Электромагнитная винтовка – EMG-01A — первая в мире электромагнитная винтовка

EMG-01A — первая в мире электромагнитная винтовка

Основавшие всего год назад Arcflash Labs (электродуговую лабораторию) Дэвид Вирт и Джейсон Мюррей уже смогли поразить мир, выпустив первую в мире коммерческую электромагнитную винтовку EMG-01A. Это оружие стоит 950 долларов США и способна выпускать до 8 снарядов в секунду со скоростью 45 м/с. Так что первые ее владельцы могут стать частью истории.

Небольшая стартап-компания, Arcflash Labs, основанная двумя молодыми инженерами-исследователями, объявила о выпуске первой в мире коммерческой электромагнитной винтовки, получившей название EMG-01A (Electro Magnetic Gun, модель 1, версия «Альфа»).

Это оружие, напечатанное на 3D-принтере, скомпоновано по схеме «буллпап» и использует для разгона снаряда принцип электромагнитного ускорителя масс, так называемой пушки Гаусса.

Ствол винтовки EMG-01A помещен внутри 8 индуктивных катушек (соленоидов), срабатывающих последовательно по мере прохождения снаряда.

То есть здесь реализован принцип так называемого бегущего магнитного поля, используемый в линейных электродвигателях. Каждый соленоид снабжен инфракрасным портом, переключающим ток к соседней катушке в течение наносекунд.

Для питания соленоидов используется литиево-полимерная аккумуляторная батарея 6S LiPo емкостью 1500 мАч, обеспечивающая производство 10 выстрелов без подзарядки. Этот тип батарей используется моделистами и доступен в торговле. О том, что оружие заряжено, сигнализирует светодиодный индикатор. Для выбора режима стрельбы и настройки оружия предусмотрен специальный дисплей.

Концепция оружия Вирта-Мюррея, таким образом, совершенно отлична от конструкции рельсотрона — электромагнитного ускорителя масс, разгоняющего токопроводящий снаряд вдоль металлических направляющих под действием силы Ампера и активно использующегося сегодня рядом корпораций для разработки перспективных электромагнитных орудий.

Несмотря на теоретические преимущества (большая скорость снаряда, отсутствие необходимости хранения запаса зарядов), успехи в создании практических рельсотронов пока очень скромны — масса снаряда относительно невелика, а сами установки еще очень громоздки, энергоемки и пока могут монтироваться только на крупных кораблях.

Чертеж с проекциями винтовки и ее трехмерной моделью.

А вот создателям EMG-01A удалось получить образец по габаритам и массе, идентичный обычной штурмовой винтовке, хотя по мощности он значительно ей уступает. Но винтовка Arcflash Labs пока не претендует на роль боевого или спортивно-охотничьего оружия и скорее является демонстратором технологии, призванным, прежде всего, показать работоспособность выбранной концепции.

Тем не менее, она уже доросла до роли коммерческого продукта — оружия для плинкинга — и вполне способна бороться с такими целями, как пивные банки, стеклянные бутылки или даже тонкий стальной лист толщиной 1 мм. В EMG-01A уже используются некоторые элементы, привычные для стрелков, такие как отъемный магазин (представляет собой что-то вроде гибрида магазина от пистолета Glock и батареи питания), переводчик режимов огня или стандартизованная монтажная планка для установки прицелов.

Дэвид Вирт и Джейсон Мюррей со своими детищами.

EMG-01A стреляет только специальными боеприпасами — цилиндриками диаметром 6,35 мм и длиной 19 мм, весящими 4,6 г и изготовленными из углеродистой стали. В принципе электромагнитная винтовка может стрелять любыми стальными цилиндриками таких размеров и формы, однако ее разработчики все же рекомендуют использовать фирменные пули 2575 Magnetic Armature, специально разработанные для EMG-01A.

Дульная энергия винтовки составляет 5 Дж и сопоставима с классическими моделями пневматики, стреляющими шариками BB. Вполне вероятно, что у существующей конструкции есть резервы и ее создатели могут сделать EMG-01A еще компактнее, легче и мощнее, чтобы расширить область применения, например, для охоты на мелкую дичь или отстрела животных-вредителей.

