Частота через период – Механические, периодические колебания, характеристики: частота, период, фаза, амплитуда, Виды колебаний, резонанс, примеры

Период и частота

Физика > Период и частота

 

Период – продолжительность цикла повторяющегося события, а частота – количество циклов за временной промежуток.

Задача обучения

  • Преобразование между частотой и периодом.

Основные пункты

  • Регулярно повторяющееся движение – периодическое. Одно полное повторение – цикл.
  • Продолжительность цикла – период.
  • Частота отображает число циклов, осуществленное за определенный временной промежуток. Это обратная величина периода и определяется формулой f = 1/T.
  • Некоторые перемещения лучше всего характеризовать угловой частотой (ω). Она относится к угловому смещению за временной промежуток. Вычисляется по формуле: ω = 2πf.

Термины

  • Угловая частота – угловое смещение за временной промежуток.
  • Период – длительность одного цикла в повторяющемся событии.
  • Частота – соотношение количества раз (n) периодического явления за временную единицу (t): f = n/t.

Пример

Когда-то существовал викторианский трюк. Человеку нужно было вслушаться в звук мухи, воспроизвести музыкальную ноту на пианино и сказать, сколько раз летучая мышь ударила крыльями за секунду. Если это 200 раз в секунду, то частота движения – f = 200/1 с = 200 Гц. Период составляет 1/200-ю секунду: T = 1/f = (1/200) с = 0.005 с.

Период и частота

Эти термины используют для выражения повторного движения. Период – время, которое тратится на одно повторение. Один полноценный проход – цикл. Частота – количество циклов за конкретный временной промежуток (f).

Синусоидальные волны разных частот. Нижние обладают более высокими частотами, а горизонтальная ось отображает время.

Понятия выражаются в формуле: F = 1/T.

Допустим, частота сердца новорожденного составляет 120 раз в минуту, а период – половина секунды. Если вы отточите интуицию на ожидание сопряженности больших частот с короткими периодами (и наоборот), то избежите ошибок.

Единицы

Чаще всего частота рассчитывается в герцах (Гц). 1 Гц указывает на то, что событие происходит раз в секунду. Традиционная единица, применимая во вращающихся механических приборах, – обороты в минуту (об/мин). Единица периода – секунда.

Угловая частота

Частота периодического движения лучше всего передается через угловую частоту – ω. Она относится к угловому смещению на единицу времени или скорости перемены состояния синусоидальной формы волны. В виде формулы:

Колеса совершают вращение с частотой f циклов в секунду, что можно описать как ω радиан в секунду. Механическая связь позволяет линейным колебаниям поршней парового двигателя руководить колесами

у (t) = sin(θ(т)) = sin(ωt) = sin(2πft)

ω = 2πf

Угловая частота часто отображается в радианах на секунду.


v-kosmose.com

Период, частота, амплитуда и фаза переменного тока

Период и частота переменного тока

Время, в течение которого совершается одно полное изме­нение ЭДС, то есть один цикл колебания или один полный оборот радиуса-вектора, называется периодом колебания пере­менного тока (рисунок 1).

Рисунок 1. Период и амплитуда синусоидального колебания. Период — время одного колебания; Аплитуда — его наибольшее мгновенное значение.

Период выражают в секундах и обозначают буквой Т.

Так же используются более мелкие единицы измерения периода это миллисекунда (мс)- одна тысячная секунды и микросекунда (мкс)- одна миллионная секунды.

1 мс =0,001сек =10-3сек.

1 мкс=0,001 мс = 0,000001сек =10-6сек.

1000 мкс = 1 мс.

Число полных изменений ЭДС или число оборотов ради­уса-вектора, то есть иначе говоря, число полных циклов колеба­ний, совершаемых переменным током в течение одной секунды, называется частотой колебаний переменного тока.

Частота обо­значается буквой f и выражается в периодах в секунду или в герцах.

Одна тысяча герц называется килогерцом (кГц), а миллион герц — мегагерцом (МГц). Существует так же единица гигагерц (ГГц) равная одной тысячи мегагерц.

1000 Гц = 103 Гц = 1 кГц;

1000 000 Гц = 106 Гц = 1000 кГц = 1 МГц;

1000 000 000 Гц = 109 Гц = 1000 000 кГц = 1000 МГц = 1 ГГц;

Чем быстрее происходит изменение ЭДС, то есть чем бы­стрее вращается радиус-вектор, тем меньше период колебания Чем быстрее вращается радиус-вектор, тем выше частота. Таким образом, частота и период переменного тока являются величинами, обратно пропорциональными друг другу. Чем больше одна из них, тем меньше другая.

