Чем отличается транзистор от тиристора – чем отличается тиристор от транзистора я знаю как работает транзистор, а что такое тиристор так и не понял.

Содержание

В чем отличие работы тиристора и транзистора?

Транзисторы – распространенные полупроводниковые радиоэлементы. На их основе делают большинство электронных схем, а также микросхем. Главное их свойство – способность усиливать электрические сигналы. Изменяя слабый сигнал на управляющем электроде транзистора, можно управлять усиленным выходным сигналом. Есть еще довольно распространенный вид полупроводниковых радиоэлементов — тиристоры. Они тоже имеют управляющий электрод, но управление выходным сигналом в принципе отличается от транзисторов. В этой небольшой статье путем сравнения рассмотрены эти различия.

За основу возьмем простую схему с лампочкой. Коммутируя малый ток в цепи управляющего электрода будем управлять в разы большим током лампочки.

Вот как выглядит эта схема на транзисторе и на тиристоре:

Рассмотрим, как можно управлять свечением лампочки в схеме на транзисторе. При наличии питания и замыкании выключателя S1 на управляющий электрод транзистора (базу) будет подано отпирающее напряжение и при условии достаточной величины тока (определяется величиной сопротивления в базе) транзистор откроется, лампочка загорится.

Изменяя величину тока в базе с помощью переменного сопротивления, мы можем открывать транзистор больше или меньше, меняя таким образом яркость свечения лампочки. Последовательно с переменным сопротивлением стоит постоянное для того, чтобы при нулевом сопротивлении переменного сопротивления ток базы не превысил допустимое значение и транзистор не вышел из строя. Выключить лампочку мы можем, разомкнув выключатель S1.

Теперь рассмотрим, как можно управлять свечением лампочки в схеме, выполненной на тиристоре.

При наличии питания и замыкании выключателя S2 на управляющий электрод тиристора будет подано отпирающее напряжение и при условии достаточной величины тока (определяется величиной сопротивления в цепи управляющего электрода) тиристор откроется, лампочка загорится. А вот теперь главное отличие. Мы не можем изменять яркость лампочки изменяя сопротивление в цепи управляющего электрода. Более того, мы можем вообще разомкнуть выключатель S2 и лампочка будет светиться, но только в том случае, если ток лампочки протекающий через открытый тиристор будет больше определенного значения, называемого током удержания. Он у каждого типа тиристора свой. Чем мощнее тиристор, тем большее значение тока удержания. Погасить лампочку мы можем, только уменьшив ток через анод-катод тиристора до значения меньше тока удержания или разомкнув выключатель S3 (что равносильно току удержания равном 0).

Это главная особенность применения тиристоров и главное их отличие от транзисторов.

Другими словами, тиристор может быть или полностью открыт, или полностью закрыт. Это и достоинство, и недостаток. Достоинство в том, что падение напряжения небольшое и потери ниже, чем, например, у наполовину открытого транзистора. Недостаток в том, что схема управления усложняется.

Тиристоры проще использовать в цепях переменного тока. Мы должны открывать тиристор каждую полуволну при ее нарастании. Когда полуволна спадает, тиристор сам закроется. Задерживая время открывания при приходе полуволны, мы меняем время открытого состояния тиристора и, следовательно, значение тока в нагрузке.

Как пример, рассмотрим питание схемы на тиристоре от источника переменного напряжения.

Теперь, при замыкании выключателя лампочка будет гореть, а при размыкании, гаснуть. Как видно из осциллограммы, каждую полуволну, в ее конце ток приближается к 0. Если выключатель S2 разомкнут, то с приходом новой полуволны тиристор не откроется.

Отсюда вывод.

Тиристоры целесообразно использовать в цепях переменного или импульсного напряжения (тока). При этом на управляющий электрод достаточно подать короткий отпирающий импульс. Закроется тиристор сам, после окончания импульса в нагрузке. При приходе следующего импульса в нагрузке на управляющий электрод снова нужно подавать отпирающий импульс и так далее.

Материал статьи продублирован на видео:

 

 

 

 

 

 

 

 

radiomasterinfo.org.ua

что это, принцип работы, свойства, применение

Чтобы понять как работает схема, необходимо знать действие и назначение каждого из элементов. В этой статье рассмотрим принцип работы тиристора, разные виды и режимы работы, характеристики и виды. Постараемся объяснить все максимально доступно, чтобы было понятно даже для начинающих. 

Содержание статьи

Что такое тиристор, его устройство и обозначение на схеме

Тиристор — полупроводниковый элемент, имеющий только два состояния: «открыто» (ток проходит) и «закрыто» (тока нет). Причем оба состояния устойчивые, то есть переход происходит только при определенных условиях. Само переключение происходит очень быстро, хоть и не мгновенно.

