложная задача потому, что этот самый резистор очень любят прятать от зорких глаз и умелых рук начинающих радиолюбителей хитрые производители компьютерных блоков питания. Каких либо стандартов расположения резистора на печатной плате нет. Все производители блоков питания по своему располагают и нумеруют детали на плате. Поэтому, искать надо от выхода +12V  до первой ноги микросхемы или наоборот, кому как удобно. На этой плате я отключил защиту, отрезав дорожку от 4 ноги микросхемы. Потом соединил 4 ногу на минус. После включения в сеть блок питания запускается без замыкания зеленого провода с черным, это означает, что защита отключена.

В этом компьютерном блоке питания, резистор находится здесь, рядом с первой ногой микросхемы. Напряжение на резисторе около 12 вольт.

После установки переменного резистора на 100 кОм. Напряжение плавно регулируется от 4,5 вольт до 16 вольт и обратно. Поскольку выходное напряжение увеличилось до 16 вольт, а в некоторых блоках питания возможно поднять напряжение до 20 вольт. Во избежание мощного взрыва выходных конденсаторов настоятельно рекомендую заменить 16 вольтовые конденсаторы на выходе из блока питания на 25 вольтовые, они по диаметру идеально становятся на свои места, а по высоте немного длиннее. Вентилятор подключите через резистор от 20 до 100 ом.

Для визуального контроля процесса зарядки аккумулятора желательно установить универсальный вольт амперметр китайского производства. Схема подключения изображена на рисунке внизу. Не смотря на свою универсальность, чудо прибор для точности измерительных показаний нуждается в небольшой настройке. На задней плате прибора имеется два маленьких подстроечных SMD резистора. Левый резистор предназначен для калибровки амперметра, а правый показаний вольтметра. Как откалибровать китайский вольт амперметр?

После подключения прибора к выходу компьютерного блока питания, подключите мультиметр в режиме вольтметра. Сравните показания двух приборов. В случае необходимости подкорректируйте показания вольт амперметра правым подстроечным резистором. Чтобы откалибровать амперметр, переключите мультиметр в режим амперметра и соедините последовательно с вольт амперметром через лампу накаливания 12 Вольт 21 Ватт. Точность показаний амперметра установите левым подстроечным резистором. На этом калибровка вольт амперметра окончена.

Схема подключения универсального вольт амперметра к зарядному устройству из компьютерного блока питания

Скачать схему подключения вольт амперметра 

Так выглядит готовое зарядное устройство, все детали легко разместились внутри стандартного корпуса.  Поскольку в зарядном устройстве отсутствует защита от короткого замыкания, не забудьте установить предохранитель на 10А в разрыв (желтого) провода выходящего из линии +12V, который надежно защитит блок питания от короткого замыкания.

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Читайте также: Зарядное устройство из компьютерного блока питания

Рекомендую посмотреть видеоролик о том, как сделать зарядное устройство из компьютерного блока питания!

sdelaitak24.ru

Переделка компьютерного блока питания в разные устройства

Компьютер служит нам годами, становится настоящим другом семьи, и когда он устаревает или безнадёжно ломается, бывает так жалко нести его на свалку. Но существуют детали, которые могут ещё долго прослужить в быту. Это и многочисленные кулеры, и радиатор процессора, и даже сам корпус. Но самое ценное — это БП. Компьютерный блок питания, благодаря пристойной мощности при малых габаритах, является идеальным объектом всяческих модернизаций. Его трансформация — не такая уж сложная задача.

Переделка компьютерного блока питания в обычный источник напряжения

Нужно определиться какого типа блок питания вашего компьютера, АТ или АТХ. Как правило, это указывается на корпусе. Импульсные БП работают только под нагрузкой. Но устройство блока питания типа АТХ позволяет замыканием зелёного и чёрного проводов искусственно её имитировать. Итак, подключив нагрузку (для АТ) или замкнув необходимые выводы (для АТХ), можно запустить вентилятор. На выходе появляется 5 и 12 Вольт. Максимальный выходной ток зависит от мощности БП. При 200 Вт, на пятивольтовом выходе, ток может достигать порядка 20А, на 12В  — около 8А. Так без лишних затрат можно пользоваться хорошим источником питания с неплохими выходными характеристиками.

Переделка компьютерного блока питания в регулируемый источник напряжения

Иметь такой БП дома или на работе довольно удобно. Изменить стандартный блок несложно. Нужно заменить несколько сопротивлений и выпаять дроссель. При этом величину напряжения можно регулировать от 0 до 20 Вольт. Естественно, токи останутся в первоначальных пропорциях. Если же вас устраивает максимальное напряжение в 12В, достаточно на его выходе установить тиристорный регулятор напряжения. Схема регулятора очень проста. При этом он поможет избежать вмешательства во внутреннюю часть компьютерного блока.

