Эдс самоиндукции это – ЭДС самоиндукции: основные послулаты — Основы электроники

Самоиндукция — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 3 марта 2015;
проверки требуют 10 правок.
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 3 марта 2015;
проверки требуют 10 правок.

Самоиндукция — это явление возникновения ЭДС индукции в проводящем контуре [1] при изменении протекающего через контур тока.

При изменении тока в контуре пропорционально меняется[2] и магнитный поток через поверхность, ограниченную этим контуром[3]. Изменение этого магнитного потока, в силу закона электромагнитной индукции, приводит к возбуждению в этом контуре индуктивной ЭДС.

Это явление и называется самоиндукцией. (Понятие родственно понятию взаимоиндукции, являясь как бы его частным случаем).

Направление ЭДС самоиндукции всегда оказывается таким, что при возрастании тока в цепи ЭДС самоиндукции препятствует этому возрастанию (направлена против тока), а при убывании тока — убыванию (сонаправлена с током). Явление самоиндукции проявляется в замедлении процессов исчезновения и установления тока[4].

При сопоставлении силы электрического тока со скоростью в механике и электрической индуктивности с массой в механике ЭДС самоиндукции сходна с силой инерции.

Величина ЭДС самоиндукции пропорциональна скорости изменения силы тока(переменного) i{\displaystyle i}:

E=−Ldidt{\displaystyle {\mathcal {E}}=-L{\frac {di}{dt}}}.

Коэффициент пропорциональности L{\displaystyle L} называется коэффициентом самоиндукции или индуктивностью контура (катушки).

ru.wikipedia.org

определение, формула, применение на практике

«Самоиндукция останавливает рост напряжения в индуктивных цепях». Если ваша работа или увлечение связаны с электричеством вы наверняка слышали подобные высказывания. На самом деле это явление присуще индуктивным цепям, как в явном виде, например, катушек, так и в неявном, такие как паразитные параметры кабеля. В этой статье мы простыми словами расскажем о том, что такое самоиндукция и где она применяется.

Определение

Самоиндукцией называется появление в проводнике электродвижущей силы (ЭДС), направленной в противоположную сторону относительно напряжения источника питания при протекании тока. При этом оно возникает в момент, когда сила тока в цепи изменяется. Изменяющийся электрической ток порождает изменяющееся магнитное поле, оно в свою очередь наводит ЭДС в проводнике.

Это похоже на формулировку закона электромагнитной индукции Фарадея, где сказано:

При прохождении магнитного потока через проводник, в последнем возникает ЭДС. Она пропорциональна скорости изменения магнитного потока (мат. производная по времени).

То есть:

E=dФ/dt,

Где E – ЭДС самоиндукции, измеряется в вольтах, Ф – магнитный поток, единица измерения – Вб (вебер, он же равен В/с)

Индуктивность

Мы уже сказали о том, что самоиндукция присуща индуктивным цепям, поэтому рассмотрим явление самоиндукции на примере катушки индуктивности.

Катушка индуктивности – это элемент, который представляет собой катушку из изолированного проводника. Для увеличения индуктивности увеличивают число витков или внутрь катушки помещают сердечник из магнитомягкого или другого материала.

Единица измерения индуктивности – Генри (Гн). Индуктивность характеризует то, насколько сильно проводник противодействует электрическому току. Так как вокруг каждого проводника, по которому протекает ток, образуется магнитное поле, и, если поместить проводник в переменное поле – в нем возникнет ток. В свою очередь магнитные поля каждого витка катушки складываются. Тогда вокруг катушки, по которой протекает ток, возникнет сильное магнитное поле. При изменении его силы в катушке будет изменяться и магнитный поток вокруг неё.

Согласно закону электромагнитной индукции Фарадея, если катушку будет пронизывать переменный магнитный поток, то в ней возникнет ток и ЭДС самоиндукции. Они будут препятствовать току, который протекал в индуктивности от источника питания к нагрузке. Их еще называют экстратоки ЭДС самоиндукции.

Формула ЭДС самоиндукции на индуктивности имеет вид:

То есть чем больше индуктивность, и чем больше и быстрее изменился ток – тем сильнее будет всплеск ЭДС.

