Бп из атх – Регулируемый блок питания 2,5-24в из БП компьютера

БП ATX мощный лабораторный БП и зарядник АКБ. — ИСТОЧНИКИ ПИТАНИЯ — radio-bes

Конструкция выходного дня.

Неожиданно наступила зима и за окном похолодало. А тут ещё бензин какой-то не тот залил. В общем король немецкого автопрома встал, где-то под Москвой как и 67 лет назад его старшие «проотцы». Аккумулятор сел, дальше пешком…. Для зарядки аккумулятора дома нашлась только пара сгоревших блоков ATX. Сразу добавлю, что эта «зарядка» не предназначена для восстановления, десульфатации и протчих не перспективных шаманских методов, чем занимались наши отцы (и я в том числе) в прошлой жизни из-за крайней убогости быта.

Это просто блок, позволяющий надёжно и наименьшими затратами зарядить «севший», но исправный аккумулятор. Суть его проста и внятна. Он выдаёт на выходе зарядный ток около 5-6 Ампер, при любой активной нагрузке, вплоть до короткого замыкания. При этом напряжение на выходе ни при каких обстоятельствах не превысит заданного значения. Я установил 14,6 вольт.

Сначала надо бы добиться работоспособности блока

По порядку для «чайников» о восстановлении блоков, общие правила:

  1. Если предохранитель в порядке, переходим к пункту 4.
  2. Если предохранитель сгорел, то сначала проверяем отсутствие «короткого» на разъёме ~220.
  3. Если «короткое», устраняем, это могут быть силовые транзисторы, диоды, конденсаторы. Заодно советую проверить диоды во вторичной цепи.
  4. После устранения «короткого» выпаиваем предохранитель и вместо него запаиваем «кроватку», если её не установили при изготовлении.
  5. Вместо предохранителя вставляем в «кроватку» заранее подготовленный резистор изготовленный из сгоревшего предохранителя и лампочки на 220 Вольт мощностью 100-200 Ватт.
  6. Лучше, если у Вас найдётся разделительный трансформатор, но если нет, не очень страшно. Достаточно просто не совать пальцы в силовую половину блока. Включаем блок в 220. Замыкаем «зелёный» и «чёрный» провода на большом разъёме. При отсутствии нагрузки исправный АТХ закрутит лопастями пытаясь взлететь. Лампочка (предохранитель) гореть не должна. Если так, можно вместо лампочки вставить предохранитель и приступить к переделке блока, но лучше пока оставить лампочку.
  7. Если лампочка не загорелась но АТХ не «поднимается», проверяем наличие питания микросхемы TL-494 (или её аналога). Если в блоке применена другая микросхема, дальше можно не читать, или читать из любопытства. Итак, на 12 ноге микросхемы (относительно 7-ой) проверяем наличие дежурного питания от 5, до 25 вольт. Если питания нет, значит не работает источник дежурного питания, именуемый в разных источниках как +USB, «дежурка» и т.п. Если +USB нет, тут есть 3 пути, искать неисправность дежурки, запитать TL494 от любого другого БП (адаптера), или пойти в ближайшую мастерскую и купить (попросить) другой АТХ. Дело в том, что «дежурка» сравнительно тяжело поддаётся ремонту. Обычно после замены транзистора или Viper-a, или ещё чего-то вскоре неисправность повторяется. Проблема не столько в сложности поиска неисправности, сколько в самих неисправностях. Это может быть межвитковое в импульсном трансформаторе, не достаточно «быстрый» электролитический конденсатор во вторичной цепи, потеря индуктивности дросселя во вторичной цепи (из-за перегрева феррита), обрыв резистора стартового тока «дежурки» и многое другое, что довольно трудно установить имея под руками только тестер. Но тем, кто потерпеливее пожелаю удачи.
  8. Несколько слов про АТ блок. Дело в том, что АТ поднимаются без «дежурки». И вообще без всякой помощи. В этом смысле они более живучие и, позволю себе вольность, более совершенные. Благодаря некоторым хитростям в схемотехнике силового «полумоста» блок начинает «всхлипывать » совершенно самостоятельно, без всяких «дежурок» и микросхем. В этот момент с 12-и вольтовой обмотки через отдельный диод заряжается конденсатор питания TL-494 (зелёная стрелка на схеме). Обычно 1-2 «всхлипа» и АТ поднимается, продолжая по той же как и в АТХ цепи питать TL-494. В АТХ питание TL-494 после включения осуществляется от «дежурки» затем питание поднимается и как и в АТ производится от +12 вольт. В обоих случаях конденсатор питания заряжается до амплитудного значения напряжения приблизительно +24 вольта.

    Итак, АТХ поднялся.

    Тут не плохо проверить свой тестер подключив его + на 14 вывод TL-494. Микросхема TL494 имеет встроенный источник опорного напряжения на 5,0В, способный обеспечить вытекающий ток до 10мА для смещения внешних компонентов схемы. Опорное напряжение имеет погрешность 1% в диапазоне рабочих температур от 0 до 70°С.

  9. Теперь приступаем к вырезанию всего, что мешает нам наслаждаться пейзажем дырчатого гетинакса.
    Вырезаем лишние диодные сборки, дроссели конденсаторы фильтров, все транзисторы обвязки TL-494. Что бы не по-нарезать чего попало, придётся немного углубится в принцип работы АТ-АТХ. Для начала пройдёмся по ногам микросхемы.

Частота внутреннего генератора определяется по формуле:

где R и С это резистор и конденсатор на выводах 6 и 5 соответственно, то есть это не вырезать.

Вывод 14 это выход внутреннего источника опорного напряжения +5 вольт.

Выводы 1,2,15 и 16 это входы 2-х встроенных компараторов, которые пользователь может использовать по своему усмотрению, т.е. управлять шириной выходных импульсов ШИМ. Оба компаратора совершенно одинаковы с той лишь разницей, что компаратор с выводами 15-16 срабатывает с «задержкой» 80 мВольт. В попавших мне АТХ этот компаратор не использовался, 16 вывод заземлён, а 15 соединён на Uref, т.е. 14 вывод.

Вывод 13 предназначен для перевода TL-494 в режим управления обратноходовыми однотактными преобразователями. При этом «мёртвое время» может быть увеличено до 96%. В нашем, «двухтактном» случае этот вывод так же соединяется на Uref.

Компаратор на выводах 1-2 мы будем использовать для установки выходного напряжения, для этого на вывод 2 подаём часть Uref, что и сделано в большинстве АТ и АТХ. Обычно это напряжение примерно 2,5 вольт, т.е. с Uref (+5Вольт) через резистивный делитель.

RC цепочка с вывода 2 на вывод 3 (FB или ОС) предназначена для ограничения скорости ШИМ при стабилизации напряжения и имеется во всех схемах АТ-АТХ. Её тоже вырезать нельзя.

Рисую упрощённую схему управления выходным напряжением.

Напряжение на выходе БП будет равно Uвых=Uref1(1+Roc/Rm). Теперь Вы должны сами с калькулятором в руках решить из каких резисторов составить делитель. Я это сделал как показано на схеме. Проверьте обязательно, если эта формула у Вас не заработала, значит Вы не всё урезали. Важно учесть, что без перемотки трансформатора более 18-20 вольт на 12-и вольтовом выходе получить не получится. В принципе БП может дать до 24 вольт, но это при отсутствии нагрузки и полностью «открытой» ШИМ, то есть, когда «мёртвое» время не более 4% от периода. Без дросселя БП будет чувствовать себя не очень комфортно. Ему будет трудно удержать выходное напряжение. Его будет «плющить и колбасить» как автомобиль с заклинившим амортизатором. Наша задача получить ограничение на уровне 14,6-14,8 Вольта. Для «убитых» аккумуляторов надо напряжение до 16 (и более) вольт. Для фанатов восстановления можно накрутить и столько.

 

На сладкое немного о выводе 4.

Это тоже вход компаратора, но с задержкой 120 мВольт. И тут дело даже не в задержке, а в том, что конструктор микросхемы предусмотрел использовать его для регулировки «мёртвого времени». Обычно в схемах АТХ-АТ его используют как «мягкий пуск» и для целей всяких защит. Вот эти защиты Вам и предстоит вырезать.