О более серьезных, военных или полицейских задачах, речь в ближайшем будущем, естественно, пока не идет, для этого требуется гораздо более серьезный прирост могущества оружия. Хотя нельзя исключать какие-либо специальные области применения, например, в космосе, где существует потребность в оружии, не имеющим отдачи.

/Илья Шайдуров, all4shooters.com/

army-news.ru

Винтовка Гаусса – технология и принципы функционирования :: SYL.ru

Каждому любителю научной фантастики хорошо знакомо электромагнитное оружие. Изображаются подобные технологии в виде сочетания механических, электронных и электрических составляющих. Но как выглядит такое оружие в реальной жизни, имеет ли оно хоть малейший шанс на существование?

Технологические особенности

Винтовка Гаусса интересна исследователям одновременно несколькими особенностями. Реализация данной технологии позволит избежать нагрева оружия. Следовательно, его скорострельные качества возрастут до ранее неизведанных пределов. Более того, воплощение технологических задумок в реальность заставит отказаться от гильз, что существенно упростит стрельбу.

По умолчанию стрелять винтовка Гаусса может тонкими узкими снарядами с высочайшей пробивной способностью. Ускорение патрона в данном случае абсолютно не зависит от диаметра.

Для функционирования оружия достаточно подзарядки электрическим током. Что касается известных схем, то в их структуре практически отсутствуют подвижные элементы.

Принцип стрельбы

В настоящее время оружие остается на стадии разработки. Согласно задумке, стрелять оно должно железными патронами. Однако, в отличие от огнестрельных аналогов, в движение снаряды приводятся не давлением пороховых газов, а воздействием магнитного поля.

На самом деле винтовка Гаусса работает согласно довольно примитивному принципу. Вдоль ствола располагается ряд электромагнитных катушек. Патроны заряжаются из магазина механическим способом. Одна из катушек подтягивает заряд. Как только патрон достигает средины ствола, активизируется следующая катушка, благодаря чему осуществляется его разгон.

Последовательное размещение вдоль ствола произвольного количества катушек теоретически позволяет моментально разогнать снаряд до немыслимых скоростей.

Преимущества и недостатки

Электромагнитная винтовка в теории обладает достоинствами, которые недостижимы для любого другого известного оружия:

  • возможность выбора скорости движения снаряда;
  • отсутствие гильз;
  • выполнение абсолютно бесшумных выстрелов;
  • незначительная отдача;
  • высокая надежность;
  • износостойкость;
  • функционирование в безвоздушном, в частности космическом пространстве.

Несмотря на достаточно простой принцип функционирования и несложную конструкцию, винтовка Гаусса обладает некоторыми недостатками, которые создают преграды для ее использования в качестве оружия.

Основная проблема заключается в низком КПД электромагнитных катушек. Специальные тесты показывают, что лишь порядка 7% заряда преобразуется в кинетическую энергию, чего недостаточно для приведения в движение патрона.

Второй трудностью является существенное потребление и длительное накопление энергии конденсаторами. Вместе с пушкой придется носить достаточно тяжелый и объемный источник питания.

Исходя из вышесказанного, можно сделать вывод, что в современных условиях практически не существует перспектив для реализации идеи в качестве стрелкового оружия. Положительный сдвиг в нужном направлении возможен лишь в случае разработки мощных, автономных и в то же время компактных источников электрического тока.

Прототипы

В настоящее время не существует ни одного удачного примера создания высокоэффективного электромагнитного оружия. Однако это не мешает разработке прототипов. Наиболее удачным примером выступает изобретение инженерного бюро Delta V Engineering.

Пятнадцатизарядное устройство разработчиков позволяет вести достаточно скорострельную стрельбу, выпуская по 7 патронов в секунду. К сожалению, пробивной способности винтовки хватает лишь для поражения стекла и жестяных банок. Электромагнитное оружие обладает весом порядка 4 кг и стреляет пулями калибра 6,5 мм.

На сегодняшний день разработчику пока не удалось достичь успехов на пути преодоления основного недостатка винтовки – крайне низкой стартовой скорости снарядов. Здесь данный показатель составляет всего лишь 43 м/сек. Если проводить параллели, то начальная скорость патрона, выпущенного из пневматической винтовки, почти в 20 раз выше.