Так выглядят тиристоры

По способу действия его можно сравнить с переключателем или ключом. Вот только переключается тиристор при помощи напряжения, а отключается пропаданием тока или снятием нагрузки. Так что принцип работы тиристора понять несложно. Можно представлять его как ключ с электрическим управлением. Так, да не совсем.

Тиристор, как правило, имеет три выхода. Один управляющий и два, через которые протекает ток. Можно попробовать коротко описать принцип работы. При подаче напряжения на управляющий выход, коммутируется цепь через анод-коллектор. То есть, он сравним с транзистором. Только с той разницей, что у транзистора величина пропускаемого тока зависит от поданного на управляющий вывод напряжения. А тиристор либо полностью открыт, либо полностью закрыт.

Внешний вид

Внешний вид тиристора зависит от даты его производства. Элементы времен Советского Союза — металлические, в виде «летающей тарелки» с тремя выводами. Два вывода — катод и управляющий электрод — находятся на «дне» или «крышке» (это с какой стороны смотреть). Причем электрод управления меньше по размерам. Анод может находиться с противоположной стороны от катода, или торчать вбок из-под шайбы, которая есть на корпусе.

Два вида тиристоров — современные и советские, обозначение на схемах

Современные тиристоры выглядят по-другому. Это небольшой пластиковый прямоугольник с металлической пластиной сверху и тремя выводами-ножками снизу. В современном варианте есть одно неудобство: надо смотреть в описании какой из выводов анод, где катод и управляющий электрод. Как правило, первый — анод, затем катод и крайний правый — это электрод. Но это как правило, то есть, не всегда.

Принцип работы

По принципу действия, тиристор можно еще сравнить с диодом. Пропускать ток он будет в одном направлении — от анода к катоду, но происходить это будет только в состоянии «открыто». На схемах тиристор похож на диод. Также имеется анод и катод, но есть еще дополнительный элемент — управляющий электрод. Понятное дело, есть отличия и в выходном напряжении (если сравнивать с диодом).

Принцип работы тиристора в устройствах переменного напряжения: на выходе есть только верхняя часть синусоиды

В схемах переменного напряжения тиристор будет пропускать только одну полуволну — верхнюю. Когда приходит нижняя полуволна, он сбрасывается в состояние «закрыто».

Принцип работы тиристора простыми словами

Рассмотрим принцип работы тиристора. Стартовое состояние элемента — закрыто. «Сигналом» к переходу в состояние «открыто» является появление напряжения между анодом и управляющим выводом. Вернуть тиристор в состояние «закрыто» можно двумя способами:

  • снять нагрузку;
  • уменьшить ток ниже тока удержания (одна из технических характеристик).

В схемах с переменным напряжением, как правило, сбрасывается тиристор по второму варианту. Переменный ток в бытовой сети имеет синусоидальную форму, когда его значение приближается к нулю и происходит сброс. В схемах, питающихся от источников постоянного тока, надо либо принудительно убирать питание, либо снимать нагрузку.

После снятия отпирающего напряжения, тиристор остается в открытом состоянии (лампочка горит)

То есть, работает тиристор в схемах с постоянным и переменным напряжением по-разному. В схеме постоянного напряжения, после кратковременного появления напряжения между анодом и управляющим выводом, элемент переходит в состояние «открыто». Далее может быть два варианта развития событий:

  • Состояние «открыто» держится даже после того, как напряжение анод-выход управления пропало. Такое возможно если напряжение, поданное на анод-управляющий вывод,  выше чем неотпирающее напряжение (эти данные есть в технических характеристиках).  Прекращается прохождение тока через тиристор, фактически только разрывом цепи или выключением источника питания. Причем выключение/обрыв цепи могут быть очень кратковременными. После восстановления цепи, ток не течет до тех пор, пока на анод-управляющий вывод снова не подадут напряжение.
  • После снятия напряжения (оно меньше чем отпирающее) тиристор сразу переходит в состояние «закрыто».

Так что в схемах постоянного тока есть два варианта использования тиристора — с удержанием открытого состояния и без. Но чаще применяют по первому типу — когда он остается открытым.

Если говорить о внутреннем устройстве, то это три перехода P-N-P-N

Принцип работы тиристора в схемах переменного напряжения отличается. Там возвращение в запертое состояние происходит «автоматически» — при падении силы тока ниже порога удержания. Если напряжение на анод-катод подавать постоянно, на выходе тиристора получаем импульсы тока, которые идут с определенной частотой. Именно так построены импульсные блоки питания. При помощи тиристора они преобразуют синусоиду в импульсы.

Проверка работоспособности

Проверить тиристор можно либо при помощи мультиметра, либо создав простенькую проверочную схему. Если при прозвонке иметь перед глазами технические характеристики, можно заодно проверить сопротивление переходов.

Один из видов: силовой Т122-25

Прозвонка мультиметром

Для начала разберем прозвонку мультиметром. Переводим прибор в режим прозвонки.