Работает ОНО так. При включении БП конденсатор с выв.4 на Uref разряжен и на выводе 4 сразу появляется +5 вольт, что наглухо закрывает выходные ключи микросхемы. Затем конденсатор заряжается через резистор (выв4-земля) и на выводе 4 напряжение падает до нуля. Это приводит к медленному нарастанию выходного напряжения до момента когда оно стабилизируется ОС по напряжению. В нашем случае вывод 4 целесообразно попутно задействовать для ограничения выходного тока. По схеме видно, что при увеличении тока в нагрузку увеличивается падение напряжения на измерительных резисторах (4 резистора 0,22 ом), открывается транзистор 733 (такой

p-n-p у меня был из выпаянных), что приводит к подъёму напряжения на выводе 4 и так до режима стабилизации тока. На полной схеме цепь стабилизации тока обведена красным фломастером. Вот так простенько удалось добиться и стабильного тока зарядки и защиты от короткого замыкания на выходе.
 

Кстати, на выходе советую ни каких электролитических конденсаторов не ставить, тогда при «коротком» не будет ни каких брызг и взрывов, вызывающих неприятные ощущения.

 

О выходном дросселе.

Можно применить другой сердечник, например Ш-образный с зазором 0,3 мм. А можно оставить оригинальное кольцо, намотав на нём 20-30 витков тем, что мы размотали или тем, что будет под рукой, диаметром не менее 0,75мм. Я намотал 35 витков в два провода диаметром 0,75мм. Обмотка вложилась в два слоя. 

…спустя год…

Просматривая даташит на микросхему KA7500 (аналог TL-494) я обнаружил другое, более простое решение стабилизации тока БП. Авторы предлагают использовать второй компаратор (выв.15,16). С учётом того, что изначально этот компаратор смещён на 80 мВ, получается очень удобное решение. Мною оно повторено дважды. В приводимой схеме выходное напряжение 18 вольт, ток 5 ампер для питания схемы подогрева собачей будки. Для зарядки аккумуляторов естественно, можно использовать блок без перемотки, но всё-таки лучше перемотать. И провод желательно взять по толще, и виточков добавить. 

 

При расчёте количества витков вторичной обмотки желательно, что бы на ХХ напряжение на выходе моста было больше стабилизированного примерно в 2 раза. Это обеспечит оптимальный ШИМ и, соответственно, надёжную стабилизацию.

Странно, но оно работает. А вообще-то не должно. Не должно потому, что смещение 80 мВольт в каком-то даташите указано, а в каком-то нет. И вообще это смещение маловато для стабильной работы.
Поэтому я промакетировал подобную ОС на «спицах» и вот что получилось.

 

Для удобства макетирования я выбрал компаратор LM311. На 16-ую ногу (по TL-494) подал опорное напряжение 1 вольт. Вот теперь всё красиво. Компаратор срабатывает на 6,1 Ампера.
Красный луч-выход компаратора, а зелёный-ток через нагрузку (R3). Да и резистор 0,15 Ом сделать легче и греться будет меньше, чем 0,3.
Тогда схема чуток меняется.

Перемотка трансформаторов (перемотал 5 штук) ни разу не вызвала у меня проблемм. Просто нагреваю в шкафу до 150 — 200 градусов и в перчатках аккуратненько расшатываю.

radio-bes.do.am

Малогабаритный БП из сгоревшего компьютерного БП ATX

Прочитав название статьи, вы наверное решили, что речь пойдёт об очередной переделке БП ATX, заключающейся в добавлении стабилизатора к его выходу. А вот и нет. Здесь будет рассмотрен случай, когда блок питания не работает вообще, и глядя на пробитые диоды и спаленные транзисторы остаётся только выпаять высоковольтные конденсаторы и выкинуть его в мусор, или использовать хотя-бы корпус в других конструкциях.

Дело в том, что блок питания от компьютера содержит в себе не только основной мощный преобразователь 300 ватт с шинами +5 и +-12В, но и небольшой вспомогательный источник питания дежурного режима материнской платы. Причём этот небольшой импульсный блок питания абсолютно независимый от основного.

 Независимый настолько, что его можно смело выпилить из основной платы и подобрав подходящую коробку использовать для питания каких — нибудь электронных устройств. Доработка каснулась только обвязки микросхемы TL431, сначала собрал делитель, но затем поступил проще – обычный подстроечник. С ним предел регулировки от 3,6 до 5,5 вольта.


 Вот типовая схема компьютерного БП ATX, а ниже приведена схема участка вспомогательного преобразователя дежурного режима.

 

Естественно в каждом конкретном блоке питания ATX схема будет отличаться. Но принцип думаю понятен. Здесь качаем сборник схем блоков питания ATX.

Аккуратно выпиливаем нужный участок печатной платы с ферритовым трансформатором, транзистором и другими необходимыми деталями и подключив к сети 220В проводим испытания на работоспособность этого блока.

В данном случае на выходе выставил напряжение ровно 4 вольта, ток срабатывания защиты 500ма, так как используется данный ИБП для проверки мобильных телефонов.   Мощность получившегося ИБП не велика, но однозначно выше стандартных импульсных зарядок от мобильных телефонов. Для этой переделки БП подойдёт абсолютно любой компьютерный блок питания ATX. Материал предоставил: -igRoman-


acule.ru

ЛАБОРАТОРНЫЙ БП ИЗ КОМПЬЮТЕРНОГО ATX


   Предлагаемое устройство обеспечивает зарядку батареи током до 10 А, стабилизацию напряжения на ней по мере зарядки на уровне 13,9 В, содержит в основном детали от переделываемого блока питания, просто в изготовлении, в нём сохранены элементы защиты от перегрузки. Сопротивление датчика тока — 10 мОм, что соответствует максимальной рассеиваемой мощности 1 Вт. Устройство содержит индикатор режима ограничения тока. Под переделку годится любой блок питания AT ATX на основе микросхемы TL494. Схема переделки блока питания. Добавленные детали, а также изменённые номиналы выделены цветом.

   Введена возможность ограничения тока нагрузки путём включения второго усилителя сигнала ошибки микросхемы TL494, который, как правило, изготовителями блоков питания не используется. Такая схема включения применена, во-первых, из-за возможности соединения общего провода устройства с корпусом, во-вторых, практика показала более стабильную работу источника питания во всём интервале напряжения и тока, а в-третьих, усилитель имеет большую чувствительность, что позволяет применить датчик тока меньшего сопротивления и тем самым снизить падающую на нём мощность и, как следствие, его нагревание. Падение напряжения на датчике R24 прямо пропорционально протекающему через него току. Оно через резистор R26 подаётся на вход усилителя. На компараторе DA2, ранее использовавшемся для выработки сигнала «Power Good», сделан узел индикации режима ограничения тока нагрузки. На неинвертирующий вход компаратора подаётся напряжение, пропорциональное выходному, а на инвертирующий — образцовому. Пока блок работает в режиме стабилизации напряжения, напряжение на неинвертирующем входе больше, чем на инвертирующем, на выходе компаратора — высокий уровень, поэтому светодиод HL1 погашен. Когда блок питания выходит из режима стабилизации напряжения из-за ограничения тока нагрузки, напряжение на неинвертирующем входе уменьшается, на выходе компаратора устанавливается низкий уровень, в результате чего светодиод HL1 включается, сигнализируя о выходе из режима стабилизации.

   Микросхемы получают напряжение питания от дежурного источника на транзисторе VT7, чтобы изменения выходного напряжения не влияли на работу микросхем. Узлы формирования сигнала «Power Good» удалены. Не подлежит удалению узел защиты от превышения выходной мощности на элементах VD1, CI, VT3, VT4, VD7, R1-R5, так как этот узел предотвращает выход из строя транзисторов VT1 и VT2 и тем самым повышает надёжность блока питания.

   После этого необходимо удалить выпрямители, фильтры и другие элементы всех выходных цепей, кроме +12 В. Следует обратить внимание на диодную сборку, стоящую в этой цепи. Она должна быть предназначена для работы со средневыпрямленным током 10 А и обратным напряжением не менее 60 В. Это может быть MBR20100CT, BW32 и аналогичные, в крайнем случае можно использовать диоды КД213Б. прикрепив их к теплоотводу через изолирующие прокладки. Оксидный конденсатор С20 на выходе необходимо заменить более высоковольтным на напряжение 25 В.