При возрастании тока в катушке возникает ЭДС самоиндукции, которая направлена против напряжения источника питания, соответственно возрастание тока замедлится. То же самое происходит при убывании – самоиндукция приведет к появлению ЭДС, которое будет поддерживать ток в катушке в том же направлении, что и до этого. Отсюда следует, что напряжение на выводах катушки будет противоположным полярности источника питания.

На рисунке ниже вы видите, что при включении/отключении индуктивной цепи ток не резко возникает, а изменяется постепенно. Об этом говорят и законы коммутации.

Другое определение индуктивности звучит так: магнитный поток пропорционален току, но в его формуле индуктивность выступает в качестве коэффициента пропорциональности.

Ф=L*I

Трансформатор и взаимоиндукция

Если расположить две катушки в непосредственной близости, например, на одном сердечнике, то будет наблюдаться явление взаимоиндукции. Пропустим переменный ток по первой, тогда её переменный поток будет пронизывать витки второй и на её выводах появится ЭДС.

Это ЭДС будет зависеть от длины провода, соответственно количества витков, а также от величины магнитной проницаемости среды. Если их расположить просто около друг друга — ЭДС будет низким, а если взять сердечник из магнитомягкой стали – ЭДС будет значительно больше. Собственно, так и устроен трансформатор.

Интересно: такое взаимное влияние катушек друг на друга называют индуктивной связью.

Польза и вред

Если вам понятна теоретическая часть, стоит рассмотреть где применяется явление самоиндукции на практике. Рассмотрим на примерах того, что мы видим в быту и технике. Одно из полезнейших применений – это трансформатор, принцип его работы мы уже рассмотрели. Сейчас встречаются все реже, но ранее ежедневно использовались люминесцентные трубчатые лампы в светильниках. Принцип их работы основан на явлении самоиндукции. Её схемы вы можете увидеть ниже.

После подачи напряжения ток протекает по цепи: фаза — дроссель — спираль — стартер — спираль — ноль.

Или наоборот (фаза и ноль). После срабатывания стартера, его контакты размыкаются, тогда дроссель (катушка с большой индуктивностью) стремится поддержать ток в том же направлении, наводит ЭДС самоиндукции большой величины и происходит розжиг ламп.

Аналогично это явление применяется в цепи зажигания автомобиля или мотоцикла, которые работают на бензине. В них в разрыв между катушкой индуктивности и минусом (массой) устанавливают механический (прерыватель) или полупроводниковый ключ (транзистор в ЭБУ). Этот ключ в момент, когда в цилиндре должна образоваться искра для зажигания топлива, разрывает цепь питания катушки. Тогда энергия, запасенная в сердечнике катушки, вызывает рост ЭДС самоиндукции и напряжение на электроде свечи возрастает до тех пор, пока не наступит пробой искрового промежутка, или пока не сгорит катушка.

В блоках питания и аудиотехнике часто возникает необходимость убрать из сигнала лишние пульсации, шумы или частоты. Для этого используются фильтры разных конфигурации. Один из вариантов это LC, LR-фильтры. Благодаря препятствию роста тока и сопротивлению переменного тока, соответственно, возможно добиться поставленных целей.

Вред ЭДС самоиндукции приносит контактам выключателей, рубильников, розеток, автоматов и прочего. Вы могли заметить что, когда вытаскиваете вилку работающего пылесоса из розетки, очень часто заметна вспышка внутри неё. Это и есть сопротивление изменению тока в катушке (обмотке двигателя в данном случае).

В полупроводниковых ключах дело обстоит более критично – даже небольшая индуктивность в цепи может привести к их пробою, при достижении пиковых значений Uкэ или Uси. Для их защиты устанавливают снабберные цепи, на которых и рассеивается энергия индуктивных всплесков.

Заключение

Подведем итоги. Условиями возникновения ЭДС самоиндукции является: наличие индуктивности в цепи и изменение тока в нагрузке. Это может происходить как в работе, при смене режимов или возмущающих воздействиях, так и при коммутации приборов. Это явление может нанести вред контактам реле и пускателей, так как приводит к образованию дуги при размыкании индуктивных цепей, например, электродвигателей. Чтобы снизить негативное влияние большая часть коммутационной аппаратуры оснащается дугогасительными камерами.

В полезных целях явление ЭДС используется довольно часто, от фильтра для сглаживания пульсаций тока и фильтра частот в аудиоаппаратуре, до трансформаторов и высоковольтных катушек зажигания в автомобилях.