Переделка компьютерного блока питания в зарядное устройство для автомобиля

Принцип мало чем отличается от регулируемого источника питания. Только желательно поменять диоды Шоттки на более мощные. Зарядное устройство из БП компьютера имеет ряд преимуществ и недостатков. К плюсам в первую очередь относят малые габариты и небольшой вес. Трансформаторное ЗУ намного тяжелее и неудобней в эксплуатации. Недостатки тоже существенны: критичность к коротким замыканиям и переполюсовке.

Конечно, эта критичность наблюдается и в трансформаторных устройствах, но при выходе из строя импульсного блока переменный ток с напряжением 220В стремится к аккумулятору. Страшно представить последствия этого для всех приборов и находящихся рядом людей. Применение в блоках питания защит решает эту проблему.

Перед использованием такого зарядного устройства, серьёзно отнеситесь к изготовлению схемы защиты. Тем более что существует большое количество их разновидностей.

Итак, не спешите выбрасывать запчасти от старого девайса. Переделка компьютерного блока питания подарит ему вторую жизнь. При работе с БП помните, что его плата постоянно находится под напряжением 220В, а это представляет смертельную угрозу. Соблюдайте правила личной безопасности при работе с электрическим током.

fb.ru

Что можно сделать из компьютерного блока питания? — Как сделать своими руками?

Facebook

Twitter

Мой мир

Вконтакте

Одноклассники

Google+

Pinterest

У меня в мастерской завалялось  несколько старых блоков питания от компьютера. В свое время их приходилось часто менять. Лежат хламом а выкинуть жалко, всё думал куда бы их применить. Оказалось не только я ломал голову над этой задачей. Вот, нашел такой проект. Вполне так симпатично получается. Аварийный фонарь из старого блока питания. А если у вас завалялся аккумулятор от бесперебойника, то у вас уже почти все есть, что надо. Единственно на месте автора я бы не городил схему с крокодилами для зарядки аккумулятора от внешнего зарядного устройства а расположил бы его внутри корпуса. Благо места хватает. Да и лампу бы взял светодиодную. Тогда даже полудохлый старый аккумулятор сможет светить достаточно долго.

Такой фонарь будет очень удобен как автомобильный. Надо только продумать возможность заряжать его от бортовой сети или от прикуривателя. Ну а если у вас еще нет нового автомобиля можно присмотреть его здесь.

Далее от автора в машинном переводе:


У вас есть много запасных частей компьютера? Тебе нравится быть готовы к чрезвычайным ситуациям? Готовы ли вы к зомби-апокалипсису? Вы понимаете, что я имею ввиду, когда говорю слово «Джанк-панк»?

Если так, то вы должны построить себе переработанных компьютерного блока питания фонарь!
Используя спасти, многократно и повторно использовать компоненты, мы построим 12В/11вт электрический фонарь.

Это все недавно началось, когда я разговаривала с подругой по разработки к реализации Милуоки. Я работал на простой проект электропроводка и в чате, и друг показал мне пару батареи 5ah свинцово-кислотные аккумуляторы, он утолил, которые вполне хорошие, и он давал всем, кто хотел. Это отличное Размер аккумуляторная батарея, а также размером и формой напомнил мне «по-старинке» фонарики, которые используют 9В сухих клеток. Это, а также обсуждение фильмов про зомби, мне интересно — у меня есть навыки, чтобы не только построить портативный свет от чуть больше подручных материалов, но и построить что-то лучше, чем я мог бы купить?

Я принял это как вызов и приступила к сборке фонаря питание.

Шаг 1: Инструменты И Материалы


Для начала, давайте рассмотрим инструменты и материалы для проекта.

Почти все материалы для данного проекта были переработаны, восстановленные или повторно. Проект был основан на материалах, которые у меня были на руках. Если вы хотите построить что-то подобное, вы могли бы что-то купить. А еще лучше, почему бы вам не создать проект, используя только подручные материалы, и посмотреть, что вы придумали!

Материалы:
Умер блок питания компьютера
Ландшафтное освещение лампы 12В
Перезаряжаемые батарея 12V — 5ah р или другой Размер, который устанавливается внутри источника питания
Пена или другой интервал металлолома
Клей
1/4″ обжимной-на клеммах именами
Связей Zip
Электрические ленты или термоусадочной
Зарядное Устройство

Вы могли заметить, что я не любой коммутатор или любой провод в список материалов. Это потому, что мы будем повторно использовать переключатель, проводка, и мощности порта уже в электропитании.