   Дроссель L1 нужно перемотать для исключения насыщения его магнитопровода. С него удаляют все обмотки. Если на нём есть следы обгоревшей краски, его не надо использовать. Затем наматывают новую обмотку жгутом из проводов диаметром 0,6… 1 мм до заполнения, при этом индуктивность дросселя получится достаточной для правильной работы устройства и находится в пределах 20…70 мкГн. Мотать дроссель одним проводом большого диаметра или использовать жгут из более тонких проводов можно, но нецелесообразно. Для укладки более толстого провода потребуются значительные усилия, а при намотке жгутом из тонких проводов придётся зачищать от лака больше концов. Рассчитать число проводов в жгуте можно следующим образом. Допустимая плотность тока в обмотке дросселя — около 5 А/ммг. Для тока 10 А требуемая площадь сечения

   На кольцевом магнитопроводе дросселя умещается 20 витков такого жгута. Для исключения работы преобразователя в режиме прерывистого тока параллельно конденсатору С20 установлена минимальная нагрузка — резистор R36. Первое включение блока лучше произвести через лампу накаливания мощностью 100 Вт, включённую в разрыв сетевого провода. Это предотвратит взрыв конденсаторов, пробой моста сетевого выпрямителя, сгорание предохранителя, выход из строя коммутирующих транзисторов VT5 и VT6, а также другие неприятные последствия возможных ошибок и неисправностей. Если лампа ярко мерцает при включении, неисправен один или несколько диодов выпрямительного моста VD6. горит ярко — замыкание, пробой транзистора VT5 или VT6 (или обоих). Лампа вспыхнула и яркость упала до еле заметной — все в порядке, следует измерить напряжение на выходе блока питания и установить его равным 13,0в, перемещая вниз (по схеме) движок подстроенного резистора R8.

   Если первый запуск прошёл нормально, собирают узел ограничения тока и узел индикации. Для монтажа использованы печатные проводники и освободившиеся контактные площадки. Резистор R24 выполнен из манганинового провода, отрезанного от шунта неисправного мультиметра. Использование других материалов нежелательно, так как при нагревании сопротивление датчика тока изменится, в результате изменится порог ограничения тока.

   Для регулировки блока в режиме стабилизации тока используют вольтметр, амперметр на ток не менее 10 А и реостат. Включив блок питания и перемещая вверх по схеме движок лодстроечного резистора R34 до гашения светодиода HL1, измеряют напряжение на выходе и ток нагрузки. Уменьшают сопротивление нагрузки до перехода блока в режим ограничения тока (по показаниям приборов ток прекратит увеличиваться, а напряжение станет уменьшаться, начнёт излучать светодиод HL1). Порог ограничения тока можно корректировать подборкой резистора R26- Далее, увеличивая сопротивление нагрузки, добиваются включения режима стабилизации напряжения и снова перемещают движок резистора R34 до гашения светодиода HL1. Изменяя сопротивление нагрузки, несколько раз проходят точку переключения режимов и проверяют работу индикации, при необходимости корректируя момент включения светодиода подстроечным резистором R34. Изменяя нагрузку от короткого замыкания до холостого хода, следует убедиться в отсутствии паразитного самовозбуждения блока, а также в отсутствии прерывистого режима. Это можно определить с помощью осциллографа, контролируя форму сигнала на выводах 8 или 11 микросхемы DA1. Импульсы должны быть чёткими, без перепадов, их длительность должна изменяться в зависимости от отдаваемой в нагрузку мощности. Хотя вероятность самовозбуждения мала, оно все-таки возможно. Если самовозбуждение возникает в режиме ограничения тока, следует подобрать конденсатор С12, если в режиме стабилизации напряжения — элементы корректирующей цепи R18C9 Самовозбуждение может возникнуть также из-за скрытых дефектов магнитопровода дросселя L1 или при недостаточном числе его витков. В этом случае блок начинает «верещать» вблизи точки переключения режимов стабилизации.

   При желании увеличить ток зарядки до 20 А рекомендуется использовать пятивольтную обмотку трансформатора, так как она рассчитана на больший ток. В этом случае нужно выпрямитель со средней точкой заменить мостовым и использовать выпрямительные диоды с барьером Шоттки. Обратное напряжение на диодах не превысит 30 В, поэтому возможно использование, например, таких сборок, как MBR3045PT или 30CPQ045. Соответственно требованиям, необходимо намотать сглаживающий дроссель, а сопротивление датчика тока уменьшить до 0,05 Ом, взяв более толстый провод.

   На основе зарядного устройства несложно изготовить лабораторный источник питания с регулировкой выходного напряжения от 0 до 30 В и порогом ограничения тока от 0,1 до 10 А. Резисторы R8—R10 удаляют, резистор R17 включают, как показано на рисунке. Нумерация добавленных элементов продолжена Для получения выходного напряжения 30 В в качестве выпрямителя используется мост из диодных сборок, подключённых к 12-вольтной обмотке трансформатора Т2. Диодные сборки можно использовать MBRB20100CT или аналогичные.

   Поскольку в интервале напряжения от 0 до 30 В подключение электродвигателя вентилятора к выходу устройства вызывает определённые трудности, он питается от дежурного источника через ограничительный резистор R40. Емкость сглаживающего конденсатора С21 увеличена до 100 мкФ. Сопротивление резистора R36 — до 220 Ом. Оксидный конденсатор С20 применён на номинальное напряжение 63 В. Для регулирования напряжения добавлен переменный резистор R39. порога ограничения тока — R38. Движок переменного резистора R39 соединён с выводом 2 микросхемы DA1. Чем больше напряжение на этом выводе, тем выше выходное напряжение. Порог ограничения выходного тока устанавливают движком переменного резистора R38. Переменные резисторы R38 и R39 — любые с номинальным сопротивлением от 3,3 до 47 кОм. Перед их установкой необходимо проверить исправность подвижной контактной системы. Также важно не допустить превышения максимального допустимого тока, потребляемого от источника образцового напряжения микросхемы DA1 — 10 мА. Узел индикации оставлен без изменений. При налаживании необходимо подобрать резистор R31 для установки максимального выходного напряжения и резистор R26 для установки максимального порога ограничения тока. Обязательно проверить отсутствие паразитного самовозбуждения источника питания и. если оно возникнет, принять меры по его устранению, как описано выше для зарядного устройства.


Поделитесь полезными схемами

ШТЕКЕРНЫЕ НАКОНЕЧНИКИ
   Обзор полезного приспособления для проведения электромонтажных и ремонтных работ — штекерные наконечники для кабелей.

ВЫСОКОВОЛЬТНОЕ ОХРАННОЕ УСТРОЙСТВО

   Охранное устройство с высоким напряжением — электрический ежик. Сегодня мы продолжим беседы про конструкции которые нужны для оxраны нашего жилища. Устройство, которое мы сейчас будем рассматривать предназначено для оxраны квартиры , офиса, дачи и автомобиля. Называется устройство — высоковольтный электрический ежик!


ИНДУКЦИОННЫЙ СВЕТИЛЬНИК
    Для индукционной передачи тока, нам нужен сам передатчик и приемник. В качестве передатчика использована простейшая схема, которая состоит из контура и зарядного устройства для мобильного телефона.

ЗУ ДЛЯ АВТО

   В отличие от другого зарядного устройства, данное усовершенствованное зарядное устройство обеспечивает автоматическое поддержание аккумуляторной батареи в рабочем состоянии не давая ей разряжаться ниже установленного уровня. Описанный цикл работы устройства позволяет использовать eгo для автоматической тренировки аккумуляторных батарей циклами «заряд — разряд» при подключении к нему параллельно аккумуляторной батарее разрядного резистора.


РЕГУЛЯТОР ЯРКОСТИ ЛАМП

   Принципиальная схема и подробное описание регулятора яркости ламп накаливания на 220 вольт.


samodelnie.ru

Лабораторный БП из копьютерного БП формата АТХ. — Блоки питания (лабораторные) — Источники питания

Привет всем!!! Решил описать вкратце переделку БП от компьютера формата АТХ. Может кому-то будет интересно.
За основу был взят БП CODEGEN — 300X (типа 300Вт, ну Вы поняли китайских 300). Мозгом БП служит ШИМ-контроллер КА7500 (TL494…). Только такие мне приходилось переделывать. Управлять ШИМкой будет PIC16F876A, он же и для контроля и установки выходного напряжения и тока, отображение информации на LCD Wh2602(…), регулировка осуществляется кнопками.
Программу помог сделать один хороший человек (IURY, сайт «Кот», который радио), за что ему большое спасибо!!! В архиве схема, плата, программа для контроллера.

Берем рабочий БП (если не рабочий, то надо восстановить до рабочего состояния).
Ориентировочно определяемся, где у нас что будет располагаться. Выбираем место под LCD, кнопки, клеммы (гнезда), индикатор включения…
Определились. Делаем разметку для «окна» ЛСД. Вырезаем (я резал маленькой болгаркой 115мм), может кто-то дремелем, кто-то рассверливанием отверстий, а потом подгонка напильником. В общем кому как удобнее и доступнее. Должно получиться что-то похоже на это. 
 