Изобретение Гаусса в компьютерных играх

В научно-фантастических играх электромагнитная пушка выступает чуть ли не самым мощным, скорострельным и по-настоящему смертоносным оружием. Забавно, но основная масса спецэффектов является нехарактерной для данного изобретения.

Наиболее ярким примером выступают пистолет и ружье Гаусса, которые доступны персонажам культовой серии игр Fallout. Как и реальный прототип, виртуальное оружие функционирует на основе заряженных электромагнитных частиц.

В игре S.T.A.L.K.E.R. пушка Гаусса обладает низкой скорострельностью, что близко к качествам реально существующих прототипов. В то же время оружие отличается наивысшей мощностью. Согласно описанию, действует пушка на основе энергии аномальных явлений.

Игры серии Master of Orion также дают возможность игроку вооружать космические корабли пушками Гаусса. Здесь оружие выпускает электромагнитные снаряды, сила урона которых не зависит от расстояния до цели.

www.syl.ru

Электромагнитная винтовка Гаусса

В свое время такое устройство, как винтовка Гаусса, получило большое распространение в среде писателей-фантастов и разработчиков компьютерных игр. Ее часто применяют непобедимые герои романов, и именно она обычно является самым мощным оружием в компьютерных играх. Однако на самом деле винтовка Гаусса практически не нашла применения в современном мире, и это связанно в основном с особенностями ее конструкции.

Дело в том, что в основе действия такой винтовки — принцип ускорения массы на основе бегущего магнитного поля. Для этого используют соленоид, в который помещают ствол винтовки, причем он должен быть изготовлен из диэлектрика. Снаряды же винтовка Гаусса использует только те, что изготовлены из ферромагнетика. Таким образом, при подаче тока на соленоид в нем появляется магнитное поле, которое притягивает снаряд внутрь. При этом импульс должен быть очень мощным и кратковременным (чтобы «разогнать» снаряд до максимальной скорости и при этом не затормозить его внутри соленоида).

Такой принцип действия дает модели преимущества, которые недоступны для многих других видов стрелкового вооружения. Она не требует наличия гильз, отличается небольшой отдачей, которая равна импульсу вылетающего снаряда, обладает большим потенциалом бесшумной стрельбы (при наличии достаточно обтекаемых снарядов, начальная скорость которых не будет превышать скорость звука). При этом такая винтовка дает возможность вести стрельбу практически в любых условиях (как говорят, даже в открытом космосе).

И, конечно же, множество «умельцев» ценят то, что винтовка Гаусса своими руками в домашних условиях вполне может быть собрана фактически «из ничего».

Однако некоторые конструктивные особенности и принципы действия, которые характерны для такого изделия, как  Гаусс-винтовка, имеют и отрицательные стороны. Самая главная из них — низкий КПД, который использует от 1 до 10 процентов энергии, переданной конденсатором на соленоид. При этом множественные попытки исправить этот недостаток не принесли существенного результата, а только повысили КПД модели до 27%. Все остальные недостатки, которые имеет винтовка Гаусса, вытекают именно из маленького КПД. Винтовке требуется большое количество энергии для эффективной работы, также она имеет громоздкий вид, большие габариты и вес, а процесс перезарядки довольно длителен.

Выходит, что недостатки такого вида оружия, как винтовка Гаусса, перекрывают большую часть его достоинств. Возможно, с изобретением сверхпроводников, которые можно будет отнести к классу высокотемпературных, и появлением компактных и мощных источников питания это оружие снова привлечет внимание ученых и военных. Хотя большинством практиков считается, что к этому времени будут существовать другие типы оружия, намного превосходящие винтовку Гаусса.

Единственной областью применения данного вида оружия, рентабельной уже в наше время, являются космические программы. Правительства большинства космических держав планировали использовать винтовку Гаусса для установки на космических шаттлах или спутниках.

fb.ru

Электромагнитная винтовка Epic A3 калибром .50BMG

iPeg, новая аэрокосмическая компания, которая помимо прочего занимается разработкой «интеллектуальных» винтовок, начала принимать пред-заказы на первую коммерческую электромагнитную винтовку Epic A3. Винтовка использует обычный патрон .50BMG с модифицированной пулей, которая может ориентироваться на цель.