Математическая связь между периодом и частотой переменного тока и напряжения выра­жается формулами

Например, если частота тока равна 50 Гц, то период будет равен:

Т = 1/f = 1/50 = 0,02 сек.

И наоборот, если известно, что период тока равен 0,02 сек, (T=0,02 сек.), то частота будет равна:

f = 1/T=1/0,02 = 100/2 = 50 Гц

Частота переменного тока, используемого для освещения и промышленных целей, как раз и равна 50 Гц.

Частоты от 20 до 20 000 Гц называются звуковыми часто­тами. Токи в антеннах радиостанций колеблются с частотами до 1 500 000 000 Гц или, иначе говоря, до 1 500 МГц или 1,5 ГГц. Такие вы­сокие частоты называются радиочастотами или колебаниями высокой частоты.

Наконец, токи в антеннах радиолокационных станций, станций спутниковой связи, других спецсистем (например ГЛАНАСС, GPS) колеблются с частотами до 40 000 МГц (40 ГГц) и выше.

Амплитуда переменного тока

Наибольшее значение, которого достигает ЭДС или сила тока за один период, называется амплитудой ЭДС или силы переменного тока. Легко заметить, что амплитуда в масштабе равна длине радиуса-вектора. Амплитуды тока, ЭДС и напряжения обозначаются соответственно бук­вами Im, Em и Um (рисунок 1).

Угловая (циклическая) частота переменного тока.

Скорость вращения радиуса-вектора, т. е. изменение ве­личины угла поворота в течение одной секунды, называется угловой (циклической) частотой переменного тока и обозначается греческой буквой ? (оме­га). Угол поворота радиуса-вектора в любой данный момент относительно его начального положения измеряется обычно не в градусах, а в особых единицах — радианах.

Радианом называется угловая величина дуги окружности, длина которой равна радиусу этой окружности (рисунок 2). Вся окружность, составляющая 360°, равна 6,28 радиан, то есть 2.

Рисунок 2. Радиан.

Тогда,

1рад = 360°/2

Следовательно, конец радиуса-вектора в течение одного периода пробегают путь, равный 6,28 радиан (2). Так как в тече­ние одной секунды радиус-вектор совершает число оборотов, равное частоте переменного тока f, то за одну секунду его ко­нец пробегает путь, равный 6,28 * f радиан. Это выражение, характеризующее скорость вращения радиуса-вектора, и будет угловой частотой переменного тока — ?.

Итак,

?= 6,28*f = 2f

Фаза переменного тока.

Угол поворота радиуса-вектора в любое данное мгновение относительно его начального положения называется фазой переменного тока. Фаза характеризует величину ЭДС (или тока) в данное мгновение или, как говорят, мгновенное значение ЭДС, ее направление в цепи и направление ее изменения; фаза пока­зывает, убывает ли ЭДС или возрастает.

Рисунок 3. Фаза переменного тока.

Полный оборот радиуса-вектора равен 360°. С началом но­вого оборота радиуса-вектора изменение ЭДС происходит в том же порядке, что и в течение первого оборота. Следова­тельно, все фазы ЭДС будут повторяться в прежнем поряд­ке. Например, фаза ЭДС при повороте радиуса-вектора на угол в 370° будет такой же, как и при повороте на 10°. В обо­их этих случаях радиус-вектор занимает одинаковое положе­ние, и, следовательно, мгновенные значения ЭДС будут в обоих этих случаях одинаковыми по фазе.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

www.sxemotehnika.ru

Частота, период, циклическая частота, амплитуда, фаза колебаний.

ЧАСТОТА КОЛЕБАНИЙ, числоколебаний в 1 с. Обозначается.
Если T -периодот колебаний, то= 1/T; измеряется в герцах (Гц).Угловая
частотаколебаний= 2= 2/T
рад/с.

ПЕРИОД колебаний, наименьший промежуток
времени, через который совершающая
колебания системавозвращается в то же состояние, в котором
она находилась в начальный момент,
выбранный произвольно. Период -величина,
обратная частоте колебаний.Понятие»период» применимо, например, в
случае гармонических колебаний, однако
часто применяется и для слабо затухающих
колебаний.

Круговая или
циклическая частотаω

При изменении аргумента косинуса, либо
синуса на 2π эти функции возвращаются
к прежнему значению. Найдем промежуток
времени T, в течение которого фаза
гармонической функции изменяется на
2π .

ω(t + T) + α = ωt + α + 2π, или ωT = 2π.

.

Время T одного полного колебания
называется периодом колебания. Частотой
ν называют величину, обратную
периоду

.