Инструменты простые, что ни один уважаемый Сделай сам интерьер будет без, но когда доходит до дела, большинство могут быть заменены Швейцарский армейский нож или Мультитул.

Инструменты:
Отвертки Phillips
Инструмент Для Зачистки Проводов
Провода Щипцов
Бокорезы
Сверла и биты
Мультиметр (Опционально)

Шаг 2: открыть и удалить ненужные


Первым делом нужно открыть блок питания.

Удалите четыре винта Phillips, которые держат крышку блока питания и снимите крышку. Крышка на самом деле 3 стороны, или половине питания. Отделить две части.

Внутри вы увидите множество проводов, монтажной платы, вентилятор и переключатель и порт питания.

Удалите четыре винта, которые крепят Вентилятор охлаждения. Отключите вентилятор от платы, а затем установить его в сторону, как материал для одной из своих будущих проектов.

Снять винты удерживая монтажной платы. Найдите провода от переключателя и разъем питания, и следовать за ними туда, где они соединяются на плате. Обрезок провода близко к доске, чтобы максимизировать длину отрезка проволоки, неподвижно закрепленные на выключатель и разъем питания.

Удалите печатную плату и установить в сторону.

Сейчас у вас в основном пустая коробка с парой проводов на коммутаторе и питание. Мы будем использовать их как часть проекта. Вы должны иметь достаточно провода до аккумулятора и лампочки.

Шаг 3: Аккумулятор


Аккумулятор, используемый для проекта в 5 А * ч герметичная свинцово-кислотная батарея. Он отлично помещается внутри корпуса блока питания.

Клеммы на аккумуляторе не 1/4″ разъемы мужской вещи. Это легко работать с, опрессовки лопата Разъемы на проводах, а потом просто толкает их на разъем клеммы аккумулятора.

Аккумулятор отмечен положительный красным и отрицательные черным, и имеет пластиковый протектор около положительной клеммы, чтобы помочь уменьшить случайного короткого замыкания.

Положите батарею в одной половине корпуса блока питания, чтобы убедиться, что он подходит. Вы можете использовать карандаш или маркер, чтобы обрисовать его, так что вы знаете, где линии до батареи без дела.

Шаг 4: Светильник


Лампа 12 вольт, 11-ваттная Лампа оставшиеся от другого проекта. Обычно она может использоваться на открытом воздухе, низковольтное ландшафтное освещение, питание от 12V трансформатор переменного тока.

Что-то как простой как лампочка действительно не волнует, если он питается от переменного или постоянного тока, пока напряжение является правильным. Мы будем использовать 12V батареи, так что нет никакой проблемы переделать этот шарик.

Лампа займет место вентилятор. Держите шарик в круглой решеткой, где вентилятор был. Марк, сколько места лампочки будет занимать. Она круглая, и вентилятор, так что он поместится в порядке, но не весь путь обратно в корпус. (Другой Размер ламп может располагаться заподлицо, или даже внутри корпуса!)

Использовать боковые резцы или оловянно-СНиПы, СНиП вентилятор оловянную решетку, чтобы сделать лампы подходят. Также можно использовать Дремель или другой режущий инструмент.

Тест-фит лампочки, но не пытайтесь привязать его еще. Во-первых, мы хотим, чтобы провод до фонаря.

Шаг 5: подключение его


Проводка на фонарь довольно простой. Полный кругооборот всего аккумулятора переключиться на лампочку и обратно на минус АКБ.

Поскольку это аккумуляторная батарея, неплохо было бы также добавить способ зарядить фонарь без его демонтажа для доступа к батареи. Для этого мы будем использовать шнур питания порт в качестве места для подключения зарядного устройства.

Во-первых, проверьте провода, выключатель и разъем питания достигнет батареи и лампочки.

В «115/230» выключатель питания не будет использоваться, поэтому ее красные провода могут быть опущена-офф. Сохранить их для повторного использования. Это хорошо, тяжелый провод, а красный обычно используется для обозначения положительной полярности.

Полосы и скрутите вместе по одному проводу от каждого переключателя мощности и входной мощности. Добавить женский стержень лопаты и обожмите его. Этот разъем идет к положительной клемме аккумулятора. Другой провод выключателя идет на лампочку.

Другой провод силовой вход идет на противоположной стороне шарика. Той стороне шарика тоже идет к аккумулятору отрицательный. Эта Лампа имеет «мульти-терминалы», поэтому позволяют подключать два провода сразу к терминалу — один с разъемом вещи, и одно с голого провода затянуты под винт.