Существующие «интеллектуальные» винтовки должны быть заново перенацелены на следующую цель либо использовать пули способные менять траекторию в полете. В отличие от них винтовка Epic A3 способна отслеживать несколько целей одновременно, и вести по ним полуавтоматический огонь. Автоматический огонь из такой винтовки не предусмотрен по причине сильной отдачи.

Уникальная буллпап винтовка имеет четыре электромагнитных направляющих, которые позволяют ей работать с целью в более широком диапазоне задач. Широкий диапазон задач, подразумевает возможность стрельбы не только по целям находящимся на линии ствола. Назначение этих направляющих обеспечение конуса сопровождения цели. Каждая направляющая окружена группой электромагнитов, которые меняют траекторию полета пули, чтобы траектория соответствовала заданной компьютером. Данная система носит аббревиатуру SIS, что расшифровывается как Электромагнитная Индукционная Система (Solenoid Induction System).

Несмотря на то, что электромагнитная винтовка Epic A3 обладает возможностями, востребованными различными силовыми структурами, основным потребителем для iPeg должен стать рынок гражданского оружия. Epic A3 предназначена для охотников, которым требуется инструмент, способный надежно поражать добычу на дальних дистанциях.

Винтовка Epic A3 использует обычные батареи для питания системы сопровождения цели, но в стремлении сохранить вес и габариты винтовки используются пьезоэлектрические элементы и регенеративные тормоза, что позволяет использовать часть тепловой и кинетической энергии выстрела для питания системы.

Использование возобновляемой энергии позволяет отказаться от громоздких батарей и помогает ограничить вес. Система возобновления энергии получила обозначение TEC Shield – Система Преобразования Тепловой Энергии (Thermal Energy Conversion system).

Еще одной особенностью новой винтовки является использования обычной оптики с прицельной сеткой, что отличает ее от винтовок с небольшим ЖК-дисплеем, подключенным к камерам с цифровым наложением сетки на экран. Прицельная сетка имеет высокую четкость и использует волоконно-оптические нити, чтобы повысить видимость сетки даже при ярком дневном свете.

Эта винтовка представляет собой новый шаг в области управляемых винтовок, и в конечном итоге способна изменить ваше представление о стрельбе.

Однако винтовка обладает и недостатками. Наличие электромагнитных направляющих делает оружие несколько тяжелым, вес винтовки немного превышает 7,65 кг. Ствол винтовки имеет небольшую длину всего 409 мм, что связанно с законодательными ограничениями.

Также использование системы возобновляемой энергии привело к тому, что пули калибром .50BMG не развивают начальную скорость, характерную для стрельбы из обычных винтовок. Эффективной дальностью для стрельбы из этой винтовки является дистанция в 1100 метров, что связано с применяемыми материалами в конструкции пули.

Однако этой дистанции вполне достаточно для охоты или выполнение других задач. iPeg принимает предварительные заказы на эти винтовки, однако цена в 89 000 долларов является заоблачной для обычных стрелков. Поставка винтовок планируется в 4-м квартале 2015 года.

Если вас заинтересовала эта винтовка, и вы готовы ее приобрести, вы можете разместить свой заказ на сайте разработчика винтовки, который создал ее концепт к 1 апреля и является очередной шуткой немецкого дизайнера.

gunsa.ru

Усовершенствованная автоматическая винтовка Гаусса » Военное обозрение

Винтовка Гаусса – это оружие, способное стрелять ферромагнитными снарядами. Для ускорения пули используется не давление пороховых газов, а магнитное поле. Принцип ее работы довольно прост: вдоль ствольного канала располагаются несколько электромагнитных катушек. Первая пуля попадает в канал ствола механическим способом. Затем первая катушка начинает подтягивать ее. Следующая катушка включается после того, как пуля достигает середины предыдущей. В теории, цепочка из нескольких катушек может разогнать пулю до произвольных скоростей.

Данная технология вызывает интерес у конструкторов из-за нескольких особенностей. Во-первых, из-за практически полного отсутствия нагрева подобное оружие может обладать чрезвычайно высокой скорострельностью. Во-вторых, нет необходимости использовать гильзы, что значительно упрощает казенную часть оружия. В-третьих, нет зависимости между ускорением и диаметром пули, поэтому можно вести стрельбу тонкими и узкими пулями с повышенной пробивной способностью. Кроме того, это электрическое оружие с простой схемой и почти полным отсутствием движущихся частей.