Единица измерения частоты — герц (Гц),
1 Гц = 1 с-1.

Так как

,
то
.

Круговая, или циклическая частоты ω в
2π раз больше частоты колебаний ν.
Круговая частота — это скорость изменения
фазы со временем. Действительно:

.

АМПЛИТУДА (от латинского amplitudo —
величина),
наибольшее отклонение от равновесного
значения величины, колеблющейся по
определенному, в том числе гармоническому,
закону; смотри такжеГармонические
колебания.

ФАЗА КОЛЕБАНИЙ аргумент функцииcos (ωt + φ), описывающей гармонический
колебательный процесс (ω — круговая
частота, t — время, φ — начальная
фаза колебаний, т. е. фаза колебаний вначальный
момент времениt = 0)

Смещение, скорость, ускорение колеблющейся системы частиц.

Энергия гармонических колебаний.

Гармонические колебания

Важным частным случаем периодических
колебаний являются гармонические
колебания, т.е. такие изменения физической
величины, которые идут по закону

где
.
Из курса математики известно, что
функция вида (1) меняется в пределах от
А до -А , и что наименьший положительный
период у нее.
Поэтому гармоническое колебание вида
(1) происходит с амплитудой А и периодом.

Не следует путать циклическую частоту
и
частоту колебаний.
Между ними простая связь. Так как,
а,
то.

Величина
называется
фазой колебания. При t=0 фаза равна,
потомуназывают
начальной фазой.

Отметим, что при одном и том же t:

где

начальная фаза .Видно, что начальная
фаза для одного и того же колебания
есть величина, определенная с точнотью
до.
Поэтому из множества возможных значений
начальной фазы выбирается обычно
значение начальной фазы наименьшее по
модулю или наименьшее положительное.
Но делать это необязательно. Например,
дано колебание,
то его удобно записать в видеи
работать в дальнейшем с последним видом
записи этого колебания.

Можно показать, что колебания вида:

где
имогут
быть любого знака, с помощью простых
тригонометрических преобразований
всегда приводится к виду (1), причем,,
ане
равна,
вообще говоря. Таким образом, колебания
вида (2) являются гармоническими с
амплитудойи
циклической частотой.
Не приводя общего доказательства,
проиллюстрируем это на конкретном
примере.

Пусть требуется показать, что колебание

будет гармоническим и найти амплитуду
,
циклическую частоту,
периоди
начальную фазу.
Действительно,

Видим, что колебание величины S удалось
записать в виде (1). При этом
,.

Попробуйте самостоятельно убедится,
что

.

Естественно, что запись гармонических
колебаний в форме (2) ничем не хуже записи
в форме (1), и переходить в конкретной
задаче от записи в данной форме к записи
в другой форме обычно нет необходимости.
Нужно только уметь сразу находить
амплитуду, циклическую частоту и период,
имея перед собой любую форму записи
гармонического колебания.

Иногда полезно знать характер изменения
первой и второй производных по времени
от величины S, которая совершает
гармонические колебания (колеблется
по гармоническому закону). Если
,
то дифференцирование S по времени t дает,.
Видно, что S’ и S» колеблются тоже по
гармоническому закону с той же циклической
частотой,
что и величина S, и амплитудамии,
соответственно. Приведем пример.

Пусть координата x тела, совершающего
гармонические колебания вдоль оси x,
изменяется по закону
,
где х в сантиметрах, время t в секундах.
Требуется записать закон изменения
скорости и ускорения тела и найти их
максимальные значения. Для ответа на
поставленный вопрос заметим, что первая
производная по времени от величины х
есть проекция скорости тела на ось х,
а вторая производная х есть проекция
ускорения на ось х:,.
Продифференцировав выражение для х по
времени, получим,.
Максимальные значения скорости и
ускорения :.

studfiles.net

Гармонические колебания: амплитуда и период колебаний

 

Гармонические колебания – колебания, совершаемые по законам синуса и косинуса. На следующем рисунке представлен график изменения координаты точки с течением времени по закону косинуса.

картинка

Амплитуда колебаний

Амплитудой гармонического колебания называется наибольшее значение смещения тела от положения равновесия. Амплитуда может принимать различные значения. Она будет зависеть от того, насколько мы сместим тело в начальный момент времени от положения равновесия.

Амплитуда определяется начальными условиями, то есть энергией сообщаемой телу в начальный момент времени. Так как синус и косинус могут принимать значения в диапазоне от -1 до 1, то в уравнении должен присутствовать множитель Xm, выражающий амплитуду колебаний. Уравнение движения при гармонических колебаниях:

x = Xm*cos(ω0*t).