Сделав это, власть будет идти только до лампочки, когда выключатель включен, но власть всегда будет подключен к двум контактам на входе питания. (Отрезать третий провод.) Так что зарядное устройство можно подключить к двум контактам для зарядки аккумулятора. Марк двумя контактами, соблюдая полярность.

(Примечание о повторном использовании переключателей: Переключатели и другие компоненты часто имеют 2 комплекта оценок — одна для переменного тока и одна-для постоянного тока. Рейтинги, как правило, гораздо ниже, для постоянного тока. Используйте фонарик, чтобы внимательно посмотреть на сторону переключателя, и вы увидите его мощности. Потому что это только проект, 1 Ампер, этот переключатель будет нормально работать.)

 

Шаг 6: Ручки


Один классический элемент фонарь, расположенный ручка, отдельно от тела света.
(В отличие от фонарика, где вы просто схватите вокруг всей формы фонарик.)

Обычно, я хотел бы использовать некоторые болты и проставки, и крест-кусок дерева или металла, для сборки ручки. Однако, у меня не было материала под рукой, который, казалось, чтобы удовлетворить его — помимо провода еще подключены к плате, отложите раньше.

Эти провода были в комплекте вместе плотно, а диаметр был примерно правильно, чтобы быть удобным в руке. Я срезал пучок проводов близко к поверхности платы.

Я измерил диаметр проволочного жгута путем подачи его через индекс дрель. Если казалось, чтобы соответствовать лучшим в 1/2″ отверстие. Это означало, чем я смог просверлить 1/2″ отверстия через лист металла, а потом кормить проводов насквозь. Я просверлил два отверстия, по центру стороны в сторону. Там уже стояли два штампа знаки в металле около 3/4″ с любого конца, так что я использовал их в качестве эталона для, как далеко от края просверлить.

С отверстиями, я кормила оголенный конец провода через изнутри корпуса, и сверху, и обратно через другое отверстие. Оригинальный компьютерный разъем питания платы является слишком большой, чтобы соответствовать через отверстие, так что он действует как стоп.

На другом конце провода. Я завернул две застежки-завязки вокруг провода, чтобы связать их в месте. Тогда я сложил туда лишние провода, связали снова, и отрезать лишние провода.

Шаг 7: Сборка


С проводкой закончили и ручки сделать, все это должно быть собрано вместе.

Сейчас настало время, чтобы клей в место лампы и батареи.

Приклеил фонарь на место с клеем кремния. Он хорошо работает в широком диапазоне температур. Лампа будет нагреваться при использовании, так жарко-клей будет плохим выбором.

С другой стороны, горячий клеевой пистолет работал отлично клеить батареи в корпус. Я тоже склеил два кусочка пены ломом действовать в качестве прокладки между батареей и крышкой.

Как только клей охлаждения/осушения, установите на место крышку на корпус (см. пены обивка и провод ручки) и поставить четыре винты крышки обратно.

Чтобы перезарядить, я просто крюк небольшой зарядное устройство у меня уже было два штырька зарядки, который я отметил полярность.

Шаг 8: проверьте его!


Как только фонарь вместе — пойти проверить!

Это отлично подходит для кемпинга, потемнение в глазах, сладость или гадость — черт, ты даже можешь бросить все это дело внутри Джек-0-фонарь.

С хорошим квадратным основанием, очень хорошо сидит, поэтому он может быть установлен и позволяют освободить обе руки, чтобы делать то, что вам нужно сделать. Вы можете также сесть фонарь на конце, чтобы направлять свет прямо вверх и подпрыгнуть-освещают всю комнату.

Мне нравится, как ручка чувствует. Это удивительно удобно, и фонарь висит прямо справа от него.

Это батареи 5ah батареи, и лампы в основном 1 ампер, это значит что он 4 часа время работы до 80% разряда батареи.

Сама Лампа достаточно яркая и имеет большую площадь освещения — это наиболее сопоставимы с фар автомобилей это шаблон, хотя и не так ярко, как, что.

Теперь ты иди и приготовь!
Твое будет еще пара-punkier? Вы будете использовать разные лампы? Дайте мне знать, как у тебя получается!
Источник www.instructables.com

 

А вот еще, что можно сделать из старого блока питания из компьютера. Преобразователь напряжения с 12 на 220 вольт. Видео.

 

Еще зарядное устройство для автомобильного аккумулятора из компьютерного блока питания. Видео.

Есть еще, что почитать

xn--80aaahigxablbgird0a1biet2a4q.xn--p1ai

Лабораторный БП из компьютерного БП формата АТХ — Блоки питания — Источники питания

Евгений Князев

Привет всем!!! Решил описать вкратце переделку БП от компьютера формата АТХ. Может кому-то будет интересно.