На цифровых мультиметрах есть режим прозвонки, который позволяет проверять полупроводниковые приборы

Далее поочередно прикасаемся щупами к парам выводов:

  • При подключении щупов к аноду и катоду, прибор должен показывать обрыв — «1» или «OL» в зависимости от мультиметра. Если отображаются иные показатели хоть в одном направлении, тиристор пробит.
  • Между анодом и управляющим электродом (выводом) должно быть небольшое сопротивление в одном из направлений. В противоположном — обрыв. Если в обоих направлениях или обрыв, или небольшое сопротивление — элемент поврежден.

    Проверка тиристора при помощи мультиметра. На левом рисунке на табло отображается «1», т.е. сопротивление между анодом и катодом слишком велико и прибор не может его зафиксировать. На правом рисунке сопротивление небольшое, так как подано прямое напряжение смещения между анодом и управляющим электродом

Обратите внимание, что величина сопротивления у разных серий разная — на это не стоит обращать особого внимания. Если хотите проверить и сопротивление переходов, посмотрите в технических характеристиках.

Схема проверки работоспособности тиристора мультиметром

На рисунке представлены схемы испытаний. Крайний справа рисунок — усовершенствованный вариант с кнопкой, которую устанавливают между катодом и управляющим выводом. Для того чтобы мультиметр зафиксировал протекающий по цепи ток, кратковременно нажимаем на кнопку.

При помощи лампочки и источника постоянного тока (батарейка тоже пойдет)

Если мультиметра нет, можно проверить тиристор при помощи лампочки и источника питания. Подойдет даже обычная батарейка или любой другой источник постоянного напряжения. Вот только напряжение должно быть достаточным для того, чтобы засветить лампочку. Потребуется еще сопротивление или обычный кусок проволоки. Из этих элементов собирается простая схема:

Схема проверки тиристора при помощи лампочки и источника питания

  • Плюс от источника питания подаем на анод.
  • К катоду подключаем лампочку, второй ее вывод подключаем к минусу источника питания. Лампочка не горит, так как термистор заперт.
  • Кратковременно (при помощи куска проволоки или сопротивления) соединяем анод и управляющий вывод.
  • Лампочка загорается и продолжает гореть, хотя перемычка убрана. Термистор остается в открытом состоянии.
  • Если выкрутить лампочку или выключить источник питания, то лампочка, естественно, погаснет.
  • Если восстановить цепь/питание, она не загорится.

Заодно с проверкой, эта схема позволяет понять принцип работы тиристора. Ведь картинка получается очень наглядной и понятной.

Виды тиристоров и их особые свойства

Полупроводниковые технологии все еще разрабатываются и совершенствуются. За несколько десятилетий появились новые разновидности тиристоров, которые имеют некоторые отличия.

  • Динисторы или диодные тиристоры. Отличаются тем, что имеют только два вывода. Открываются подачей на анод и катод высокого напряжения в виде импульса. Называют еще «неуправляемые тиристоры».
  • Тринисторы или триодные тиристоры. В них есть управляющий электрод, но управляющий импульс может подаваться:
    • На управляющий выход и катод. Название — с управлением катодом.
    • На управляющий электрод и анод. Соответственно — управление анодом.

Тиристоры могут управляться как с анода, так и с катода

Есть также разные виды тиристоров по способу запирания. В одном случае достаточно уменьшения анодного тока ниже уровня тока удержания. В другом случае — подается запирающее напряжение на управляющий электрод.

По проводимости

Мы говорили, что проводят тиристоры ток только в одном направлении. Обратной проводимости нет. Такие элементы называют обратно-непроводящие, но существуют не только такие. Есть и другие варианты:

  • Имеют невысокое обратное напряжение, называются обратно-проводящие.
  • С ненормируемой обратной проводимостью. Ставят в схемах, где обратное напряжение возникнуть не может.
  • Симисторы. Симметричные тиристоры. Проводят ток в обоих направлениях.

Различают в основном, по типу проводимости и способу управления

Тиристоры могут работать в режиме ключа. То есть при поступлении импульса управления подавать ток на нагрузку. Нагрузка, в этом случае, рассчитывается исходя из напряжения в открытом виде. Надо также учитывать наибольшую рассеиваемую мощность. Вот в этом случае лучше выбирать металлические модели в виде «летающей тарелки». К ним удобно приделывать радиатор — для более быстрого охлаждения.

Классификация по особым режимам работы

Еще можно выделить следующие подвиды тиристоров:

  • Запираемые и незапираемые. Принцип работы тиристора незапираемого немного другой. Он находится в открытом состоянии когда плюс приложен к аноду, минус — на катоде. Переходит в закрытое состоянии при смене полярности.
  • Быстродействующие. Имеют малое время перехода из одного состояния в другое.
  • Импульсные. Очень быстро переходит из одного состояние в другое, используется в схемах с импульсными режимами работы.