 Продумываем как будем крепить дисплей. Можно сделать несколькими способами:
а) соединить с платой управления разъёмами;
б) сделать через фальшпанель;
в) или…
Или… припаять непосредственно 4 (3) винтика М2,5 к корпусу. Почему М2,5, а н М3,0? В ЛСД отверстия 2,5мм в диаметре для крепления.
Я припаял 3 винтика, потому что при пайке четвертого, отпаивается перемычка (на фото видно). Потом припаиваешь перемычку — отпадает винтик. Просто сильно близкое расстояние. Не стал заморачиваться — оставил 3 шт.
 


Пайка выполнена ортофосфорной кислотой. После пайки всё необходимо хорошо промыть водой с мылом.
Примеряем дисплей.

 

 

Схема    

                                                                

Изучаем схему, а именно все относительно TL494 (KA7500). Все что касается ног 1, 2, 3, 4, 13, 14, 15, 16. Всю обвязку возле этих выводов удаляем (на основной плате БП), и устанавливаем детали, согласно схемы.
 

Удаляем на основной плате БП всё лишнее. Все детали касательно +5, -5, -12, PG, PS — ON.
Оставляем только всё, что касается +12 V и дежурного питания +5V SB .
Желательно найти схему по своему БП, чтобы не удалить чего лишнего. В цепи питания +12 вольт — удаляем родные электролиты и ставим вместо них, аналогичный по ёмкости, но на рабочее напряжение 35-50 вольт.
Должно получиться что-то похоже на это.

 

Посмотрев на характеристики имеющегося блока питания (наклейка на корпусе) — по 12В выходной ток должен быть 13А. Ого неплохо вроде!!! Смотрим на плату, что у нас образовывает 12В, 13А??? Ха два диода FR302 (по даташиту 3А!). Ну пусть максимальный ток 6А. Нет, такое нас не устраивает, надо заменить на что-нибудь по мощнее, да еще и с запасом, поэтому ставим 40CPQ100 — 40А, Uобр=100В.
 

На радиаторе были какие-то изолирующие прокладки, прорезиненная ткань (что-то похожее). Отодрал, отмыл. Поставил нашу отечественную слюду.
Винты, поставил подлиннее. Под один сзади зажал еще слюду. Блок решил дополнить индикатором перегрева теплоотвода на МП42. Германиевый транзистор здесь используется в качестве датчика температуры
 


Схема индикатора перегрева теплоотвода собрана на четырёх транзисторах. В качестве транзистора стабилизатора применён КТ815, КТ817, а в качестве индикатора — двухцветный светодиод.
 


Печатную плату не рисовал. Думаю, что особой сложности при сборке этого узла возникнуть не должно. Как узел собран, видно на фото ниже.
 


Делаем плату управления. ВНИМАНИЕ! Перед подключением своего LCD изучите даташит на него!! Особенно выводы 1 и 2!
 

 

Соединяем все согласно схеме. Устанавливаем плату в БП. Также надо изолировать основную плату от корпуса. Сделал я всё это через пластиковые шайбочки.
 

Наладка схемы.
 

1.Все наладки блока питания проводить только через лампу накаливания 60 — 150 Вт, включенную в разрыв сетевого кабеля, а ещё лучше и через разделительный трансформатор.
2.Корпус БП изолировать от GND, а цепь, которая образовывалась через корпус, соединить проводками.
3.Iizm (U15) — выставляется выходной ток (правильность показаний индикатора) по образцовому А — метру.
Uizm (U14) — выставляется выходное напряжение (правильность показаний индикатора), по образцовому В — метру.
Uset_max (U16) — выставляется МАХ выходное напряжение
 

Максимальный выходной ток данного блока питания составляет 5 ампер (вернее 4,96А), ограничен прошивкой.
Максимальное выходное напряжение для данного блока питания, не желательно выставлять более 20-22 вольт, так как в этом случае увеличивается вероятность пробоя силовых транзисторов из-за нехватки предела ШИМ-регулирования микросхемой TL494 
.
Для увеличения выходного напряжения более 22 вольт, необходима перемотка вторичной обмотки трансформатора.

 

 

Пробный запуск прошёл успешно. Слева двухцветный индикатор перегрева теплоотвода (холодный радиатор — цвет LED зеленый, теплый — оранжевый, горячий — красный). Справа — индикатор включения БП.

 

 

Установил выключатель. Основа — стеклотекстолит, обклеен самоклейкой «оракл».

Финал. То, что получилось в домашних условиях.

 

 


А теперь пробуем работу всех узлов собранного блока, так сказать в условиях приближенных к реальным, то есть нагружаем и испытываем собранный блок питания.
БП под нагрузкой, в качестве нагрузки используются лампы «галогенки» на 12В, 35 и 50Вт.

 

 

АРХИВ:Скачать

cxema.my1.ru

Лабораторный Блок питания из pc at/atx

Мощный лабораторный БП из БП ATX

С регулировкой напряжения 0–20V и тока 0–10А на микросхеме TL494 (DBL494).


Выпаиваем всю выпрямительную часть и всё, что соединено с ножками 1, 2 и 3 микросхемы TL494.
Отсоединяем от схемы ножки 15 и 16 – это второй усилитель ошибки, который мы используем для канала стабилизации тока.

Также нужно выпаять диод, соединяющий выходную обмотку силового трансформатора с + питания TL494 – она будет питаться только от маленького «дежурного» преобразователя (у него есть не только 5V выход, но и 12V), чтобы не зависеть от выходного напряжения БП.

Пунктиром очерчены детали, которые уже есть в БП. Выпрямительные диоды нужно соединить с 12-вольтовыми отводами вторичной обмотки силового трансформатора. Лучше поставить более мощные, например сборку 30CPQ150 (30А 150В) – тогда можно максимальный выходной ток увеличить до 20А.

Дроссель L1 делаем из кольца, оставив на нём только 5-тивольтовую обмотку, дроссель L2 из цепи 5V.

Приводим схему выходной части в соответствие с такой схемой ниже:

Вентилятор запитываем от питания TL494 (12 нога) – так, чтобы он дул внутрь корпуса.

На микросхеме ОУ LM358 (LM2904, или любой другой сдвоенный низковольтный операционник, который может работать в однополярном включении и при входных напряжениях от 0 В) собран измерительный усилитель выходного напряжения и тока, который будет давать измерительные сигналы на TL494. Резисторы R9 и R8 задают опорные напряжения.

 

Переменный резистор R9 регулирует выходное напряжение, R8 – выходной ток.

Токоизмерительный резистор R7 на 0.05ом должен быть мощностью 5 ватт (10А^2*0.05ом).

Питание для ОУ берём с выхода «дежурных» 5В БП ATX (обычно обозначены на плате как +5VSB или 5V STANDBY, фиолетовый провод). Нагрузка подключается к +OUT и -OUT.

В качестве вольтметра и амперметра можно использовать либо стрелочные приборы, либо пару цифровых вольтметров, которые нужно подключить к выходам LM358 (7 нога – напряжение, 1 нога – ток, напряжение – 0…5 В) и оттарировать тестером. Питать цифровые вольтметры можно с «дежурных» 5V – там 2А.


Если регулировка не нужна, то R8 просто ставим на максимум. Стабилизироваться БП будет так: если, например, установлено 12В 1А, то если ток нагрузки меньше 1А – стабилизируется напряжение, если больше – то ток.

Измерительный резистор R7 – это два 5-тиваттных резистора (белые) по 0.1ом соединённые параллельно.


Дополнение:

Нагрузочный резистор 470ом 1 Вт ставим параллельно C5. Он нужен чтобы БП без нагрузки не оставался. Ток через него не учитывается, он до измерительного резистора R7 включён. Без него, тоже работать будет, но тогда если установить более низкое напряжение при отключенной от выхода нагрузке – долго ждать, пока C4 и C5 разрядятся до нужного напряжения.

Вариант переделки PC БП типа ATX, в регулируемый блок с напряжением 3 – 25V и ток 5А.
Первое — удаляем резистор с первой ноги микросхемы к +5V и ставим резистор от первой ноги к 12V на 1Ком.

Ставятся 2 переменных резистора для грубой и точной регулировки. Затем необходимо выпаять дроссель групповой стабилизации, а в образовавшийся разрыв цепи 12V впаять перемычку.

 

Также необходимо заменить фильтрующие конденсаторы в выходных цепях, на конденсаторы с более высоким напряжением. Т.к напряжение на выходе теперь изменяющееся то кулер нужно питать от 220V (есть такие) либо запитать его от “дежурки”.

Импульсный блок питания на базе БП ПК Выходное стабилизированное напряжение, 5…15V Напряжение пульсаций при токе 5А, не более 25мВ, Выходной стабилизированный ток, 1…10А

Схема устройства изображена на рис.1, где:

— А1 — импульсный блок питания компьютера;

— А2 — устройство индикации с узлом стабилизации тока нагрузки.