Период колебаний

Период колебаний – это время совершения одного полного колебания. Период колебания обозначается буквой Т.  Единицы измерения периода соответствуют единицам времени. То есть в СИ — это секунды.

Частота колебаний – количество колебаний совершенных в единицу времени. Частота колебаний обозначается буквой ν. Частоту колебаний можно выразить через период колебания.

ν = 1/Т.

Единицы измерения частоты в СИ 1/сек. Эта единица измерения получила название Герца.  Число колебаний за время 2*pi секунд будет равняться:

ω0 = 2*pi* ν = 2*pi/T.

Частота колебаний

 

Данная величина называется циклической частотой колебаний. В некоторой литературе встречается название круговая частота. Собственная частота колебательной системы – частота свободных колебаний. 

Частота собственных колебаний рассчитывается по формуле:

ω0 = √(k/m)

Частота собственных колебаний зависит от свойств материала и массы груза.  Чем больше жесткость пружины, тем больше частота собственных колебаний.  Чем больше масса груза, тем меньше частота собственных колебаний.

Эти два вывода очевидны. Чем более жесткая пружина, тем большее ускорение она сообщит телу, при выведении системы из равновесия. Чем больше масса тела, тем медленнее будет изменяться это скорость этого тела.

Период свободных колебаний:

T = 2*pi/ ω0 = 2*pi*√(m/k)

Примечателен тот факт, что при малых углах отклонения период колебания тела на пружине и период колебания маятника не будут зависеть от амплитуды колебаний.

Запишем формулы периода и частоты свободных колебаний для математического маятника.

ω0 = √(g/l),

тогда период будет равен

T = 2*pi*√(l/g).

Данная формула будет справедлива лишь для малых углов отклонения. Из формулы видим, что период колебаний возрастает с увеличением длины нити маятника. Чем больше будет длина, тем медленнее тело будет колебаться.

От массы груза период колебаний совершенно не зависит. Зато зависит от ускорения свободного падения. При уменьшении g, период колебаний будет увеличиваться. Данное свойство широко используют на практике. Например, для измерения точного значения свободного ускорения.

Нужна помощь в учебе?



Предыдущая тема: Математический маятник: динамика колебательного движения
Следующая тема:&nbsp&nbsp&nbspФаза колебаний, сдвиг фаз

Все неприличные комментарии будут удаляться.

www.nado5.ru

Частота колебаний | Все формулы

Частота колебаний — величина, обратная периоду колебаний, т. е. равная числу периодов колебаний (числу колебаний), совершаемых в единицу времени.

Разновидность частот колебаний :

Циклическая частота

Частота колебаний физического маятника

Частота пружинного маятника

Частота математического маятника

Частота электромагнитных колебаний

Частота колебаний крутильного маятника

В Формуле мы использовали :

— Частота колебаний

— Циклическая частота

— Период колебаний маятника

— Масса груза, или масса маятника

— Жесткость пружины

— Длина подвеса

— Ускорение свободного падения

— Момент инерции маятника относительно оси вращения

— Расстояние от оси вращения до центра масс

— Момент инерции тела

— Вращательный коэффициент жёсткости маятника

xn--b1agsdjmeuf9e.xn--p1ai

Период и частота колебаний | HamLab

Важнейшей характеристикой механических, электрических, электромагнитных и всех других видов колебаний является период-время, в течение которого совершается одно полное колебание. Если, например, маятник часов-ходиков делает за 1 с два полных колебания, период каждого колебания равен 0,5 с. Период колебаний больших качелей — около 2 с, а период колебаний струны может быть от десятых до десятитысячных долей секунды.

Другой величиной, характеризующей колебания, является частота (от слова «частое-число, показывающее, сколько полных колебаний в секунду совершают маятник часов, звучащие тела, ток в проводнике и т. п. Частоту колебаний оценивают единицей, носящей название герц (сокращенно пишут: Гц): 1 Гц-это одно колебание в 1 с. Если, например, звучащая струна совершает 440 полных колебаний в 1 с (при этом она создает тон «ля» первой октавы), говорят, что частота ее колебаний 440 Гц. Частота переменного тока электроосветительной сети 50 Гц. При таком токе электроны в .проводниках в течение 1 с текут попеременно 50 раз в одном направлении н столько же раз в обратном, т. е. совершают за 1 с 50 полных колебаний.

Более крупные единицы частоты-килогерц (пишут: кГц), равный 1000 Гц, и мегагерц (пишут: МГц), равный 1000 кГц, или 1000000 Гц.