Основное назначение — включение и выключение мощной нагрузки при помощи маломощных управляющих сигналов

Основная область использования тиристоров — в качестве электронного ключа, служащего для замыкания и размыкания электрической цепи. В общем много привычных устройств построены на тиристорах. Например, гирлянда с бегущими огнями, выпрямители, импульсные источники тока, выпрямители и многие другие.

Характеристики и их значение

Некоторые тиристоры могут коммутировать очень большие токи, в этом случае их называют силовыми тиристорами. Они изготавливаются в металлическом корпусе — для лучшего отвода тепла. Небольшие модели с пластиковым корпусом — это обычно маломощные варианты, которые используют в малоточных схемах. Но, всегда есть исключения. Так что для каждой конкретной цели подбирают требуемый вариант. Подбирают, понятное дело, по параметрам. Вот основные:

  • Максимальный прямой ток. Значение тока, который может протекать через анод-катод. У мощных моделей он может достигать сотен Ампер.
  • Максимально допустимый обратный ток. Указывается не для всех видов, только у обратно-проводящих.
  • Прямое напряжение. Это максимально допустимое падение напряжения в открытом состоянии при прохождении максимального тока.
  • Напряжение включения. Минимальный уровень управляющего сигнала, при котором тиристор сработает.

    Пример характеристик

  • Удерживающий ток. Если ток, протекающий через анод-катод ниже этого значения, устройство переходит в запертое состояние.
  • Минимальный ток управляющего сигнала. При подаче тока ниже этого значения, элемент не откроется.
  • Максимальный ток управления. Если превысить этот параметр, p-n переход выйдет из строя.
  • Рассеиваемая мощность. Определяет величину подключаемой нагрузки.

Есть еще динамический параметр — время перехода из закрытого в открытое состояние. В некоторых схемах это важно. Может еще указываться тип быстродействия: по времени отпирания или по времени запирания.

elektroznatok.ru

Тиристоры. Виды и устройство. Работа и применение. Особенности

Тиристоры — это разновидность полупроводниковых приборов. Они предназначены для регулирования и коммутации больших токов. Тиристор позволяет коммутировать электрическую цепь при подаче на него управляющего сигнала. Это делает его похожим на транзистор.

Как правило, тиристор имеет три вывода, один из которых управляющий, а два других образуют путь для протекания тока. Как мы знаем, транзистор открывается пропорционально величине управляющего тока. Чем он больше, тем больше открывается транзистор, и наоборот. А у тиристора все устроено иначе. Он открывается полностью, скачкообразно. И что самое интересное, не закрывается даже при отсутствии управляющего сигнала.

Принцип действия

Рассмотрим работу тиристора по следующей простой схеме.

К аноду тиристора подключается лампочка или светодиод, а к ней подсоединяется плюсовой вывод источника питания через выключатель К2. Катод тиристора подключен к минусу питания. После включения цепи на тиристор подается напряжение, однако светодиод не горит.

Если нажать на кнопку К1, ток через резистор поступит на управляющий электрод, и светодиод начал светиться. Часто на схемах его обозначают буквой «G», что обозначает gate, или по-русски затвор (управляющий вывод).

Резистор ограничивает ток управляющего вывода. Минимальный ток срабатывания данного рассматриваемого тиристора составляет 1 мА, а максимально допустимый ток 15 мА. С учетом этого в нашей схеме подобран резистор сопротивлением 1 кОм.

Если снова нажать на кнопку К1, то это не повлияет на тиристор, и ничего не произойдет. Чтобы перевести тиристор в закрытое состояние, нужно отключить питание выключателем К2. Если же снова подать питание, то тиристор вернется в исходное состояние.

Этот полупроводниковый прибор, по сути, представляет собой электронный ключ с фиксацией. Переход в закрытое состояние происходит и тогда, когда напряжение питания на аноде уменьшается до определенного минимума, примерно 0,7 вольта.

Особенности устройства

Фиксация включенного состояния происходит благодаря особенности внутреннего устройства тиристора. Примерная схема выглядит таким образом:

Обычно он представляется в виде двух транзисторов разной структуры, связанных между собой. Опытным путем можно проверить, как работают транзисторы, подключенные по такой схеме. Однако, имеются отличия в вольтамперной характеристике. И еще нужно учитывать, что приборы изначально спроектированы так, чтобы выдерживать большие токи и напряжения. На корпусе большинства таких приборов имеется металлический отвод, на который можно закрепить радиатор для рассеивания тепловой энергии.

Тиристоры выполняются в различных корпусах. Маломощные приборы не имеют теплового отвода. Распространенные отечественные тиристоры выглядят следующим образом. Они имеют массивный металлический корпус и выдерживают большие токи.

Основные параметры тиристоров

• Максимально допустимый прямой ток. Это максимальное значение тока открытого тиристора. У мощных приборов оно достигает сотен ампер.