Напоследок рекомендуем просмотреть полезное видео по теме, на которых кратко и подробно рассматривается явление самоиндукции:

Надеемся, теперь вам стало понятно, что такое самоиндукция, как она проявляется и где ее можно использовать. Если возникли вопросы, задавайте их в комментариях под статьей!

Материалы по теме:

samelectrik.ru

Эдс самоиндукции

Изменение тока в
катушке вызывает изменение потока
сцепления самоиндукции, а следовательно
возникает ЭДС.

Явление, при котором
ЭДС возникает в контуре или в катушке
в результате изменения тока в этом
контуре или катушке, называется
самоиндукцией.

ЭДС самоиндукции
обозначается
.

Т.о. ЭДС самоиндукции
пропорциональна индуктивности катушки
и скорости изменения тока в ней.

Если
(ток нарастает), то— отрицательна, т.е. направлена навстречу
току (противо ЭДС), если же(ток убывает), то— положительна, т.е. направлена согласно
с током.

Время нарастания
и уменьшения тока характеризуется
постоянным временем.


«тау»

При включении
катушки в электрическую цепь вокруг
катушки создается магнитное поле, в
котором запасается часть энергии,
израсходованной источниками.

Величина этой
энергии определяется как:

Явление взаимоиндукции

Если две катушки
с током расположены близко друг от
друга, то часть магнитного потока
первой катушки пронизывает витки
второй и наоборот.

Такие
контуры и катушки называют
индуктивно-
или
магнитосвязанными.

Магнитный поток
,
а следовательно и потокосцеплениепропорциональны току в катушкеI1,
т. е.

М– взаимная
индуктивность двух катушек, равная
отношению потокосцепления одной катушки
к току другой.

ЭДС, возникающая
при этом в другой катушке будет равна:

,

где K– коэффициент связи двух катушек,
зависящий от взаимного их расположения
(чем ближе катушка, тем большеKи наоборот).

Однофазный переменный ток

Переменнымназывают такой электрический ток,
который с течением времени изменяется
по величине и по направлению.

Основным достоинством
переменного тока является возможность
его трансформации, а также то, то
электрические машины и аппараты
переменного тока значительно проще и
дешевле, чем постоянного тока.

Время, в течении
которого ток делает полный цикл своих
изменений называется периодом.

Величина, обратная
периоду и численно равная числу периодов
за секунду, называется частотой
.

Значение переменного
тока в любой момент времени называется
мгновенным значением.

Наибольшее из
мгновенных значений называется
максимальным, илиамплитудным
.

Получение
синусоидальной ЭДС

Простейший генератор
переменного тока представляет собой
магнитную систему, состоящую из двух
полюсов, причем, форма полюсов такова,
что магнитная индукция в воздушном
зазоре распределяется по синусоидальному
закону, т.е. значение магнитной индукции
в любой точке
.

Допустим, за время
tрамка развернулась
на угол, тогда
угловая скорость.


угловая скорость (частота)

За один оборот
рамка развернется на угол
,
а время оборота – период (Т), тогда
угловая частотаопределяется:

Многополюсные генераторы

Для
получения промышленной частоты 50Гц
якорь двухполюсного генератора должен
вращаться со скоростью 50 об/с или 3000
об/мин. Если скорость вращения меньше,
то необходимо увеличить число пар
полюсов. У многополюсных генераторов
за 1 оборот якоря ЭДС совершает Р
циклов своих

изменений,
где Р – число пар полюсов. Если число
оборотов в минуту n,
то число циклов в минуту будет
,
а в секунду

studfiles.net

Самоиндукция

Самоиндукцией называется наведение ЭДС в проводнике при изменении электрического тока в этом проводнике.

Когда подается напряжение на катушку электромагнита, ток возрастает не сразу. Он увеличивается постепенно. Нарастание тока тормозится возникшим напряжением, противоположным приложенному. Это напряжение – электродвижущая сила (ЭДС) самоиндукции. Значение ЭДС постепенно  уменьшается, и ток в электромагните возрастает до номинального значения.

Взаимодействие электрического и магнитного полей – причина самоиндукции

Электрическое и магнитное поля взаимосвязаны: электрический ток или меняющееся электрическое поле создает магнитное поле.