Однако у винтовки Гаусса есть один существенный недостаток – она не работает. Точнее до недавнего времени не было компактной и легкой модели, которая стреляла бы приемлемыми пулями с приемлемой скоростью.

Но недавно специалисты инженерного бюро Delta V Engineering представили прототип рабочей пятнадцатизарядной автоматической винтовки Гаусса. Ее скорострельность — 7,7 выстрелов в секунду. Вес оружия, получившего название CG-42, составляет 4,17кг. Оно использует патроны калибра 6,5×50мм.

Представители бюро не сообщили, какие технологии были использованы при создании винтовки, показав только конечный результат. И хотя их винтовка Гаусса уступает обычным винтовкам, инженерам удалось добиться значительного улучшения всех параметров. Самое главное – удалось добиться увеличения скорости пули в 3.4 раза, а точности – в 2.7 раз. По словам представителей научного бюро, в будущем винтовка Гаусса превзойдет обычное стрелковое оружие.

topwar.ru

Электромагнитное оружие

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ

ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

РЕФЕРАТ

ПО ФИЗИКЕ

Электромагнитное оружие

Выполнил:

 Проверил:

Томск 2014

[1] Оглавление

[2] Введение

[3] Электромагнитные ускорители масс.

[3.1] Пушка Гаусса.

[3.2] Rail gun

[3.3] Лазер

[3.4] Микроволновые пушки

[3.5] Электромагнитная бомба

[3.6] Сверхрадиочастотное оружие.

[4] Воздействие ЭМО на объекты

[5] Тактика применения ЭМО

[6] Защита от ЭМО

[7] Заключение

[8] Список литературы

  1.  Введение

Электромагнитное оружие (ЭМО) — оружие, в котором для придания начальной скорости снаряду используется магнитное поле, либо энергия электромагнитного излучения используется непосредственно для поражения цели.

В первом случае магнитное поле используется как альтернатива взрывчатым веществам в огнестрельном оружии. Во втором — используется возможность наведения токов высокого напряжения и выведения из строя электрического и электронного оборудования в результате возникающего перенапряжения, либо вызывание болевых эффектов или иных эффектов у человека. Оружие второго типа позиционируется как безопасное для людей и служащее для вывода из строя техники противника или приводящих к небоеспособности живой силы противника; относится к категории Оружие нелетального действия.

Помимо магнитных ускорителей масс, существует множество других типов оружия, использующих для своего функционирования электромагнитную энергию. Рассмотрим наиболее известные и распространенные их типы.

  1.  Электромагнитные ускорители масс.
  1.  Пушка Гаусса.

Названа по имени ученого и математика Гаусса, в честь имени которого названы единицы измерения магнитного поля. 10000Гс = 1Тл) можно описать так. В цилиндрической обмотке (соленоиде) при протекании через нее электрического тока возникает магнитное поле. Это магнитное поле начинает втягивать внутрь соленоида железный снаряд, который от этого начинает разгоняться. Если в тот момент, когда снаряд окажется в середине обмотки ток в последней отключить, то втягивающее магнитное поле исчезнет и снаряд, набравший скорость, свободно вылетит через другой конец обмотки. Чем сильнее магнитное поле и чем быстрее оно отключается – тем сильнее вылетает снаряд.

На практике конструкция простейшего гаусс-гана представляет собой намотанную в несколько слоев на диэлектрическую трубку медную проволоку и конденсатор большой емкости. Внутрь трубки перед самым началом обмотки устанавливается железный снаряд (часто гвоздь со спиленной шляпкой) и предварительно заряженный конденсатор при помощи электрического ключа замыкается на обмотку.

Параметры обмотки, снаряда и конденсаторов должны быть согласованы таким образом, чтобы при выстреле к моменту подлета снаряда к середине обмотки ток в последней уже успевал бы уменьшится до минимального значения, т.е. заряд конденсаторов был бы уже полностью израсходован. В таком случае КПД одноступенчатого МУ будет максимальным.

Рисунок . Схема сборки «гаус гана»

  1.  Rail gun 

Помимо “гаусс ганов”, существует ещё как минимум 2 типа ускорителей масс – индукционные ускорители масс (катушка Томпсона) и рельсовые ускорители масс, так же известные как “рэйл ганы” (от англ. “Rail gun” – рельсовая пушка).