По частоте колебаний звучащего тела можно судить о тоне, или высоте звука. Чем больше частота, тем выше тон звука, и, наоборот, чем меньше частота, тем ниже тон звука. Наше ухо способно реагировать на сравнительно небольшую полосу (участок) частот звуковых колебаний — примерно от 20 Гц до 20 кГц. Эта полоса вмещает всю обширнейшую гамму звуков, создаваемых голосом человека и симфоническим оркестром: от очень низких тонов, похожих на звук жужжания жука, до еле уловимого высокого писка комара. Колебания частотой до 20 Гц, называемые инфразвуковыми, и свыше 20 кГц, называемые ультразвуковыми, мы не слышим. А если б наше ухо оказалось способным реагировать и на ультразвуковые колебания, мы, возможно, могли бы слышать колебания пестиков цветов, крылышек бабочек.

Не путай высоту, т. е. тон звука, с силой его. Высота звука зависит не от амплитуды, а от частоты колебаний. Толстая и длинная струна, например, создает низкий тон звука, т. е. колеблется медленнее, чем тонкая и короткая струна, создающая высокий тон звука. Разобраться в этом вопросе тебе поможет рис.1.

Рис.1. Чем больше частота колебаний струны, тем короче звуковые волны и выше тон звука.

В электротехнике и радиотехнике используют переменные токи с частотой от нескольких герц до тысяч мегагерц. Антенны радиовещательных станций, например, питаются токами частотой примерно от 150 кГц до 50-60 МГц. Эти быстропеременных токи в являются тем средством, с помощью которого осуществляется передача звука на большие расстояния без проводов. Весь огромный диапазон переменных токов принято подразделять на несколько участков-поддиапазонов. Токи сравнительно небольших частот, в пределах от 20 Гц до 20 кГц, называют токами, звуковой (или низкой) частоты, так как они соответствуют частотам звуковых колебаний, а переменные токи частотой 20 кГц и больше — токами ультразвуковой частоты. В то же время токи частотой от 100 кГц до 30 МГц принято называть токами высокой частоты, а токи частотой выше 30 МГц -токами ультравысокой и сверхвысокой частоты.

Запомни хорошенько границы и названия поддиапазонов частот переменных токов.

hamlab.net

Период и частота обращения | Физика

Равномерное движение по окружности характеризуют периодом и частотой обращения.

Период обращения — это время, за которое совершается один оборот.

Если, например, за время t=4 с тело, двигаясь по окружности, совершило n = 2 оборота, то легко сообразить, что один оборот длился 2 с. Это и есть период обращения. Обозначается он буквой T и определяется по формуле

Итак, чтобы найти период обращения, надо время, за которое совершено n оборотов, разделить на число оборотов.

Другой характеристикой равномерного движения по окружности является частота обращения.

Частота обращения — это число оборотов, совершаемых за 1 с. Если, например, за время t = 2 с тело совершило n = 10 оборотов, то легко сообразить, что за 1 с оно успевало совершить 5 оборотов. Это число и выражает частоту обращения. Обозначается она греческой буквой ν (читается: ню) и определяется по формуле

Итак, чтобы найти частоту обращения, надо число оборотов разделить на время, в течение которого они произошли.

За единицу частоты обращения в СИ принимают частоту обращения, при которой за каждую секунду тело совершает один оборот. Эта единица обозначается так: 1/с или с-1 (читается: секунда в минус первой степени). Раньше эту единицу называли «оборот в секунду», но теперь это название считается устаревшим.

Сравнивая формулы (6.1) и (6.2), можно заметить, что период и частота — величины взаимно обратные. Поэтому

Формулы (6.1) и (6.3) позволяют найти период обращения T, если известны число n и время оборотов t или частота обращения ν. Однако его можно найти и в том случае, когда ни одна из этих величин неизвестна. Вместо них достаточно знать скорость тела v и радиус окружности r, по которой оно движется. Для вывода новой формулы вспомним, что период обращения — это время, за которое тело совершает один оборот, т. е. проходит путь, равный длине окружности (lокр = 2πr, где π≈3,14— число «пи», известное из курса математики). Но мы знаем, что при равномерном движении время находится делением пройденного пути на скорость движения. Таким образом,

Итак, чтобы найти период обращения тела, надо длину окружности, по которой оно движется, разделить на скорость его движения.

1. Что такое период обращения? 2. Как можно найти период обращения, зная время и число оборотов? 3. Что такое частота обращения? 4. Как обозначается единица частоты? 5. Как можно найти частоту обращения, зная время и число оборотов? 6. Как связаны между собой период и частота обращения? 7. Как можно найти период обращения, зная радиус окружности и скорость движения тела?

phscs.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о