• Максимально допустимый обратный ток.
• Прямое напряжение. Это падение напряжения при максимальном токе.
• Обратное напряжение. Это максимально допустимое напряжение на тиристоре в закрытом состоянии, при котором тиристор может работать без нарушения его работоспособности.
• Напряжение включения. Это минимальное напряжение, приложенное к аноду. Здесь имеется ввиду минимальное напряжение, при котором вообще возможна работа тиристора.
• Минимальный ток управляющего электрода. Он необходим для включения тиристора.
• Максимально допустимый ток управления.
• Максимально допустимая рассеиваемая мощность.

Динамический параметр

Время перехода тиристора из закрытого состояния в открытое при поступлении сигнала.

Виды тиристоров

Различают несколько разновидностей тиристоров. Рассмотрим их классификацию.

По способу управления разделяют на:

  • Диодные тиристоры, или по-другому динисторы. Они открываются импульсом высокого напряжения, которое подается на катод и анод.
  • Триодные тиристоры, или тринисторы. Они открываются током управления электродом.

Триодные тиристоры в свою очередь разделяются:

  • Управление катодом – напряжение, образующее ток управления, поступает на электрод управления и катод.
  • Управление анодом – управляющее напряжение подходит на электрод и анод.

Запирание тиристора производится:

  • Уменьшением анодного тока – катод меньше тока удержания.
  • Подачей напряжения запирания на электрод управления.

По обратной проводимости тиристоры делятся:

  • Обратно-проводящие – имеют малое обратное напряжение.
  • Обратно-непроводящие – обратное напряжение равно наибольшему прямому напряжению в закрытом виде.
  • С ненормируемым обратным значением напряжения – изготовители не определяют значение этой величины. Такие приборы применяются в местах, где обратное напряжение исключено.
  • Симистор – пропускает токи в двух направлениях.

Используя симисторы, нужно знать, что они действуют условно симметрично. Основная часть симисторов открывается, когда на электрод управления поступает положительное напряжение по сравнению с катодом, а на аноде может быть любая полярность. Но если на анод приходит отрицательное напряжение, а на электрод управления положительное, то симисторы не открываются, и могут выйти из строя.

По быстродействию разделяют по времени отпирания (включения) и времени запирания (отключения).

Разделение тиристоров по мощности

При действии тиристора в режиме ключа наибольшая мощность коммутируемой нагрузки определяется напряжением на тиристоре в открытом виде при наибольшем токе и наибольшей рассеиваемой мощности.

Действующая величина тока на нагрузку не должна быть выше наибольшей рассеиваемой мощности, разделенной на напряжение в открытом виде.

Простая сигнализация на основе тиристора

На основе тиристора можно сделать простую сигнализацию, которая будет реагировать на свет, издавая звук с помощью пьезоизлучателя. На управляющий вывод тиристора подается ток через фоторезистор и подстроечный резистор. Свет, попадая на фоторезистор, уменьшает его сопротивление. И на управляющий вывод тиристора начинает поступать отпирающий ток, достаточный для его открывания. После этого включается пищалка.

Подстроечный резистор предназначен для того, чтобы настроить чувствительность устройства, то есть, порог срабатывания при облучении светом. Самое интересное, что даже при отсутствии света тиристор продолжает оставаться в открытом состоянии, и сигнализирование не прекращается.

Если напротив светочувствительного элемента установить световой луч так, чтобы он светил немного ниже окошечка, то получится простейший датчик дыма. Дым, попадая между источником и приемником света, будет рассеивать свет, что вызовет запуск сигнализации. Для этого устройства обязательно нужен корпус, для того, чтобы на приемник света не поступал свет от солнца или искусственных источников света.

Открыть тиристор можно и другим способом. Для этого достаточно кратковременно подать небольшое напряжение между управляющим выводом и катодом.

Регулятор мощности на тиристоре

Теперь рассмотрим использование тиристора по прямому назначению. Рассмотрим схему простого тиристорного регулятора мощности, который будет работать от сети переменного тока напряжением 220 вольт. Схема простая и содержит всего пять деталей.

• Полупроводниковый диод VD.
• Переменный резистор R1.
• Постоянный резистор R2.
• Конденсатор С.
• Тиристор VS.

Их рекомендованные номинальные значения показаны на схеме. В качестве диода можно использовать КД209, тиристор КУ103В или мощнее. Резисторы желательно использовать мощностью не менее 2 ватт, конденсатор электролитический на напряжение не менее 50 вольт.

Эта схема регулирует лишь один полупериод сетевого напряжения. Если представить, что мы из схемы убрали все элементы, кроме диода, то он будет пропускать только полуволну переменного тока, и на нагрузку, к примеру, на паяльник или лампу накаливания поступит лишь половина мощности.

Тиристор позволяет пропускать дополнительные, условно говоря, кусочки полупериода, срезанного диодом. При изменении положения переменного резистора R1 напряжение на выходе будет меняться.