Рисунок . Испытательный выстрел Rail Gun

Рисунок . Американский Rail Gun

В основу функционирования индукционного ускорителя масс положен принцип электромагнитной индукции. В плоской обмотке создается быстро нарастающий электрический ток, который вызывает в пространстве вокруг переменное магнитное поле. В обмотку вставлен ферритовый сердечник, на свободный конец которого надето кольцо из проводящего материала. Под действием переменного магнитного потока, пронизывающего кольцо в нём возникает электрический ток, создающий магнитное поле противоположной направленности относительно поля обмотки. Своим полем кольцо начинает отталкиваться от поля обмотки и ускоряется, слетая со свободного конца ферритового стержня. Чем короче и сильнее импульс тока в обмотке, тем мощнее вылетает кольцо.

Иначе функционирует рельсовый ускоритель масс. В нем проводящий снаряд движется между двух рельс — электродов (откуда и получил свое название — рельсотрон), по которым подается ток. Источник тока подключается к рельсам у их основания, поэтому ток течет как бы в догонку снаряду и магнитное поле, создаваемое вокруг проводников с током, полностью сосредоточенно за проводящим снарядом. В данном случае снаряд является проводником с током, помещённым в перпендикулярное магнитное поле, созданное рельсами. На снаряд по всем законам физики действует сила Лоренца, направленная в сторону противоположную месту подключения рельс и ускоряющая снаряд. С изготовлением рельсотрона связан ряд серьезных проблем — импульс тока должен быть настолько мощным и резким, чтобы снаряд не успел бы испарится (ведь через него протекает огромный ток!), но возникла бы ускоряющая сила, разгоняющая его вперед. Поэтому материал снаряда и рельс должен обладать как можно более высокой проводимостью, снаряд как можно меньшей массой, а источник тока как можно большей мощностью и меньшей индуктивность. Однако особенность рельсового ускорителя в том, что он способен разгонять сверхмалые массы до сверх больших скоростей. На практике рельсы изготавливают из безкислородной меди покрытой серебром, в качестве снарядов используют алюминиевые брусочки, в качестве источника питания — батарею высоковольтных конденсаторов, а самому снаряду перед вхождением на рельсы стараются придать как можно большую начальную скорость, используя для этого пневматические или огнестрельные пушки.

Помимо ускорителей масс к электромагнитному оружия относятся источники мощного электромагнитного излучения, такие как лазеры и магнетроны.

  1.  Лазер 

Он известен всем. Состоит из рабочего тела, в котором при выстреле создается инверсная населенность квантовых уровней электронами, резонатора для увеличения пробега фотонов внутри рабочего тела и генератора, который эту самую инверсную населённость будет создавать. В принципе, инверсную населённость можно создать в любом веществе и в наше время проще сказать, из чего НЕ делают лазеры. Лазеры могут классифицироваться по рабочему телу: рубиновые, СО2, аргоновые, гелий-неоновые, твердотельные (GaAs), спиртовые, и т.д., по режиму работы: импульсные, непрерывные, псевдонепрерывные, могут классифицироваться по количеству используемых квантовых уровней: 3х уровневый, 4х уровневый, 5и уровневые. Так же лазеры классифицируют по частоте генерируемого излучения — микроволновые, инфракрасные, зеленые, ультрафиолетовые, рентгеновские, и т.д. КПД лазера обычно не превышает 0,5%, однако сейчас ситуация изменилась – полупроводниковые лазеры (твердотельные лазеры на основе GaAs) имеют КПД свыше 30% и в наши дни могут обладать мощностью выходного излучения аж до 100(!) Вт, т.е. сравнимую с мощными «классическими» рубиновыми или СО2 лазерами. Кроме того, существуют газодинамические лазеры, менее всего похожие на другие типы лазеров. Их отличие в том, что они способны производить непрерывный луч огромной мощности, что позволяет использовать их для военных целей. В сущности, газодинамический лазер представляет собой реактивный двигатель, перпендикулярно газовому потоку в котором стоит резонатор. Раскаленный газ, выходящий из сопла, находится в состоянии инверсной населённости. Стоит добавить к нему резонатор – и многомеговаттный поток фотонов полетит в пространство.