За основу был взят БП CODEGEN — 300X (типа 300Вт, ну Вы поняли китайских 300). Мозгом БП служит ШИМ-контроллер КА7500 (TL494…). Только такие мне приходилось переделывать. Управлять ШИМкой будет PIC16F876A, он же и для контроля и установки выходного напряжения и тока, отображение информации на LCD Wh2602(…), регулировка осуществляется кнопками.
Программу помог сделать один хороший человек (IURY, сайт «Кот», который радио), за что ему большое спасибо!!! В архиве схема, плата, программа для контроллера.

Берем рабочий БП (если не рабочий, то надо восстановить до рабочего состояния).
Ориентировочно определяемся, где у нас что будет располагаться. Выбираем место под LCD, кнопки, клеммы (гнезда), индикатор включения…
Определились. Делаем разметку для «окна» ЛСД. Вырезаем (я резал маленькой болгаркой 115мм), может кто-то дремелем, кто-то рассверливанием отверстий, а потом подгонка напильником. В общем кому как удобнее и доступнее. Должно получиться что-то похоже на это. 

 

 

 Продумываем как будем крепить дисплей. Можно сделать несколькими способами:
а) соединить с платой управления разъёмами;
б) сделать через фальшпанель;
в) или…
Или… припаять непосредственно 4 (3) винтика М2,5 к корпусу. Почему М2,5, а н М3,0? В ЛСД отверстия 2,5мм в диаметре для крепления.
Я припаял 3 винтика, потому что при пайке четвертого, отпаивается перемычка (на фото видно). Потом припаиваешь перемычку — отпадает винтик. Просто сильно близкое расстояние. Не стал заморачиваться — оставил 3 шт.
 

Пайка выполнена ортофосфорной кислотой. После пайки всё необходимо хорошо промыть водой с мылом.
Примеряем дисплей.

 

Изучаем схему, а именно все относительно TL494 (KA7500). Все что касается ног 1, 2, 3, 4, 13, 14, 15, 16. Всю обвязку возле этих выводов удаляем (на основной плате БП), и устанавливаем детали, согласно схемы.
 

Удаляем на основной плате БП всё лишнее. Все детали касательно +5, -5, -12, PG, PS — ON.
Оставляем только всё, что касается +12 V и дежурного питания +5V SB .
Желательно найти схему по своему БП, чтобы не удалить чего лишнего. В цепи питания +12 вольт — удаляем родные электролиты и ставим вместо них, аналогичный по ёмкости, но на рабочее напряжение 35-50 вольт.
Должно получиться что-то похоже на это.

 

Посмотрев на характеристики имеющегося блока питания (наклейка на корпусе) — по 12В выходной ток должен быть 13А. Ого неплохо вроде!!! Смотрим на плату, что у нас образовывает 12В, 13А??? Ха два диода FR302 (по даташиту 3А!). Ну пусть максимальный ток 6А. Нет, такое нас не устраивает, надо заменить на что-нибудь по мощнее, да еще и с запасом, поэтому ставим 40CPQ100 — 40А, Uобр=100В.
 

На радиаторе были какие-то изолирующие прокладки, прорезиненная ткань (что-то похожее). Отодрал, отмыл. Поставил нашу отечественную слюду.
Винты, поставил подлиннее. Под один сзади зажал еще слюду. Блок решил дополнить индикатором перегрева теплоотвода на МП42. Германиевый транзистор здесь используется в качестве датчика температуры
 

Схема индикатора перегрева теплоотвода собрана на четырёх транзисторах. В качестве транзистора стабилизатора применён КТ815, КТ817, а в качестве индикатора — двухцветный светодиод.
 

Печатную плату не рисовал. Думаю, что особой сложности при сборке этого узла возникнуть не должно. Как узел собран, видно на фото ниже.
 

Делаем плату управления. ВНИМАНИЕ! Перед подключением своего LCD изучите даташит на него!! Особенно выводы 1 и 2!
 

 

Соединяем все согласно схеме. Устанавливаем плату в БП. Также надо изолировать основную плату от корпуса. Сделал я всё это через пластиковые шайбочки.
 

Наладка схемы.
 