В свою очередь, меняющееся магнитное поле создает электрическое поле.

Рассмотрим процессы в проводящем контуре, когда в нем меняется электрический ток (например, его включают или выключают).

  • В проводнике, помещенном в меняющееся магнитное поле, наводится ЭДС.
  • Если в проводнике меняется величина электрического тока – возникает меняющееся магнитное поле.
  • Меняющееся магнитное поле, созданное током в проводнике, наводит ЭДС самоиндукции в этом же проводнике.

Не во всех электрических цепях возникает эффект самоиндукции.  Лампочка накаливания мгновенно вспыхивает при подаче тока, и мгновенно гаснет при его отключении, а в электромагните, на который подается и выключается постоянное напряжение, процессы растянуты во времени. У лампочки и электромагнита разная инерционность.

В механике мерой инерционности является масса: чтобы привести в движение массивный предмет, нужно прикладывать усилие в течение некоторого времени.

В электротехнике мерой инерционности является величина, названная индуктивностью.  Она обозначается символом L . Единица измерения индуктивности – Генри (Гн), а также производные единицы: миллиГенри (мГн), микроГенри (мкГн) и так далее. Чем больше индуктивность цепи, тем дольше и мощнее протекают переходные процессы. Лампочка накаливания имеет очень малую индуктивность, а у электромагнита индуктивность большая.

В радиотехнике и электротехнике используются дроссели – детали, имеющие нормированные значения индуктивности.

На рисунке приведена схема опыта, демонстрирующего явление самоиндукции.

Катушка, намотанная на ферритовый сердечник, имеет значительную индуктивность. Источник питания – батарейка с номиналом полтора вольта. Пока тумблер находится во включенном состоянии, лампочка горит тускло, поскольку напряжения батарейки для нее недостаточно. После размыкания тумблера лампочка вспыхивает ярко и потом гаснет.

Почему лампочка вспыхивает после отключения напряжения питания? Через нее разряжается ЭДС самоиндукции, наведенная в катушке в момент выключения напряжения.

Но почему свет не просто продолжает гореть, а вспыхивает ярче, чем при включенном тумблере? ЭДС самоиндукции превышает номинальное напряжение батарейки. Рассмотрим, от чего зависит такой эффект.

От чего зависит ЭДС самоиндукции?

ЭДС самоиндукции, возникающая в электрической цепи, зависит от ее индуктивности и от скорости изменения тока в цепи.

Скорость изменения тока имеет важное значение. Если он мгновенно выключается,  то есть скорость изменения очень большая, то и ЭДС самоиндукции велико.  Наведенное напряжение разряжается через параллельные ветви цепи (в опыте с лампочкой – через лампочку).

Самоиндукция и переходные процессы в электрических цепях

Индуктивность электрической плитки или лампочки накаливания очень мала, и ток в этих электроприборах, при включении и выключении, возникает или исчезает практически мгновенно. Индуктивность электродвигателя велика, и он «выходит на режим» в течение нескольких минут.

Если выключить ток в большом электромагните с большим значением индукции, допустив высокую скорость уменьшения тока, то между контактами выключателя вспыхивает искра, а в случае большого тока может загореться вольтова дуга. Это опасное явление, поэтому в цепях с большой индуктивностью ток снижают постепенно, используя реостат (элемент с переменным электрическим сопротивлением).

Безопасное отключение электроэнергии – серьезна проблема. На все выключатели действуют «ударные нагрузки», возникающие из-за ЭДС самоиндукции при отключении тока, и выключатели «искрят». Для каждого типа выключателей указывается максимальное значение тока, которое можно коммутировать. Если ток превышает допустимое значение, в выключателе может вспыхнуть  электрическая дуга.

На опасных производствах, в угольных шахтах, хранилищах нефтепродуктов простое искрение выключателей недопустимо.  Здесь применяются взрывобезопасные выключатели, надежно защищенные герметичным пластмассовым корпусом. Цена таких выключателей в десятки раз выше, чем  обычных – это необходимая плата за безопасность.

 

fizikatyt.ru

ЭДС самоиндукции — это… Что такое ЭДС самоиндукции?



ЭДС самоиндукции

Самоиндукция — явление возникновения ЭДС индукции в проводящем контуре при изменении протекающего через контур тока.