К положительному выводу конденсатора включен управляющий вывод тиристора. Когда напряжение на конденсаторе возрастает до напряжения включения тиристора, он открывается и пропускает определенную часть положительного полупериода. Переменный резистор будет определять скорость зарядки конденсатора. А чем быстрее он зарядится, тем раньше откроется тиристор, и успеет до смены полярности пропустить часть положительного полупериода.

На конденсатор отрицательная полуволна не поступает, и напряжение на нем одной полярности, поэтому не страшно, что он имеет полярность. Схема позволяет изменять мощность от 50 до 100%. Для паяльника это в самый раз подходит.

Тиристор пропускает ток в одном направлении от анода к катоду. Но существуют разновидности, которые пропускают ток в обоих направлениях. Они называются симметричные тиристоры или симисторы. Они используются для управления нагрузкой в цепях переменного тока. Существует большое количество схем регуляторов мощности на их основе.

Похожие темы:

 

electrosam.ru

Режим прямой проводимости

Когда тиристор
находится во включенном состоянии, все
три перехода смещены в прямом направлении.
Дырки инжектируются из области p1, а
электроны — из области n2, и структура
n1-p2-n2 ведёт себя аналогично насыщенному
транзистору с удалённым диодным контактом
к области n1. Следовательно, прибор в
целом аналогичен p-i-n (p+-i-n+)-диоду…

Отличие динистора от тринистора

Принципиальных
различий между динистором и тринистором
нет, однако если включение динистора
происходит при достижении между выводами
анода и катода определённого напряжения,
зависящего от типа данного динистора,
то в тринисторе напряжение включения
может быть специально снижено, путём
подачи импульса тока определённой
длительности и величины на его управляющий
электрод при положительной разности
потенциалов между анодом и катодом, и
конструктивно тринистор отличается
только наличием управляющего электрода.
Тринисторы являются наиболее
распространёнными приборами из
«тиристорного» семейства.

Выключение
тиристоров производят либо снижением
тока через тиристор до значения Ih,
либо изменением полярности напряжения
между катодом и анодом. В настоящее
время разработан целый класс запираемых
тиристоров
,
которые переходят в закрытоесостояние после подачи на управляющий
электрод напряжения отрицательной
полярности.

Симистор

Симистор представляет
собой тиристор, подобный двум
встречно-параллельным тиристорам,
который может проводить электрический
ток в обоих направлениях. Конструктивно
это более сложный прибор, чем динистор
или тринистор.

Характеристики тиристоров

Современные
тиристоры изготовляют на токи от 1 мА
до 10 кА; на напряжения от нескольких В
до нескольких кВ; скорость нарастания
в них прямого тока достигает 109
А/сек, напряжения — 109
В/сек, время включения составляет
величины от нескольких десятых долей
до нескольких десятков мкс, время
выключения — от нескольких единиц
до нескольких сотен мкс; кпд
достигает 99 %.

Применение
тиристоров,,,

studfiles.net

§16.10. Области применения транзисторов и тиристоров

Карточка № 16.9 (377).

Тиристоры

Каким способом нельзя перевести тиристор из

Уменьшением до

нуля

напряжения

на

94

открытого состояния в закрытое?

 

основных электродах

 

 

 

 

 

 

 

 

 

 

 

Изменением полярности

напряжения

на

144

 

 

основных электродах

 

 

 

 

 

 

 

 

 

 

 

Изменением полярности

напряжения

на

194

 

 

управляющем электроде

 

 

 

 

 

 

 

 

 

Сколько n-р-переходовимеет метричный

3

 

 

 

45

тиристор?

 

4

 

 

 

95

 

 

 

 

 

 

 

 

 

5

 

 

 

145

Чему равны коэффициенты α1 и α2 на участке

Близки к единице

 

 

 

46

1 кривой, изображенной на рис. 16.31?

 

 

 

 

 

 

 

Близки к нулю

 

 

 

195

 

 

 

 

 

Что произойдет с коэффициентами α1 и

α2

Изменят знак

 

 

 

96

вблизи точки 2 (см. рис. 16.31)?

 

 

 

 

 

 

 

Быстро возрастут

 

 

 

146

 

 

 

 

 

Чем определяется угол наклона участка 4

Напряжением на основных электродах

 

47

относительно горизонтальной оси? (см.

рис

Напряжением на управляющих электродах

97

16.31)

 

 

 

 

 

Сопротивлением

нагрузки, включенной

147

 

 

последовательно с тиристором

 

 

 

 

 

 

 

 

 

Транзисторы и тиристоры оказались экономически эффективными при замене электронно- вакуумных устройств, их применение дало возможность решить ряд новых задач в электронике в приборостроении.