1.Все наладки блока питания проводить только через лампу накаливания 60 — 150 Вт, включенную в разрыв сетевого кабеля, а ещё лучше и через разделительный трансформатор.
2.Корпус БП изолировать от GND, а цепь, которая образовывалась через корпус, соединить проводками.
3.Iizm (U15) — выставляется выходной ток (правильность показаний индикатора) по образцовому А — метру.
Uizm (U14) — выставляется выходное напряжение (правильность показаний индикатора), по образцовому В — метру.
Uset_max (U16) — выставляется МАХ выходное напряжение
 

Максимальный выходной ток данного блока питания составляет 5 ампер (вернее 4,96А), ограничен прошивкой.
Максимальное выходное напряжение для данного блока питания, не желательно выставлять более 20-22 вольт, так как в этом случае увеличивается вероятность пробоя силовых транзисторов из-за нехватки предела ШИМ-регулирования микросхемой TL494
.
Для увеличения выходного напряжения более 22 вольт, необходима перемотка вторичной обмотки трансформатора.

 

 

Пробный запуск прошёл успешно. Слева двухцветный индикатор перегрева теплоотвода (холодный радиатор — цвет LED зеленый, теплый — оранжевый, горячий — красный). Справа — индикатор включения БП.

 

 

Установил выключатель. Основа — стеклотекстолит, обклеен самоклейкой «оракл».

Финал. То, что получилось в домашних условиях.

 

 

А теперь пробуем работу всех узлов собранного блока, так сказать в условиях приближенных к реальным, то есть нагружаем и испытываем собранный блок питания.
БП под нагрузкой, в качестве нагрузки используются лампы «галогенки» на 12В, 35 и 50Вт.

 

Скачать архив с прошивкой, схемой, платами.

Архив для статьи.

Если возникнут какие то вопросы по статье, задавайте их здесь, обсудим.

 

vprl.ru

Блок питания от компьютера что можно сделать

Главная » ПО » Блок питания от компьютера что можно сделать

Как сделать из блока питания от компьютера источник постоянного напряжения

Несколько недель назад мне для некого опыта потребовался источник постоянного напряжения 7V и силой тока в 5A. Тут-же отправился на поиски нужного БП в подсобку, но такого там не нашлось. Спустя пару минут я вспомнил о том, что под руки в подсобке попадался блок питания компьютера, а ведь это идеальный вариант! Пораскинув мозгами собрал в кучу идеи и уже через 10 минут процесс начался. Для изготовления лабораторного источника постоянного напряжения потребуется: — блок питания от компьютера — клеммная колодка — светодиод — резистор ~150 Ом — тумблер — термоусадка — стяжки Блок питания, возможно, найдётся где-то не нужный. В случае целевого приобретения — от $10. Дешевле я не видел. Остальные пункты этого списка копеечные и не дефицитные. Из инструментов понадобится: — клеевой пистолет a.k.a. горячий клей (для монтажа светодиода) — паяльник и сопутствующие материалы (олово, флюс…) — дрель — сверло диаметром 5мм — отвертки — бокорезы (кусачки)

Изготовление

Итак, первое, что я сделал — проверил работоспособность этого БП. Устройство оказалось исправным. Сразу можно отрезать штекера, оставив 10-15 см на стороне штекера, т.к. он вам может пригодиться. Стоит заметить, что нужно рассчитать длину провода внутри БП так, чтобы его хватило до клемм без натяжки, но и чтобы он не занимал всё свободное пространство внутри БП.

Теперь необходимо разделить все провода. Для их идентификации можно взглянуть на плату, а точнее на площадки, к которым они идут. Площадки должны быть подписаны. Вообще есть общепринятая схема цветовой маркировки, но производитель вашего БП, возможно, окрасил провода иначе. Чтобы избежать «непоняток» лучше самостоятельно идентифицировать провода.

Вот моя «проводная гамма». Она, если я не ошибаюсь, и есть стандартной. С жёлтого по синий, думаю, ясно. Что означают два нижних цвета? PG (сокр. от «power good») — провод, который мы используем для установки светодиода-индикатора. Напряжение — 5В. ON — провод, который необходимо замкнуть с GND для включения блока питания. В блоке питания есть провода, которые я здесь не описывал. Например, фиолетовый +5VSB. Этот провод мы использовать не будем, т.к. граница силы тока для него — 1А. Пока провода нам не мешают, нужно просверлить отверстие для светодиода и сделать наклейку с необходимой информацией. Саму информацию можно найти на заводской наклейке, которая находится на одной из сторон БП. При сверлении нужно позаботиться о том, чтобы металлическая стружка не попала вовнутрь устройства, т.к. это может привести к крайне негативным последствиям.

На переднюю панель БП я решил установить клеммную колодку. Дома нашлась колодка на 6 клемм, которая меня устроила.

Мне повезло, т.к. прорези в БП и отверстия для монтажа колодки совпали, да еще и диаметр подошел. Иначе, необходимо либо рассверливать прорези БП, либо сверлить новые отверстия в БП. Колодка установлена, теперь можно выводить провода, снимать изоляцию, скручивать и лудить. Я выводил по 3-4 провода каждого цвета, кроме белого (-5V) и синего (-12V), т.к. их в БП по одному.