При изменении тока в контуре меняется поток магнитной индукции через поверхность, ограниченную этим контуром, изменение потока магнитной индукции приводит к возбуждению ЭДС самоиндукции. Направление ЭДС оказывается таким, что при увеличении тока в цепи эдс препятствует возрастанию тока, а при уменьшении тока — убыванию.

Величина ЭДС пропорциональна скорости изменения силы тока I и индуктивности контура L:

.

За счёт явления самоиндукции в электрической цепи с источником ЭДС при замыкании цепи ток устанавливается не мгновенно, а через какое-то время. Аналогичные процессы происходят и при размыкании цепи, при этом величина ЭДС самоиндукции может значительно превышать ЭДС источника. Чаще всего в обычной жизни это используется в катушках зажигания автомобилей. Типичное напряжение самоиндукции при напряжении питающей батареи 12В составляет 7-25кВ.

Wikimedia Foundation.
2010.

Смотреть что такое «ЭДС самоиндукции» в других словарях:

  • эдс самоиндукции — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN self induced emfFaraday voltageinductance voltageself induction… …   Справочник технического переводчика

  • Самоиндукция — это явление возникновения ЭДС индукции в проводящем контуре [1]при изменении протекающего через контур тока. При изменении тока в контуре пропорционально меняется[2] и магнитный поток через поверхность, ограниченную этим контуром[3]. Изменение… …   Википедия

  • ИНДУКТИВНОСТЬ — (от лат. inductio наведение, побуждение), величина, характеризующая магн. св ва электрич. цепи. Ток, текущий в проводящем контуре, создаёт в окружающем пр ве магн. поле, причём магнитный поток Ф, пронизывающий контур (сцепленный с ним), прямо… …   Физическая энциклопедия

  • реактивная мощность — Величина, равная при синусоидальных электрическом токе и электрическом напряжении произведению действующего значения напряжения на действующее значение тока и на синус сдвига фаз между напряжением и током двухполюсника. [ГОСТ Р 52002 2003]… …   Справочник технического переводчика

  • ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ — раздел физики, охватывающий знания о статическом электричестве, электрических токах и магнитных явлениях. ЭЛЕКТРОСТАТИКА В электростатике рассматриваются явления, связанные с покоящимися электрическими зарядами. Наличие сил, действующих между… …   Энциклопедия Кольера

  • электрический трансформатор — электрический машина, не имеющая подвижных частей и преобразующая переменный ток одного напряжения в переменный ток другого напряжения. В простейшем случае состоит из магнитопровода (сердечника) и расположенных на нём двух обмоток  первичной и… …   Энциклопедический словарь

  • Импульсный стабилизатор напряжения — Импульсный стабилизатор напряжения  это стабилизатор напряжения, в котором регулирующий элемент работает в ключевом режиме[1], то есть большую часть времени он находится либо в режиме отсечки, когда его сопротивление максимально, либо в… …   Википедия

  • Катушка индуктивности — У этого термина существуют и другие значения, см. Катушка (значения). Катушка индуктивности (дроссель) на материнской плате компьютера …   Википедия

  • Индуктивность — Размерность L2MT−2I−2 Единицы измерения СИ Гн СГС …   Википедия

  • Диод — У этого термина существуют и другие значения, см. Диод (значения). Четыре диода и диодный мост. Диод (от др. греч …   Википедия

dic.academic.ru

Самоиндукция — это… Что такое Самоиндукция?

Самоиндукция — это явление возникновения ЭДС индукции в проводящем контуре [1]при изменении протекающего через контур тока.

При изменении тока в контуре пропорционально меняется[2] и магнитный поток через поверхность, ограниченную этим контуром[3]. Изменение этого магнитного потока, в силу закона электромагнитной индукции, приводит к возбуждению в этом контуре индуктивной ЭДС.

Это явление и называется самоиндукцией. (Понятие родственно понятию взаимоиндукции, являясь как бы его частным случаем).

Направление ЭДС самоиндукции всегда оказывается таким, что при возрастании тока в цепи ЭДС самоиндукции препятствует этому возрастанию (направлена против тока), а при убывании тока — убыванию (сонаправлена с током). Этим свойством ЭДС самоиндукции сходна с силой инерции.

Величина ЭДС самоиндукции пропорциональна скорости изменения силы тока :

.