В блок питания компьютера необходимо внести некоторые изменения (рис. 2).

Блок питания оснащен цифровой шкалой для индикации выходного напряжения и тока нагрузки, имеет регуляторы выходного напряжения для грубой и точной установки, регулятор ограничения выходного тока, индикатор максимального тока, предохранитель для защиты выходных цепей в случае неправильной полярности включения заряжаемого аккумулятора.

Узел управления выполнен на специализированной микросхеме TL494 или аналогах МВ3759, КА7500, КР1114ЕУ4. На вывод 1 этой микросхемы подан сигнал обратной связи с выходных выпрямителей напряжений +5 и +12V, а на вывод 2 — образцовое напряжение от внутреннего стабилизатора с вывода 14. Обратную связь от источника напряжения +5V следует отключить, удалив резистор R1 (нумерация элементов условная), а R4 и R8 заменить резисторами указанных номиналов.

Вместе с переменным резистором R1 (см. рис. 1) они образуют делитель напряжения обратной связи, благодаря чему становится возможной регулировка (грубая) выходного напряжения блока. Его точное значение устанавливают переменным резистором R2 (рис. 1), подключенным к выводу 2 ШИ-контроллера.

Блок питания оснащен встроенным вентилятором, питающимся от источника напряжения 12 В. Так как выходное напряжение будет меняться в широких; пределах, вентилятор необходимо подключить через гасящий резистор R7 к выпрямителю, питающему ШИ-контроллер не меняющимся напряжением  около 24V. К выходу +12V нужно добавить резистор R6, который обеспечит устойчивую работу блока питания в отсутствие нагрузки при низком выходном напряжении. Желательно также поменять местами выпрямительные диоды источников +5 и +12V, потому что в первом из них применены более мощные диоды.

 

Стабилизатор выходного тока собран на ОУ DA1 (рис. 3).

На неинвертирующий вход подано напряжение с резистора R3, включенного в минусовый провод выходной цепи блока питания. На инвертирующий вход DA1 поступает образцовое напряжение с переменного резистора R4 (см. рис. 1), которым задают уровень стабилизации тока.

Резистор R5 и конденсатор С1 в цепи ООС, охватывающей ОУ, обеспечивают устойчивость работы этого узла. Через диод VD1 напряжение обратной связи поступает на вывод 3 ШИ — контроллера (см. рис. 2).

Светодиод HL1 — индикатор максимального тока, он светится при токе нагрузки, близком или равном заданному значению.

Измеритель напряжения и тока выполнен на АЦП DA2 по типовой схеме.

Режим работы выбирают переключателем SB1. Контактная группа SB1.1 коммутирует измеряемое напряжение, SB 1.2 — запятые цифровой шкалы. В положении переключателя «U» на вход АЦП поступает выходное напряжение блока питания через предохранитель FU1 и резистивный делитель R8—R10, благодаря чему при перегорании предохранителя индикатор показывает 0В.

В режиме контроля тока (в положении «I«) АЦП измеряет падение напряжения на — резисторе R3. Напряжение питания +5V стабилизировано стабилизатором DA1 (см. рис. 1), напряжение —5V — параметрическим стабилизатором VD3;R6, подключенным через диод VD2 к выпрямителю отрицательного напряжения импульсного блока (см. рис. 2).

Детали устройства индикации с узлом стабилизации тока нагрузки вместе с переменными резисторами R1, R2, R4 и гнездами розетки XS1 (см. рис. 1) смонтированы на печатной плате (рис, 4), закрепленной на передней стенке блока. За платой установлен стабилизатор напряжения DA1 (рис. 1).

Детали: СПЗ-9а, СПЗ-38. С2, СЗ — К50-35, С9,С11 — К73-17, остальные — КМ. Диод VD1 — любой германиевый, ОУ DA1 — КР140УД608 с любым буквенным индексом, КР140УД708, Индикаторы HG1—HG4 — АЛС324Б, АЛСЗЗЗБ, АЛС321Б, переключатель SA1 — кнопочный малогабаритный для печатного монтажа, предохранитель FU1 — плоский автомобильный на ток 10 А.

Резистор R3 выполнен из трех отрезков константанового провода диаметром 1 и длиной примерно 50 мм, согнутых в виде П-образных скоб и припаянных к соответствующим печатным проводникам платы. Отклонение сопротивления этого резистора от указанного значения (0,01 Ом) не должно быть ±20 %.

Налаживание начинают с проверки пределов выходного напряжения (SB1 — в положении «U«) по образцовому вольтметру. Стабилизатор тока на это время отключают, отпаяв провод, идущий от вывода 3 печатной платы к выводу 3 ШИ-контроллера. Если необходимо, пределы корректируют подбором резисторов R4 и R8 (см. рис. 2). Затем подсоединяют нагрузку с током потребления 5… 10А, переводят переключатель в положение «I» и по образцовому амперметру подстроечным резистором R12 устанавливают необходимое показание. Далее, переключив индикатор на измерение напряжения, корректируют его показания по образцовому вольтметру подстроенным резистором R9. После этого восстанавливают цепь обратной связи стабилизатора тока, переключают индикатор на измерение тока и, изменяя сопротивление нагрузки, убеждаются в работоспособности стабилизатора. При необходимости границы регулирования тока устанавливают подбором резисторов R1 и R4 (см. рис. 3).

При зарядке аккумуляторов стабильным током сначала следует установить регуляторами R1 и R2 напряжение окончания зарядки, а затем, подключив батарею, переменным резистором R4 — ток.

Во время зарядки должен светиться светодиод HL1. По ее окончании, когда напряжение на батарее возрастет до заданного значения, ток уменьшится, светодиод погаснет, и блок питания перейдет в режим стабилизации напряжения, в котором он может находиться длительное время. Таким образом, нет необходимости контролировать процесс зарядки.

Переделка компьютерного БП в зарядное устройство

Запуск рекомендуется проводить через лампу 220В-60Вт вместо сетевого предохранителя, это исключит порчу транзисторов БП если есть в схеме ошибка. После запуска, лампа должна кратковременно вспыхнуть и погаснуть.

Далее, проверяем выходное напряжение на БП, вращая потенциометр, смотрим за показаниями тестера. Показания должны плавно манятся без скачков. Обратите внимание на резистор 10кОм …. Получалось так, что если ставим 10кОм, то регулировка напряжения начинается с 10-и до 17в, если 5кОм, то с 5В-до 16В. это опорный резистор, который будет задавать начальное напряжение.


Схема демонтажа элементов.


Из БП выпаиваем… схему запуска, цепи питания 3v, 5v, -12v, -5v и схему стабилизации этих напряжений. (на схеме эти элементы обозначены красным)

Убедившись, что все отмеченное выпаяно, приступаем к монтажу по этой схеме:

Лабораторный блок питания из ATX БП

http://bsvi.ru/

Конструкция

Мощность блока питания – 250Вт.

Подымем напряжение до 25V, может пригодиться для зарядки аккумуляторов – там нужно напряжение порядка 15V.

Для дальнейших действий находим схему на исходный блок.

 

Что искать – написано на плате.

 

 

Проверяем максимальное напряжение, которое может выдать блок питания по шинам +12 и +5 вольт.

Для этого удаляем перемычку обратной связи.

Резисторы R49-R51 подтянут плюсовой вход компаратора к земле. И  у нас на выходе будет максимальное напряжение.

Даташит на МС — http://bsvi.ru/uploads/ATX_68B9/tl494.pdf

 

Пробуем включить блок питания. Для этого нужно соединить вывод PS_ON с землей. PS_ON обычно подписан на плате, и он нам еще понадобится, поэтому не будем его вырезать.

А вот схему на Q10, Q9 и Q8 отключим – она использует выходные напряжения и, после их вырезания не даст БП запуститься.

Мягкий старт будет работать на резисторах R59, R60 и конденсаторе C28.

Внимание!

Выходные напряжения – больше тех, на которые рассчитаны выходные конденсаторы, и, поэтому, конденсаторы могут взорваться. Аккуратно!

Появились выходные максимальные напряжения.

подучилось по +12V – 24V, а по +5V – 9.6V. запас по напряжению ровно в 2 раза.

Ограничим выходное напряжение БП на уровне 20V, а выходной ток – на уровне 10А.

 

Управляющая электроника – http://bsvi.ru/uploads/ATX_68B9/AtxPowerElectronics_3.pdf

В качестве основного источника питания для электроники выбран standby источник.

Фальш-панель: –  Схема  –  http://bsvi.ru/uploads/ATX_68B9/AtxPower.pdf

На ней индикаторы, потенциометры, светодиод, сдвиговые регистры 74AC164 – по 25мА на каждую ножку.