Первый залужен — вывел следующий.

Все провода залужены. Можно зажимать в клемме. Устанавливаем светодиод Я взял обычный зелёный индикационный светодиод обычный красный индикационный светодиод (он, как выяснилось, несколько ярче). На анод (длинная ножка, менее массивная часть в головке светодиода) припаиваем серый провод (PG), на который предварительно насаживаем термоусадку. На катод (короткая ножка, более массивная часть в головке светодиода) припаиваем сначала резистор на 120-150 Ом, а к второму выводу резистора припаиваем черный провод (GND), на который тоже не забываем предварительно надеть термоусадку. Когда всё припаяно, надвигаем термоусадку на выводы светодиода и нагреваем ее.

Получается вот такая вещь. Правда, я немного перегрел термоусадку, но это не страшно. Теперь устанавливаю светодиод в отверстие, которое я просверлил еще в самом начале.

Заливаю горячим клеем. Если его нет, то можно заменить супер-клеем.

Выключатель блока питания

Выключатель я решил установить на место, где раньше у блока питания выходили провода наружу.

Измерял диаметр отверстия и побежал искать подходящий тумблер.

Немного покопался, и нашел идеальный выключатель. За счёт разницы в 0,22мм он отлично встал на место. Теперь к тумблеру осталось припаять ON и GND, после чего установить в корпус.

Основная работа сделана. Осталось навести марафет. Хвосты проводов, которые не использованы нужно изолировать. Я это сделал термоусадкой. Провода одного цвета лучше изолировать вместе.

Все шнурки аккуратно размещаем внутри.

Прикручиваем крышку, включаем, бинго! Этим блоком питания можно получить много разных напряжений, пользуясь разностью потенциалов. Учтите, что такой приём не прокатит для некоторых устройств. Вот тот спектр напряжений, которые можно получить. В скобках первым идёт положительный, вторым — отрицательный. 24.0V — (12V и -12V) 17.0V — (12V и -5V) 15.3V — (3.3V и -12V) 12.0V — (12V и 0V) 10.0V — (5V и -5V) 8.7V — (12V и 3.3V) 8.3V — (3.3V и -5V) 7.0V — (12V и 5V) 5.0V — (5V и 0V) 3.3V — (3.3V и 0V) 1.7V — (5V и 3.3V) -1.7V — (3.3V и 5V) -3.3V — (0V и 3.3V) -5.0V — (0V и 5V) -7.0V — (5V и 12V) -8.7V — (3.3V и 12V) -8.3V — (-5V и 3.3V) -10.0V — (-5V и 5V) -12.0V — (0V и 12V) -15.3V — (-12V и 3.3V) -17.0V — (-12V и 5V) -24.0V — (-12V и 12V)

Вот так мы получили источник постоянного напряжения с защитой от КЗ и прочими плюшками. Рационализаторские идеи: — использовать самозажимные колодки, как предложили тут, либо использовать клеммы с изолированными барашками, чтобы не хватать в руки отвёртку лишний раз.

Источник: habrahabr.ru

samodelka.net

Куда можно применить компьютерный блок питания

Сегодня не редко можно найти в кладовке компьютерный блок питания. Подобные вещи остаются от старых системников, приносятся с работы и так далее. А между тем, компьютерный блок питания — это не просто хлам, а верный помощник по хозяйству! Именно о том, что можно запитать от компьютерного блока питания и пойдет речь сегодня…

Питание автомагнитолы от компьютерного блока питания. Легко!

К примеру, от компьютерного блока питания можно запитать автомагнитолу. Тем самым получить музыкальный центр.

Для этого достаточно правильно подать напряжение 12В на соответствующие контакты автомагнитолы. А эти самые 12В уже имеются на выходе блока питания. Чтобы запустить блок питания, необходимо замкнуть цепь Power ON с цепью Ground (GND). Такое не хитрое изобретение позволяет наслаждаться музыкой в гараже без участия магнитолы в автомобиле. А значит и аккумулятор разряжать не придется.

Этим же напряжение можно проверять светодиодные и лампы накаливания, которые предназначены для установки в легковой автомобиль. С ксеноновыми лампами без доработки фокус не пройдет.

www.mitrey.ru

Как сделать сварочный инвертор из компьютерного блока питания своими руками?