Коэффициент пропорциональности называется коэффициентом самоиндукции или индуктивностью контура (катушки).

Самоиндукция и синусоидальный ток

В случае синусоидальной зависимости тока, текущего через катушку, от времени, ЭДС самоиндукции в катушке отстает от тока по фазе на (то есть на 90°), а амплитуда этой ЭДС пропорциональна амплитуде тока, частоте и индуктивности (). Ведь скорость изменения функции — это её первая производная, а .

Для расчета более или менее сложных схем, содержащих индуктивные элементы, то есть витки, катушки итп устройства, в которых наблюдается самоиндукция, (особенно, полностью линейных, то есть не содержащих нелинейных элементов[4]) в случае синусоидальных токов и напряжений применяют метод комплексных импедансов или, в более простых случаях, менее мощный, но более наглядный его вариант — метод векторных диаграмм.

Заметим, что всё описанное применимо не только непосредственно к синусоидальным токам и напряжениям, но и практически к произвольным, поскольку последние могут быть практически всегда разложены в ряд или интеграл Фурье и таким образом сведены к синусоидальным.

В более или менее непосредственной связи с этим можно упомянуть о применении явления самоиндукции (и, соответственно катушек индуктивности) в разнообразных колебательных контурах, фильтрах, линиях задержки и других разнообразных схемах электроники и электротехники.

Самоиндукция и скачок тока

За счёт явления самоиндукции в электрической цепи с источником ЭДС при замыкании цепи ток устанавливается не мгновенно, а через какое-то время. Аналогичные процессы происходят и при размыкании цепи, при этом (при резком размыкании) величина ЭДС самоиндукции может в этот момент значительно превышать ЭДС источника.

Чаще всего в обычной жизни это используется в катушках зажигания автомобилей. Типичное напряжение зажигания при напряжении питающей батареи 12В составляет 7-25 кВ. Впрочем, превышение ЭДС в выходной цепи над ЭДС батареи здесь обусловлено не только резким прерыванием тока, но и коэффициентом трансформации, поскольку чаще всего используется не простая катушка индуктивности, а катушка-трансформатор, вторичная обмотка которой как правило имеет во много раз большее количество витков (то есть, в большинстве случаев схема несколько более сложна, чем та, работа которой полностью объяснялось бы через самоиндукцию; однако физика ее работы и в таком варианте отчасти совпадает с физикой работы схемы с простой катушкой).

Это явление применяется и для поджига люминесцентных ламп в стандартной традиционной схеме (здесь речь идет именно о схеме с простой катушкой индуктивности — дросселем).

Кроме того, его надо учитывать всегда при размыкании контактов, если ток течет по нагрузке с заметной индуктивностью: возникающий скачок ЭДС может приводить к пробою межконтактного промежутка и/или другим нежелательным эффектам, для подавления которых в этом случае, как правило, необходимо принимать разнообразные специальные меры.

Примечания

  1. Контур может быть и многовитковым — то есть, в частности, катушкой. В этом случае, так же как и в случае одиночного контура, строго говоря, контур должен быть замкнутым (например, через вольтметр, измеряющий ЭДС), но на практике при (очень) большом количестве витков различие ЭДС в полностью замкнутом контуре и в контуре с разрывом (геометрически даже большим по сравнению с размером катушки) может быть пренебрежимым.
  2. Поскольку магнитный поток через контур пропорционален току в контуре. Для тонкого жесткого контура (для какового случая это утверждение и является точным) точная пропорциональность очевидна исходя из закона Био-Савара, так как исходя из него вектор магнитной индукции просто пропорционален току, а поток этого вектора (что и называется магнитным потоком) через фиксированную (она не меняется при жестком контуре) поверхность тогда тоже пропорционален току. Формально это записывается в виде равенства: магнитный поток = коэффициент самоиндукции• ток в контуре.
  3. В случае сложной формы контура, например, если контур многовитковый (катушка), поверхность, ограниченная контуром (или, как говорят, «натянутая на контур») оказывается достаточно сложной, что ничуть не меняет сути описываемого явления. Для упрощения понимания случая многовитковых контуров (катушек) можно (приближенно) считать поверхность, натянутую на такой контур, состоящей из множества (стопки) поверхностей, каждая из которых натянута на свой отдельный единичный виток.
  4. Сами индуктивные элементы являются линейными, то есть подчиняются линейному дифференциальному уравнению, приведенному в статье выше. Впрочем, это уравнение в реальности выполняется лишь приближенно, так что индуктивные элементы являются линейными также лишь приближенно (хотя иногда и с крайне хорошей точностью). Также в реальности встречаются отклонения от идеального уравнения, носящие линейный характер (например, связанные с упругими деформациями катушки в линейном приближении).