Ток индикаторов я выбран 20мА.

U1A – диф. усилитель тока. При максимальном тока, на выходе получается 2.56v, что совпадает с опорным у АЦП контроллера.

U1B – собственно токовый компаратор – если ток превышает порог, заданный резисторами, tl494 “затыкается”

U2A – индикатор того, что БП работает в режиме ограничения тока.

U2B – компаратор напряжения.

U3A, U3B – повторители с переменников.

Контроллер – это Атмега8, IAR.rar – прошивка – исходник + hex — http://bsvi.ru/uploads/ATX_68B9/IAR.rar

Контроллер работает на 8МГц от RC генератора

Переделка выходной части

Выпаиваем все лишнее:

Синфазный дроссель переделан – соединены последовательно обмотки, для 12В и две обмотки для 5в,

в итоге получилось около 100мкГн. Еще заменен конденсатор тремя включенными параллельно 1000мкФ/25В.

Настройка.

Кстати, насчет Y – конденсаторов, после установки Y – конденсаторов сразу перестал глючить измеритель тока!

Еще поставил X2 – конденсатор, чтобы хоть как-то поменьше шума в сети было.

 
Охлаждение

Откуда брать питание для вентилятора? tl494 питается от источника напряжением 25В.

Берем его (с перемычки J3 на схеме) и понижаем стабилизатором 7812.

   Зарядное устройство из БП ATATX.

Сначала надо проверить работоспособность блока

1.   Вместо предохранителя вставляем в «кроватку» заранее подготовленный резистор, изготовленный из сгоревшего предохранителя и лампочки на 220v мощностью 100W.

И включаем блок в сеть 220v. При отсутствии нагрузки исправный АТХ закрутит лопастями вентилятора. Лампочка (предохранитель) должна кратковременно вспыхнуть и погаснуть.

Если так, то вместо лампочки можно вставить предохранитель, но лучше лампочку оставить до окончания экспериментов по переделке блока.

2.   Если лампочка не загорелась, но АТХ не «заводиться», проверяем наличие питания микросхемы TL-494 на 12 ноге микросхемы (относительно 7-ой) проверяем наличие дежурного питания от 5, до 25 вольт.

Если питания нет, значит, не работает источник дежурного питания, именуемый в разных источниках как +USB, «дежурка» и т.п. Если +USB нет, тут есть 2 пути, искать неисправность дежурки, или запитать TL494 от любого другого БП (адаптера).

Несколько слов про АТ блок. Дело в том, что АТ запускается без «дежурки». Благодаря некоторым хитростям в схемотехнике силового «полумоста» блок начинает «всхлипывать » совершенно самостоятельно, без всяких «дежурок» и микросхем. В этот момент с 12-и вольтовой обмотки через отдельный диод заряжается конденсатор питания TL-494 (зелёная стрелка на схеме).

В АТХ питание TL-494 после включения осуществляется от «дежурки» затем питание поднимается и как и в АТ производится от +12 вольт. В обоих случаях конденсатор питания заряжается до амплитудного значения напряжения приблизительно +24 вольта.

АТХ запустился.

Теперь можно проверить свой тестер подключив его + на 14 вывод TL-494. Микросхема TL494 имеет встроенный источник опорного напряжения на 5,0V, способный обеспечить вытекающий ток до 10мА для смещения внешних компонентов схемы. Опорное напряжение имеет погрешность 5%.

Удаляем лишнее: диодные сборки, дроссели конденсаторы фильтров, все транзисторы обвязки TL-494.

По микросхеме:

— Частота внутреннего генератора определяется по формуле: Fosc=1,1/R*C, где R и С это резистор и конденсатор на выводах 6 и 5, то есть это не вырезать.

—  Вывод 14 это выход внутреннего источника опорного напряжения +5 вольт.

—  Выводы 1,2,15 и 16 это входы 2-х встроенных компараторов, которые пользователь может использовать по своему назначению, т.е. управлять шириной выходных импульсов ШИМ. Оба компаратора совершенно одинаковы с той лишь разницей, что компаратор с выводами 15-16 срабатывает с «задержкой» 80 мВольт.

Часто в АТХ этот компаратор не используется, 16 вывод заземлён, а 15 соединён на Uref, т.е. 14 вывод.

-Вывод 13 предназначен для перевода TL-494 в режим управления обратноходовыми однотактными преобразователями. При этом «мёртвое время» может быть увеличено до 96% . В нашем случае этот вывод так же соединяется на Uref.

— Компаратор на выводах 1-2 мы будем использовать для установки выходного напряжения, для этого на вывод 2 подаём часть Uref, что и сделано в большинстве АТ и АТХ. Обычно это напряжение примерно 2,5 вольт, т.е. с Uref (+5Вольт) через резистивный делитель.

— RC цепочка с вывода 2 на вывод 3 (FB или ОС) предназначена для ограничения скорости ШИМ при стабилизации напряжения и имеется во всех схемах АТ-АТХ. Её тоже вырезать нельзя.

Упрощённая схема управления выходным напряжением.

Напряжение на выходе будет равно Uвых=Uref1(1+Roc/Rm). Теперь Вы должны с калькулятором в руках, решить из каких резисторов составить делитель, как это показано на схеме.

Проверьте обязательно, если эта формула у Вас не заработала, значит, Вы не всё урезали.

Учтите, что без перемотки трансформатора более 18-20 вольт на выходе получить не получится.

В принципе БП может дать до 24 вольт, но надо, же оставить что-нибудь для выходного дросселя.

Без дросселя БП будет чувствовать себя не комфортно. Ему будет трудно удержать выходное напряжение. Наша задача получить ограничение на уровне 14,6-14,8 Вольта.

Вывод 4 это тоже вход компаратора, но с задержкой 120мВольт. Обычно в схемах АТХ-АТ его используют как «мягкий пуск» и для всяких защит. Вот это вырезаем.

Принцып работы:

При включении БП конденсатор с выв.4 на Uref разряжен и на выводе 4 сразу появляется +5 вольт, что наглухо закрывает выходные ключи микросхемы. Затем конденсатор заряжается через резистор (выв4-земля) и на выводе 4 напряжение падает до нуля. Это приводит к медленному нарастанию выходного напряжения до момента, когда оно стабилизируется ОС по напряжению.

В нашем случае вывод 4 целесообразно попутно задействовать для ограничения выходного тока. По схеме видно, что при увеличении тока в нагрузку увеличивается падение напряжения на измерительных резисторах (4 резистора 0,22 ом), открывается транзистор 733 ( pnp), что приводит к подъёму напряжения на выводе 4 и так до режима стабилизации тока. На полной схеме цепь стабилизации тока обведена красным фломастером. 

О выходном дросселе.

Теперь, когда кроме +12 у нашего блока ни чего не осталось, дроссель на кольце естественно стал подмагничиваться постоянной составляющей выходного тока, и кольцо запело и стало сильно нагреваться. Выходов 2.

1.   Размотать дроссель. Расколоть кольцо и склеить с зазором 0,3-0,5 мм.

2.   Применить другой сердечник, например Ш-образный с зазором 0,3 мм, тем более, что купить такой не проблема, µ ? 2000.

3.   Намотать дроссель 15-20 витков тем, что будет под рукой, но диаметр не менее 0,5мм.

Переделка компьютерного БП мощностью 200Вт.

ПЕРВООЧЕРЕДНЫЕ МОДИФИКАЦИИ

Убедитесь, что БП работает. Включение модифицируемого блока рекомендуется проводить через лампу 220V-60W(100W), которую можно подключить вместо сетевого предохранителя или в разрыв питающего шнура, это исключит порчу силовых транзисторов БП, если в схеме окажется ошибка. После запуска, лампа должна кратковременно вспыхнуть и погаснуть.

1. Выпаиваем все провода, идущие к шинам +12, -12, +5 и -5V.

2. На плате с МС DBL494 ( 7500), переключить защиту с шины +5V на +12V и установить нужное напряжение (13 — 14В).

От 1-ой ноги микросхемы DBL494 отходит два резистора (иногда больше), один идёт на корпус, другой к шине +5V, аккуратно отпаиваем одну из его ножек (разрываем соединение) и, между шиной +12V и первой ножной микросхемы DBL494 припаиваем резистор 18 — 33ком. Можно поставить подстроечный, установить напряжение +14V и потом заменить  его  постоянным.

НАСТРОЙКА И РЕГУЛИРОВКА

1. Включаем БП, чтобы проверить, всё ли мы сделали правильно. Вентилятор можно не подключать и саму плату в корпус не вставлять. Включаем БП, без нагрузки, к шине +12V подключаем вольтметр и смотрим какое там напряжение. Подстроечным резистором, который стоит между первой ногой микросхемы DBL494 и шиной +12V, устанавливаем напряжение от 13.9 до +14.0В.