  1.  Микроволновые пушки

Основным функциональным узлом является магнетрон — мощный источник микроволнового излучения. Недостатком микроволновых пушок является их чрезмерная даже по сравнению с лазерами опасность применения — микроволновое излучение хорошо отражается от препятствий и в случае стрельбы в закрытом помещении облучению подвергнется буквально все внутри! Кроме того, мощное микроволновое излучение смертельно для любой электроники, что так же надо учитывать.

Рисунок . Передвижная радиолокационная система

  1.  Электромагнитная бомба

Электромагни́тная бо́мба, также называемая «электро́нная бомба» — генератор радиоволн высокой мощности, приводящих к уничтожению электронного оборудования командных пунктов, систем связи и компьютерной техники. Создаваемая электрическая наводка по мощности воздействия на электронику оказывается сравнимой с ударом молнии. Относится к классу «оружие нелетального действия».

По принципу разрушения техники разделяются на низкочастотные, использующие для доставки разрушающего напряжения наводку в линиях электропередач, и высокочастотные, вызывающие наводку непосредственно в элементах электронных устройств и обладающие высокой проникающей способностью — достаточно мелких щелей для вентиляции для проникновения волн внутрь оборудования.

Впервые эффект электромагнитной бомбы был зафиксирован в 50-е годы XX века, когда проходили испытания американской водородной бомбы. Взрыв был произведён в атмосфере над Тихим океаном. Результатом было нарушение электроснабжения на Гаваях из-за воздействия электромагнитного импульса высотного ядерного взрыва.

Изучение показало, что взрыв имел непредвиденные последствия. Лучи достигли Гавайских островов, расположенных в сотнях километров от места испытания, и радиопередачи были нарушены до самой Австралии. Взрыв бомбы, помимо мгновенных физических результатов, воздействовал на электромагнитные поля на огромном расстоянии. Однако в дальнейшем взрыв ядерной бомбы как источник электромагнитной волны был признан неэффективным из-за малой точности, а также множества побочных эффектов и неприемлемости в политическом плане.

В качестве одного из вариантов генератора была предложена конструкция в форме цилиндра, в котором создаётся стоячая волна; в момент активации стенки цилиндра быстро сжимаются направленным взрывом и разрушаются на торцах, в результате чего создаются волна очень малой длины. Поскольку энергия излучения обратно пропорциональна длине волны, в результате уменьшения объёма цилиндра мощность излучения резко возрастает.

Доставка этого устройства может быть произведена любым известным способом — от авиации до артиллерии. Применяются как и более мощные боеприпасы с использованием в боевой части ударно-волновых излучателей (УВИ), так и менее мощные с использованием пьезоэлектрических генераторов частоты (ПГЧ)

  1.  Сверхрадиочастотное оружие.

Радиочастотное — оружие, действие которого основано на использовании электромагнитных излучений сверхвысокой (СВЧ) частоты (0,3—30 ГГц) или очень низкой частоты (менее 100 Гц). Объектами поражения этого оружия является живая сила. При этом имеется в виду способность электромагнитных излучений в диапазоне сверхвысоких и очень низких частот вызывать повреждения жизненно важных органов человека (мозга, сердца, сосудов). Оно способно воздействовать на психику, нарушая при этом восприятие окружающей действительности, вызывая слуховые галлюцинации и др.

Когда впервые это оружие было испробовано, наблюдалось много изменений в поведении организмов (в данном случае подопытных крыс). Например, крысы «шарахались» от стен, «защищались» от чего-то. Некоторые подверглись дезориентации, некоторые погибли (разрыв мозга или сердечной мышцы). В журнале «Наука и жизнь» описывались подобные опыты с «электромагнитным стимулированием мозга», результат их был таков: у крыс нарушалась работа памяти и пропадали условные рефлексы.

Так же существует теория, согласно которой с помощью электромагнитного излучения можно влиять на психику человека, не разрушая организм, а вызывая определенные эмоции либо склонять к каким-либо действиям.