Оглавление: [скрыть]

  • Принцип работы инверторной сварки
  • Инструменты, необходимые для изготовления инвертора
  • Порядок сборки сварочного аппарата
  • Преимущества сварочного аппарата из компьютерного блока питания

Сварочный инвертор из компьютерного блока питания своими руками становится все более популярным как среди профессионалов, так и среди сварщиков-любителей. Преимущества таких аппаратов в том, что они удобные и легкие.

Устройство сварочного инвертора.

Применение инверторного источника питания позволяет качественно улучшить характеристики сварочной дуги, уменьшить размер силового трансформатора и тем самым облегчить вес прибора, дает возможность сделать более плавными регулировки и уменьшить разбрызгивание при сварке. Минусом сварочного аппарата инверторного типа является существенно большая цена, чем у трансформаторного аналога.

Чтобы не переплачивать в магазинах большие суммы денег за сварку, можно изготовить сварочный инвертор своими руками. Для этого необходим рабочий компьютерный блок питания, несколько электроизмерительных приборов, инструменты, базовые знания и практические навыки в электротехнических работах. Так

htfi.ru

ПРОСТОЙ БЛОК ПИТАНИЯ ИЗ ATX

   С чего начинается Родина… То есть я хотел сказать с чего начинается любое радиоэлектронное устройство, будь то сигнализация или ламповый усилитель — конечно с источника питания. И чем значительнее ток потребления девайса, тем мощнее требуется трансформатор в его БП. Но если приборы изготавливаем часто, то никаких запасов трансформаторов нам не хватит. А если ходить покупать на радиобазаре то учтите, что в последнее время стоимость такого трансформатора превысила все разумные пределы — за средний стоваттник требуют около 10уе! 

   Но выход всё-же есть. Это обычный, стандартный блок питания ATX от любого, даже самого простого и древнего компьютера. Несмотря на дешевизну таких БП (бэушный можно найти по фирмам и за 5уе), они обеспечивают очень приличный ток и универсальные напряжения. По линии +12В — 10А, по линии -12В — 1А, по линии 5В — 12А и по линии 3,3В — 15А. Конечно указанные значения не точные, и могут несколько отличаться в зависимости от конкретной модели БП ATX.

   Вот как раз недавно я и делал одну интересную вещь — музыкальный центр из цифровой автомагнитолы и корпуса от небольшой колонки. Всё бы хорошо, да вот учитывая приличную мощность усилителя НЧ, ток потребления центра в пиках басов достигал 8А. И даже попытка установить на питание 100 ваттный трансформатор с 4-х амперными вторичками нормального результата не дал: мало того, что на басах напряжение проваливалось на 3-4 вольта (что было хорошо заметно по затуханию ламп подсветки передней панели магнитолы), так ещё и от фона 50Гц никак не удавалось избавиться. Хоть 20000 микрофарад ставь, хоть экранируй всё, что можно.

   А тут как раз на счастье, сгорел старый системник на работе. Но блок питания ATX ещё рабочий. Вот и приткнём его для магнитолы. Хотя по паспорту автомагнитолы и ихние усилители питаются напряжением 12В, но мы то знаем, что гораздо мощнее она будет звучать если подать на неё 15-17В. По крайней мере за всю мою историю ещё ни один ресивер не сгорел от лишних 5-ти вольт.

   Так как в имеющемся БП ATX напряжение 12-ти вольтовой шины было всего чуть больше 10В (может потому и не работал системник? Поздно.), будем поднимать его изменением управляющего напряжения на 2-м выводе TL494. Принципиальную схему компьютерного блока питания смотрите тут.

   Проще говоря поменяем резистор или вообще впаяем его на дорожки другого номинала. Ставлю два килоома и вот 10,5В превращаются в 17. Надо меньше? — Увеличиваем сопротивление. Стартуется компьютерный блок питания замыканием зелёного провода на любой чёрный.

   Так как места в корпусе будущего музыкального центра не много — вытаскиваем плату импульсного блока питания ATX из родного корпуса (коробочка пригодится для моего будущего проекта), и тем самым уменьшаем габариты БП в два раза. И не забываем перепаять конденсатор фильтра в БП на более высокое напряжение, а то мало ли что…

   А кулер? — Спросит внимательный и сообразительный радиолюбитель. Он нам не нужен. Эксперименты показали, что при токе 5А 17В в течении часа работы магнитолы на максимальной громкости (за соседей не беспокойтесь — два резистора 4 Ома 25 ватт), радиатор диодов был немного тёплый, а транзисторов — почти холодный. Так что нагрузку до 100 ватт такой БП ATX будет держать без проблем.

   Форум по блокам питания

   Обсудить статью ПРОСТОЙ БЛОК ПИТАНИЯ ИЗ ATX

radioskot.ru