Следует отметить, что во многих случаях схемы с одним и тем же функциональным назначением могут быть собраны как на транзисторах, так и на тиристорах. Поэтому перед конструктором стоит задача— используя современную элементную базу, разработать наиболее эффективные и экономичные устройства.

Транзисторы и тиристоры применяют в проводной связи и радиосвязи, в телевидении и радиолокации, радионавигации, автоматике и телемеханике, в вычислительной и измерительной технике. Все отрасли современного народного хозяйства требуют постоянного расширения ассортимента и увеличения количества полупроводниковых приборов.

Рис. 16.35. Условные обозначения полевых транзисторов и тиристоров: а — полевой транзистор с управляющимр-n-переходоми каналомл-типа; б — то же, с каналомр-типа; в

— полевойМДП-транзисторс каналомn-типа, г

— то же, с каналомр-типа, д — диннстор; е —

тринистор

Особой областью применения мощных и сверхмощных (на токи в тысячи ампер и напряжения в тысячи вольт) тиристоров является электроэнергетика. Возможность создания малогабаритных, надежных и экономичных статических преобразователей любых параметров тока

открывает огромные перспективы для дальнейшего совершенствования систем передачи и распределения электроэнергии, управления электроприводом и другими электротехническими устройствами.

Схемы электро- и радиотехнических устройств содержат десятки и сотни транзисторов. Для их изображения введены специальные стандартизованные условные обозначения, которые приводятся ниже.

Разнообразие типов транзисторов и тиристоров потребовало их классификации (по материалам и конструктивному оформлению, по принципу действия, по условиям эксплуатации и др.). Основные типовые особенности транзисторов и тиристоров отображены в их маркировке.

studfiles.net

Тиристор | Викитроника вики | FANDOM powered by Wikia

Тири́стор (греч. θυρα — дверь, вход и англ. resistor — резистор) — полупроводниковый электронный прибор, включающий 3 или 4 электронно-дырочных перехода, предназначенный для управления током. В отличие от транзисторов, тиристоры работают только в ключевом режиме.

    Принцип действия тиристора Править

    Тиристор имеет два силовых электрода, пропускающих рабочий ток (катод и анод) и могут иметь управляющий электрод. Тиристор может находиться в двух состояниях: закрытом и открытом. Эти состояния обладают существенно различным сопротивлением между силовыми электродами. В закрытом состоянии сопротивление велико и ток через тиристор не идёт. Открывается тиристор при достижении между силовыми электодами напряжения открывания или током на управляющем электроде. В открытом состоянии сопротивление тиристора резко падает и он проводит ток. Закрытие тиристора происходит при отключении тока или смене его знака.

    Разновидности тиристоров Править

    Тиристоры неуправляемые: а) общее обозначение, б) с обратной проводимостью; управляемые: в) общее обозначение, г) у правлением по аноду, д) с управлением по катоду, е) отключаемый, ж) с обратной проводимостью, з) с двумя управляющими электродами; и) фототиристор; к) оптотиристор; симметричные: л) неуправляемый, м) управляемый.

    Функционально тиристоры различаются на обладающие односторонней и двусторонней проводимостью, и также имеющие управляющий электрод и не имеющие его.

    • динистор (диодный тиристор, диод Шокли) — тиристор с односторонней проводимостью без управляющего электрода;
    • тринистор (триодный тиристор или просто тиристор) — то же с управляющим электродом.
    • симистор — симметричный тиристор.

    Тиристоры с односторонней проводимостью в обратном направлении всегда закрыты. В соответствии с направлением, к котором тиристор может пропускать ток, силовые электроды именуются катодом и анодом (отрицательный и положительный электроды соответственно). Симметричные тиристоры (симисторы) могут управлять током в обоих направлениях.


    1. БСЭ:Тиристор [1].

    ru.electronics.wikia.com

    СРАВНЕНИЕ СВОЙСТВ СИГНАЛОВ ТРАНЗИСТОРА И ТИРИСТОРА




    ⇐ ПредыдущаяСтр 5 из 6Следующая ⇒

     

    12.1. Цель работы.

     

    12.1.1. Изучить принцип действия транзисторов и тиристоров.

     

    12.2. Основные теоретические действия.

     

    Биполярным транзистором называют полупроводниковый прибор с

    двумя р-n переходами и тремя выводами, обеспечивающий усиление

    мощности электрических сигналов.

     
     

    Основой транзистора является кристалл полупроводника, в котором создано два р-n перехода (рис. 12.1.).

     

     

    Рис. 12.1.

     

    Для нормальной работы между выводами транзистора должны быть

    включены источники питания. Их можно включить таким образом, чтобы оба перехода оказались под обратным напряжением. Этот режим работы транзистора называют отсечкой. Все токи транзистора практически равны нулю. Если все переходы включить на прямое напряжение, то такой режим работы транзистора называют насыщением. Транзистор работает в активном режиме, если эмиттерный переход находится под прямым напряжением, (открыт) а коллекторный переход под обратным напряжением (закрыт).