2. Проверьте напряжение между первой и седьмой ногами микросхемы DBL494, оно должно быть не меньше 2V и не больше 3V. Если это не так, подберите сопротивление резистора между первой ногой и корпусом и первой ногой и шиной +12V. Обратите особое внимание на этот момент. При напряжении выше или ниже указанного, блок питания будет работать хуже, нестабильно, держать меньшую нагрузку.

3. Закоротите шину +12V на корпус, напряжение должно пропасть, чтобы оно восстановилось — выключите БП на пару минут (чтобы разрядились ёмкости ) и включите снова. Напряжение появилось?


Хорошо! Защита работает. Что, не сработала?! Тогда этот БП нам не подходит.

Итак, первый этап можно считать завершённым. Вставьте плату в корпус, выведите клеммы для подключения. Блоком питания можно пользоваться! Но давать нагрузку более 12А пока нельзя! Что будет, если вы нагрузите БП большим током? Ничего страшного, обычно срабатывает защита и пропадает выходное напряжение. Если защита не сработает, перегреются и лопаются высоковольтные транзисторы!

ПРОДОЛЖАЕМ….

Переворачиваем вентилятор наоборот, дуть он должен внутрь корпуса, чтобы поток воздуха был направлен и на диодные сборки и на ферритовое кольцо. Если вентилятор сильно шумит, поставьте последовательно с ним резистор 60 — 150ом 2Вт.  От шины 12V выводим две клеммы из БП для подключения нагрузки.

Между клеммами поставьте неполярный конденсатор на 1мкф и светодиод с резистором.

В некоторых БП, параллельно клеммам, поставьте резистор сопротивлением 300 — 560ом. Это нагрузка, для того чтобы не срабатывала защита. Выходная цепь должна выглядеть примерно так, как показано на схеме.

Умощняем шину +12V и избавляемся от лишнего. Вместо диодной сборки или двух диодов (часто ставят вместо неё), ставим сборку 40CPQ060, 30CPQ045 или 30CTQ060, любые другие варианты ухудшат КПД. Рядом, на этом радиаторе, стоит сборка 5V, выпаиваем её.

Под нагрузкой, сильно нагреваются следующие детали: два радиатора, импульсный трансформатор, дроссель на ферритовом кольце, дроссель на ферритовом стержне. Наша задача, уменьшить теплоотдачу и увеличить максимальный ток нагрузки. Выпаяйте дроссель на ферритовом стержне из шины +5В и поставьте его на шину +12V, стоящий там ранее дроссель (более высокий и намотан тонким проводом)  выпаяйте. Теперь дроссель греться практически не будет или будет, но не так сильно. На некоторых платах дросселей просто нет, можно обойтись и без него, но желательно, чтобы он был для лучшей фильтрации возможных помех.

5. На большом ферритовом кольце намотан дроссель для фильтрации импульсных помех.

Шина +12V на нем намотана более тонким проводом, а шина +5V самым толстым. Выпаяйте аккуратно это кольцо и поменяйте местами обмотки для шин +12V и +5V (или включите обмотки параллельно).

Теперь шина +12V проходит через этот дроссель, самым толстым проводом. В результате, этот дроссель будет нагреваться значительно меньше. Если радиаторы имеют маленький размер, не рекомендуется нагружать БП током более 10А.

Обратите внимание, хорошо ли прикручены высоковольтные транзисторы к радиатору.

6. Выпаиваем электролитические конденсаторы на шине +12V, на их место ставим 4700x25V.

7. На плате два высоковольтных электролита, обычно их номиналы 220µFx200V или в лучшем случае 330µFx200V. Меняем на 470µFx200V или 680µFx200V, а еще лучше, если позволяет место на 820µFx200V, в крайнем случае, соедините параллельно два по 220+220=440µF. Дело не только в фильтрации, импульсные помехи ослабнут, эти конденсаторы также влияют на способность блока держать кратковременное пропадание сетевого напряжения, и возрастёт устойчивость к максимальным нагрузкам.

   Блок питания 14V, 20А из БП АТ от РС

Извлекаем плату и отпаиваем все провода, идущие к разъемам питания. ОБЯЗАТЕЛЬНО меняем сборку или диоды по  +12V на сборку BYV42E-200 (диоды Шотки Iпр = 30А 200V), и крепим ее на радиаторе.

Находим дорожку цепи контроля для схемы стабилизации на плате от +5V, режем ее и впаиваем цепочку из стабилитрона и резистора, рис. 7. Обратите внимание на наличие фильтров по входу БП, дабы уменьшить помехи по сети 220V. Для более тихой работы вентилятора, его можно подключить между «старыми» контактными площадками БП +5 и +12, красный (плюсовой) провод вентилятора подсоединяем на +12v. Получаем на нем 7-8 вольт, чего вполне достаточно для нормальной вентиляции БП.

VD1 — стабилитрон на напряжение V = Vвых — 5V,

где: Vвыx — напряжение, которое Вы хотите получить на выходе БП (12 — 14 вольт)

R1* — сопротивление резистора зависит от тока стабилизации стабилитрона Iст и рассчитывается как R = 5V / Iст.

Почему стабилитрон? У стабилитрона коэффициент стабилизации выше. Защита БП срабатывает не на выходной ток, а на потребляемую мощность, соответственно, чем выше напряжение на выходе, тем меньше максимальный ток отдаваемый БП.


   Простые варианты переделки БП от ПК

Схема подойдет к блокам AT собранных с спользованием TL494 (MB3759, KA7500).

 

Переделка заключается в удалении резистора от первой ноги микросхемы к +5 вольтам и замена на 1КОм к +12 вольтам. Также добавляется резистор от 14 ноги на вторую ногу номиналом 4.7КОм. Ставятся 2 переменных резистора для грубой и точной регулировки. Т.к. напряжение на выходе теперь меняется — вентилятор питаем от опорного (24V) через 150 Ом. Выходное напряжение берем там, где до переделки было +12V.  Делаем симпатичную панельку, выводим на нее ручки, клеммы и вольтметр!

 

 

 

 

 

 

 

 

 

 

 

 

 

   Зарядное устройство из БП компьютера

— Для управления выходным напряжением нужно снять перемычку, соединяющую шину +5V с входом обратной связи ШИМ регулятора — перемычка идет к микросхеме, на которой есть цифра 494.

Подать на вход микросхемы вместо перемычки, (на входе есть резистор — не удалять) напряжение с выхода регулятора напряжения (рис. 1) или тока (рис. 2).

 


 

Регулятор напряжения         



Регулятор тока



В регуляторе напряжения R=1..30k, если R Особенность обеих схем – уменьшение напряжения при потере контакта движка переменного резистора. Можно установить обе схемы, соединив их выходы, тогда полученный блок питания можно использовать, и как источник напряжения с ограничением по току, и как источник тока с ограничением по напряжению. Схему сделать на плате и установить на переменном резисторе (можно припаять к его выводам). Нельзя использовать регулятор тока без ограничителя напряжения!

Простейший ограничитель, в случае применения регулятора тока — стабилитрон на 10V включенный между шиной +12V и выходом на управление. При использовании только регулятора напряжения может возникнуть ситуация, когда ШИМ регулятор поведет себя неадекватно. Для исключения этого рекомендую предварительно устанавливать выходное напряжение немного больше чем напряжение на батарее.

3. Защита от переходных процессов.

При включении БП происходит бросок напряжения. Это приводит к броску тока и срабатыванию токовой защиты БП. Приходится присоединять аккумулятор после запуска блока питания, что неудобно. Кроме того, при временном пропадании напряжения сети процесс повторится. Для задержки включения лучше использовать вывод P.G.(на разъеме серый провод). На этом выводе появляется напряжение +5V после окончания переходных процессов. Амперметр можно подключить к токосъемному резистору регулятора тока, или изготовить отдельный шунт из фольгированного текстолита, закрепив его на контактах миллиамперметра (фото). Не подключайте силовые провода под винт измерительной головки (миллиамперметра), припаяйте их к шунту, иначе спалите головку при случайном ослабевании винтового контакта.


vmest.ru

Лабораторный блок питания из ATX БП — схемы БП — Каталог файлов

Я немного увлекся гальванопластикой (про это еще расскажу), и для нее мне понадобился новый блок питания. Требования к нему примерно такие – 10А выходного тока при максимальном напряжении порядка 5В. Конечно-же, взгляд сразу упал на кучу ненужных компьютерных блоков питания.