Ссылки

dic.academic.ru

ЭДС самоиндукции и индуктивность цепи

Дата публикации: .

При замыкании выключателя в цепи, представленной на рисунке 1, возникнет электрический ток, направление которого показано одинарными стрелками. С появлением тока возникает магнитное поле, индукционные линии которого пересекают проводник и индуктируют в нем электродвижущую силу (ЭДС). Как было указано в статье «Явление электромагнитной индукции», эта ЭДС называется ЭДС самоиндукции. Так как всякая индуктированная ЭДС по правилу Ленца направлена против причины, ее вызвавшей, а этой причиной будет ЭДС батареи элементов, то ЭДС самоиндукции катушки будет направлена против ЭДС батареи. Направление ЭДС самоиндукции на рисунке 1 показано двойными стрелками.

Таким образом, ток устанавливается в цепи не сразу. Только когда магнитный поток установится, пересечение проводника магнитными линиями прекратится и ЭДС самоиндукции исчезнет. Тогда в цепи будет протекать постоянный ток.

Рисунок 1. Электродвижущая сила самоиндукции в момент замыкания цепи направлена против ЭДС источника напряженияРисунок 2. График постоянного тока

На рисунке 2 дано графическое изображение постоянного тока. По горизонтальной оси отложено время, по вертикальной оси – ток. Из рисунка видно, что если в первый момент времени ток равен 6 А, то в третий, седьмой и так далее моменты времени он также и будет равен 6 А.

На рисунке 3 показано, как устанавливается ток в цепи после включения. ЭДС самоиндукции, направленная в момент включения против ЭДС батареи элементов, ослабляет ток в цепи, и поэтому в момент включения ток равен нулю. Далее в первый момент времени ток равен 2 А, во второй момент времени – 4 А, в третий – 5 А, и только спустя некоторое время в цепи устанавливается ток 6 А.

Рисунок 3. График нарастания тока в цепи с учетом ЭДС самоиндукцииРисунок 4. ЭДС самоиндукции в момент размыкания цепи направлена одинаково с ЭДС источника напряжения

При размыкании цепи (рисунок 4) исчезающий ток, направление которого показано одинарной стрелкой, будет уменьшать свое магнитное поле. Это поле, уменьшаясь от некоторой величины до нуля, будет вновь пересекать проводник и индуктировать в нем ЭДС самоиндукции.

При выключении электрической цепи с индуктивностью ЭДС самоиндукции будет направлена в ту же сторону, что и ЭДС источника напряжения. Направление ЭДС самоиндукции показано на рисунке 4 двойной стрелкой. В результате действия ЭДС самоиндукции ток в цепи исчезает не сразу.

Таким образом, ЭДС самоиндукции всегда направлена против причины, ее вызвавшей. Отмечая это ее свойство, говорят что ЭДС самоиндукции имеет реактивный характер.

Графически изменение тока в нашей цепи с учетом ЭДС самоиндукции при замыкании ее и при последующем размыкании в восьмой момент времени показано на рисунке 5.

Рисунок 5. График нарастания и исчезновения тока в цепи с учетом ЭДС самоиндукцииРисунок 6. Индукционные токи при размыкании цепи

При размыкании цепей, содержащих большое количество витков и массивные стальные сердечники или, как говорят, обладающих большой индуктивностью, ЭДС самоиндукции может быть во много раз больше ЭДС источника напряжения. Тогда в момент размыкания воздушный промежуток между ножом и неподвижным зажимом рубильника будет пробит и появившаяся электрическая дуга будет плавить медные части рубильника, а при отсутствии кожуха на рубильнике может ожечь руки человека (рисунок 6).

В самой цепи ЭДС самоиндукции может пробить изоляцию витков катушек, электромагнитов и так далее. Во избежание этого в некоторых выключающих приспособлениях устраивают защиту от ЭДС самоиндукции в виде специального контакта, который замыкает накоротко обмотку электромагнита при выключении.