    На рис. 12.2. показана схема включения транзистора в актив-

     
     

    ном режиме.

     

    Рис. 12.2.

     

    Для транзистора справедливо уравнение:

     

    Iэ = Iк + Iб.

     

    Данная схема (с общей базой) не дает усиления по току, но дает усиление по напряжению и по мощности.

    Схема с общим эмиттером (рис. 12.3.) дает усиление по току, мощности и по напряжению.

     
     

     

    Рис. 12.3.

     

    Тиристором называется полупроводниковый прибор с тремя и более n-p переходами, который может находится в одном из двух устойчивых состояний: в состоянии низкой проводимости (закрыт) или в состоянии высокой проводимости (открыт).

    Тиристоры можно считать аналогом электрических контактов,

    которые могут быть замкнуты или разомкнуты. Маломощные тиристоры

    применяют в релейных схемах и коммутирующих устройствах. Мощные

    тиристоры применяют при создании управляемых выпрямителей, инверторов и различных преобразователей. У трехэлектродных тиристоров

    имеется вывод, называемый управляющим. Управляющий электрод подключают к источнику, который создает ток управления. При отсутствии тока управления работа тиристора ничем не отличается от работы диодного динистора. При Iупр. = 0 переключение тиристора из закрытого состояния в открытое происходит при меньшем анодном напряжении. Таким образом, работой тиристора можно управлять, воздействуя на объемные заряды в базах. Зависимость напряжения включения от тока управления Uвкл. от тока управления Iупр. называют характеристикой управления тиристора (рис. 2.4.)


     
     

     

    Рис. 12.4.

     

    12.3. План работы.

    12.3.1. Собрать схему рис. 12.5. Последовательно увеличивай-

    те входной потенциал, наблюдая при этом за изменением потенциала

    на выходе.

    12.3.2. Определите взаимосвязь выходного и входного сигналов.

    12.3.3. Аналогично заданиям 12.3.1.и 12.3.2 определить свойства схемы рис. 12.6. Включение тиристора производите размыканием цепи.

    12.3.4. Сравните результаты выполнения пунктов 12.3.1…

    12.3.3.

    12.3.5. Разработайте схему, в которой при достижении контролируемой величиной предельного значения загорается лампа, причем

    лампа не должна гаснуть сама, когда контролируемая величина уменьшилась.

     
     

    Рис. 12.5.

     

     
     

     

    Рис. 12.6.

     

     

    13. Лабораторная работа N13

     

    ОПТОПАРА

    13.1. Цель работы.

     

    13.1.1. Изучить принцип действия оптопары и ее применение в

    схемах автоматики.

     

    13.2. Основные теоретические сведения.

     

    Оптропара это система совместно работающих источника света и приемника света. Источниками света могут быть лампы накаливания, светодиоды видимого и инфракрасного излучения. В качестве фотоприемников используют фотодиоды, тиристоры, фототранзисторы, фотосопротивления.

    Оптопары используют в устройствах гальванической развязки, в устройствах сигнализации, в системах дистанционного управления, в системах регулирования освещенности и многих других.



    Оптопару помещенную в один корпус называют оптроном. Основное применение оптрона – гальваническая развязка. Важнейшими характеристиками этого устройства являются сопротивление изоляции (1012…1014 Ом) и напряжение пробоя – от десятков до нескольких тысяч Вольт.

    При проектировании оптопар и оптронов спектральный состав источника излучения и спектральные свойства приемника стремятся согласовать так, чтобы максимум чувствительности фотоприемника соответствовал диапазону длин волн с наибольшей интенсивностью излучения источника.

    Входные и выходные характеристики оптопар зависят от используемых в них источников и приемников излучения.

    Важным для оптопар является передаточная характеристика.

    Для фоторезисторных оптопар они определяются отношением теплового сопротивления к световому Rт/Cсв, для фотодиодных и фототранзисторных – коэффициентом передачи тока

     

    Ki = iвых/iвх,

    а для фототиристорных минимальным входным током обеспечивающим спрямление характеристики.

    Инерционность оптопар характеризуется временем включения tвкл и выключения tвыкл в импульсном режиме работы и граничной частотой tгр.

    Наиболее быстродействующим являются диодные оптопары, наиболее медленными – фоторезисторные оптопары.

     

    13.3. План работы.

     

    13.3.1. Исследовать в работе оптопару как гальваническую развязку (рис. 13.1.).

    Для этого разработайте систему, в которой электродвигатель включается при достижении предельной температуры. При этом должна отсутствовать электрическая связь между объектом управления (электродвигатель) и измерительным устройством. При разработке используйте транзисторы VT1 — для включения лампы, VT2 — для включения двигателя, компараторы CA1 и СА2, фоторезисторы.

     

    Рис. 13.2.

     

    14. Лабораторная работа N14

     



    Читайте также:

    lektsia.com