Конечно, идея переделать компьютерный блок питания в лабораторный не нова. В интернетах я нашел несколько конструкций, но решил, что еще одна – не помешает. В процессе переделки, я сделал просто дофига ошибок, поэтому, если решитесь сделать и себе такой блок питания, учитывайте их, и у вас получится лучше!

Внимание! Несмотря на то, что складывается впечатление, что этот проект – для новичков, ничего подобного – проект довольно сложный! Имейте ввиду.

 

Конструкция

Мощность того блока питания, который я вытащил из-под кровати – 250Вт. Если я сделаю БП 5В/10А, то пропадает драгоценная моща! Не дело! Подымем напряжение до 25В, может сгодится, к примеру, для зарядки аккумуляторов – там нужно напряжение порядка 15В.

Для дальнейших действий нужно сначала найти схему на исходный блок. В принципе, все схемы БП известны и гуглятся. Что именно нужно гуглить – написано на плате.

 

 

Мне мою схему подкинул друг. Вот она. (Откроется в новом окне)

Да-да, нам придется лазить во всех этих кишках. В этом нам поможет даташит на TL494

 

Итак, первое, что нам нужно сделать – проверить, какое максимальное напряжение может выдать блок питания по шинам +12 и +5 вольт. Для этого удаляем предусмотрительно помещенную производителем перемычку обратной связи.

 

Резисторы R49-R51 подтянут плюсовой вход компаратора к земле. И, вуаля, у нас на выходе – максимальное напряжение.

Пытаемся стартовать блок питания. Ага, без компьютера не стартует. Дело в том, что его нужно включить, соединив вывод PS_ON с землей. PS_ON обычно подписан на плате, и он нам еще понадобится, поэтому не будем его вырезать. А вот непонятную схему на Q10, Q9 и Q8 отключим – она использует выходные напряжение и, после их вырезания не даст нашему БП запуститься. Мягкий старт у нас будет работать на резисторах R59, R60 и конденсаторе C28.

 

Итак, бп запустился. Появились выходные максимальные напряжения.

Внимание! Выходные напряжения – больше тех, на которые рассчитаны выходные конденсаторы, и, поэтому, конденсаторы могут взорваться. Я хотел поменять конденсаторы, поэтому мне их было не жалко, а вот глаза не поменяешь. Аккуратно!

Итак, подучилось по +12В – 24В, а по +5В – 9.6В. Похоже, запас по напряжению ровно в 2 раза. Ну и прекрасно! Ограничим выходное напряжение нашего БП на уровне 20В, а выходной ток – на уровне 10А. Таким образом, получаем максимум 200Вт мощи.

С параметрами, вроде бы, определились.

Теперь нужно сделать управляющую электронику. Жестяной корпус БП меня не удовлетворил(и, как оказалось, зря) – он так и норовит поцарапать что-то, да еще и соединен с землей (это помешает мерить ток дешевыми операционниками).

В качестве корпуса, я выбрал Z-2W, конторы Maszczyk

 

Я измерил излучаемый блоком питания шум – он оказался вполне небольшим, так что, вполне можно использовать пластиковый корпус.

После корпуса я сел за Corel Draw и прикинул, как должна выглядеть передняя панель:

 

 

 

Электроника

Я решил разбить электронику на две части – фальш-панель и управляющая электроника. Причина для такого разбиения – банально не хватило места на лицевой панели, чтобы вместить еще и управляющую электронику.

В качестве основного источника питания для своей электроники я выбрал standby источник. Было замечено, что если его хорошенько нагрузить, то он перестает пищать, поэтому идеальными оказались 7-сегментные индикаторы – и блок питания подгрузят и напряжение с током покажут.

Фальш-панель:

На ней индикаторы, потенциометры, светодиод. Для того, чтобы не тащить кучу проводов к 7-сегментникам, я использовал сдвиговые регистры 74AC164. Почему AC, а не HC ? У HC максимальный суммарный ток всех ножек – 50мА, а у AC – по 25мА на каждую ножку. Ток индикаторов я выбрал 20мА, тоесть 74HC164 точно бы не хватило по току.

 

 

 

Управляющая электроника – тут все слегка посложнее.

В процессе составления схемы, я конкретно налажал, за что и поплатился кучей перемычек на плате. Вам-же предоставляется исправленная схема.

 

 

 

Если кратко, то – U1A – диф. усилитель тока. При максимальном тока, на выходе получается 2.56В, что совпадает с опорным у АЦП контроллера.

U1B – собственно токовый компаратор – если ток превышает порог, заданный резисторами, tl494 «затыкается”

U2A – индикатор того, что БП работает в режиме ограничения тока.

U2B – компаратор напряжения.

U3A, U3B – повторители с переменников. Дело в том, что переменники относительно высокоомные, да еще и сопротивление их меняется. Это значительно усложнит компенсацию обратной связи. А вот если их привести к одному сопротивлению, то все становится значительно проще.

С контроллером все понятно – это банальная атмега8, да еще и в дипе, которая лежала в загашнике. Прошивка относительно простая, и сделана между паяниями левой лапой. Но, нем не менее, рабочая.

Контроллер работает на 8МГц от RC генератора (нужно поставить соответствующие фюзы)

По хорошему, измерение тока нужно перенести на «высокую сторону”, тогда можно будет мереть напряжение непосредственно на нагрузке. В этой схеме при больших токах в измеренном напряжении будет ошибка до 200мВ. Я слажал и каюсь. Надеюсь, вы не повторите моих ошибок.

 

Переделка выходной части

Выбрасываем все лишнее. Схема получается такой (кликабельно):

Синфазный дроссель я немного переделал – соединил последовательно обмотку которая для 12В и две обмотки для 5в, в итоге получилось около 100мкГн, что дофига. Еще я заменил конденсатор тремя включенными параллельно 1000мкФ/25В

После модификации, выход выглядит так:

 

Настройка

Запускаем. Офигиваем от количества шума!

 

 

300мВ! Пачки, похоже на возбуждение обратной связи. Тормозим ОС до предела, пачки не исчезают. Значит, дело не в ОС

Долго тыкавшись, я нашел, что причина такого шума – провод! О_о Простой двужильный двухметровый провод! Если подключить осциллограф до него, или включить конденсатор прямо на щуп осциллографа, пульсации уменьшаются до 20мВ ! Это явление я толком не могу объяснить. Может, кто-то из вас, поделится? Теперь, понятно что делать – в питающейся схеме должен быть конденсатор, и конденсатор нужно повесить непосредственно на клеммы БП.

Кстати, насчет Y – конденсаторов. Китайцы сэкономили на них и не поставили. Итак, выходное напряжение без Y-конденсаторов

А теперь – с Y конденсатором:

 

Лучше? Несомненно! Более того, после установки Y – конденсаторов сразу-же перестал глючить измеритель тока!

Еще я поставил X2 – конденсатор, чтобы хоть как-то поменьше хлама в сети было. К сожалению, похожего синфазного дросселя у меня нет, но как только найду – сразу поставлю.

 

 

Обратная связь.

Про нее я написал отдельную статейку, читайте

 

Охлаждение

Вот тут пришлось повозиться! После нескольких секунд под полной нагрузкой вопрос о необходимости активного охлаждения был снят. Больше всех грелась выходная диодная сборка.

В сборке стоят обычные диоды, я думал заменить их диодами Шоттки. Но обратное напряжение на этих диодах оказалось порядка 100 вольт, а как известно, высоковольтные диоды шоттки не намного лучше обычных диодов.

Поэтому, пришлось прикрутить кучу дополнительных радиаторов (сколько влезло) и организовать активное охлаждение.

Откуда брать питание для вентилятора? Вот и я долго думал, но таки придумал. tl494 питается от источника напряжением 25В. Берем его (с перемычки J3 на схеме) и понижаем стабилизатором 7812.

Для продуваемости пришлось вырезать крышку под 120мм вентилятор, и прицепить соответствующую решетку, а сам вентилятор поставить на 80мм. Единственное место, где это можно было сделать – это верхняя крышка, а поэтому конструкция получилась очень плохая – с верху может упасть какая-то металлическая хрень и замкнуть внутренние цепи блока питания. Ставлю себе 2 балла. Не стоило уходить от корпуса блока питания! Не повторяйте моих ошибок!

Вентилятор никак не крепится. Его просто прижимает верхняя крышка. Так вот хорошо с размерами я попал.

Результаты

Итог. Итак, этот блок питания работает уже неделю, и можно сказать, что он довольно надежен. К моему удивлению, он очень слабо излучает, и это хорошо!

Потроха:

 

Я попытался описать подводные камни, на которые сам нарвался. Надеюсь, вы не повторите их! Удачи!

radiokomp.ucoz.ru