Следует учитывать, что ЭДС самоиндукции проявляет себя не только в моменты включения и выключения цепи, но также и при всяких изменениях тока.

Величина ЭДС самоиндукции зависит от скорости изменения тока в цепи. Так, например, если для одной и той же цепи в одном случае в течение 1 секунды ток в цепи изменился с 50 до 40 А (то есть на 10 А), а в другом случае с 50 до 20 А (то есть на 30 А), то во втором случае в цепи будет индуктироваться втрое большая ЭДС самоиндукции.

Величина ЭДС самоиндукции зависит от индуктивности самой цепи. Цепями с большой индуктивностью являются обмотки генераторов, электродвигателей, трансформаторов и индукционных катушек, обладающих стальными сердечниками. Меньшей индуктивностью обладают прямолинейные проводники. Короткие прямолинейные проводники, лампы накаливания и электронагревательные приборы (печи, плитки) индуктивностью практически не обладают и появления ЭДС самоиндукции в них почти не наблюдается.

Магнитный поток, пронизывающий контур и индуктирующий в нем ЭДС самоиндукции, пропорционален току, протекающему по контуру:

Ф = L × I ,

где L – коэффициент пропорциональности. Он называется индуктивностью. Определим размерность индуктивности:

Ом × сек иначе называется генри (Гн).

1 генри = 103; миллигенри (мГн) = 106 микрогенри (мкГн).

Индуктивность, кроме генри, измеряют в сантиметрах:

1 генри = 109 см.

Так, например, 1 км линии телеграфа обладает индуктивностью 0,002 Гн. Индуктивность обмоток больших электромагнитов достигает нескольких сотен генри.

Если ток в контуре изменился на Δi, то магнитный поток изменится на величину Δ Ф:

Δ Ф = L × Δ i .

Величина ЭДС самоиндукции, которая появится в контуре, будет равна (формула ЭДС самоиндукции):

При равномерном изменении тока по времени выражение будет постоянным и его можно заменить выражением . Тогда абсолютная величина ЭДС самоиндукции, возникающая в контуре, может быть найдена так:

На основании последней формулы можно дать определение единицы индуктивности – генри:

Проводник обладает индуктивностью 1 Гн, если при равномерном изменении тока на 1 А в 1 секунду в нем индуктируется ЭДС самоиндукции 1 В.

Как мы убедились выше, ЭДС самоиндукции возникает в цепи постоянного тока только в моменты его включения, выключения и при всяком его изменении. Если же величина тока в цепи неизменна, то магнитный поток проводника постоянен и ЭДС самоиндукции возникнуть не может (так как . В моменты изменения тока в цепи ЭДС самоиндукции мешает изменениям тока, то есть оказывает ему своеобразное сопротивление.

Рисунок 7. Бифилярная обмотка катушки

Часто на практике встречаются случаи, когда нужно изготовить катушку, не обладающую индуктивностью (добавочные сопротивления к электроизмерительным приборам, сопротивления штепсельных реостатов и тому подобные). В этом случае применяют бифилярную обмотку катушки (рисунок 7)

Как нетрудно видеть из чертежа, в соседних проводниках токи проходят в противоположных направлениях. Следовательно, магнитные поля соседних проводников взаимно уничтожаются. Общий магнитный поток и индуктивность катушки будут равны нулю. Для еще более полного уяснения понятия индуктивности приведем пример из области механики.

Как известно из физики, по второму закону Ньютона ускорение, полученное телом под действием силы, пропорционально самой силе и обратно пропорционально массе тела:

или

Сравним последнюю формулу с формулой ЭДС самоиндукции, взяв абсолютное значение ЭДС:

Если в этих формулах изменения скорости во времени уподобить изменению тока во времени , механическую силу – электродвижущей силе самоиндукции, то масса тела будет соответствовать индуктивности цепи.

При равномерном прямолинейном движении a = 0, поэтому F = 0, то есть если на тело не действуют силы, его движение будет прямолинейным и равномерным (первый закон Ньютона).

В цепях постоянного тока величина тока не меняется и поэтому eL = 0.

Источник: Кузнецов М.И., «Основы электротехники» — 9-е издание, исправленное — Москва: Высшая школа, 1964 — 560с.

www.electromechanics.ru