Рисунок . Танк Будущего РФ

  1.  Воздействие ЭМО на объекты

Принцип действия ЭМО основан на кратковременном электромагнитном излучении большой мощности, способном вывести из строя радиоэлектронные устройства, составляющие основу любой информационной системы. Элементная база радиоэлектронных устройств весьма чувствительна к энергетическим перегрузкам, поток электромагнитной энергии достаточно высокой плотности способен выжечь полупроводниковые переходы, полностью или частично нарушив их нормальное функционирование. Как известно, напряжения пробоя переходов невысоки и составляют от единиц до десятков вольт в зависимости от типа прибора. Так, даже у кремниевых сильноточных биполярных транзисторов, обладающих повышенной прочностью к перегревам, напряжение пробоя находится в пределах от 15 до 65 В, а у арсенидгаллиевых приборов этот порог равен 10 В. ЗУ, составляющие существенную часть любого компьютера, имеют пороговые напряжения порядка 7 В. Типовые логические ИС на МОП-структурах – от 7 до 15 В, а микропроцессоры обычно прекращают свою работу при напряжениях 3,3–5 В.

Помимо необратимых отказов импульсное электромагнитное воздействие может вызвать восстанавливаемые отказы, или парализацию радиоэлектронного устройства, когда из-за возникающих перегрузок оно на какой-то отрезок времени теряет чувствительность. Возможны также ложные срабатывания чувствительных элементов, что может привести, например, к детонации боеголовок ракет, бомб, артиллерийских снарядов и мин.

По спектральным характеристикам ЭМО можно разделить на два вида: низкочастотное, создающее электромагнитное импульсное излучение на частотах ниже 1 МГц, и высокочастотное, обеспечивающее излучение СВЧ-диапазона. Оба вида ЭМО имеют различия также в способах реализации и в какой-то мере в путях воздействия на радиоэлектронные устройства. Так, проникновение низкочастотного электромагнитного излучения к элементам устройств обусловлено, в основном, наводками на проводную инфраструктуру, включающую телефонные линии, кабели внешнего питания, подачи и съема информации. Пути же проникновения электромагнитного излучения СВЧ-диапазона более обширны – они еще включают прямое проникновение в радиоэлектронную аппаратуру через антенную систему, поскольку СВЧ-спектр охватывает и рабочую частоту подавляемой аппаратуры. Имеющее место проникновение энергии через конструктивные отверстия и стыки зависит от их размеров и длины волны электромагнитного импульса – наиболее сильная связь возникает на резонансных частотах, когда геометрические размеры соизмеримы с длиной волны. На волнах, длиннее резонансной, связь резко уменьшается, поэтому воздействие низкочастотного ЭМО, зависящее от наводок через отверстия и стыки в корпусе аппаратуры, невелико. На частотах же выше резонансной спад связи происходит медленнее, но из-за множества типов колебаний в объеме аппаратуры возникают острые резонансы.

Если поток СВЧ-излучения достаточно интенсивен, то воздух в отверстиях и стыках ионизируется и становится хорошим проводником, экранирующим аппаратуру от проникновения электромагнитной энергии. Таким образом, увеличение падающей на объект энергии может привести к парадоксальному уменьшению энергии, воздействующей на аппаратуру, и, как следствие, к снижению эффективности ЭМО.

Электромагнитное оружие обладает также биологическим воздействием на животных и человека, в основном связанное с их нагревом. При этом страдают не только непосредственно нагреваемые органы, но и те, что напрямую не контактируют с электромагнитным излучением. В организме возможны хромосомные и генетические изменения, активация и дезактивация вирусов, изменения иммунологических и даже поведенческих реакций. Опасным считается подъем температуры тела на 1оС, и продолжение облучения в этом случае может привести к смертельному исходу.

Экстраполяция данных, полученных на животных, позволяет установить опасную для человека плотность мощности. При длительном облучении электромагнитной энергией с частотой до 10 ГГц и плотностью мощности от 10 до 50 мВТ/см2 могут возникнуть конвульсии, состояние повышенной возбудимости и произойти потеря сознания. Заметный нагрев тканей при воздействии одиночных импульсов такой же частоты происходит при плотности энергии около 100 Дж/см2. На частотах выше 10 ГГц допустимый порог нагрева снижается, поскольку вся энергия поглощается поверхностными тканями. Так, на частоте в десятки гигагерц и плотности энергии в импульсе всего 20 Дж/см2 наблюдается ожог кожи.

Возможны и другие последствия облучения. Так, может временно нарушиться нормальная разность потенциалов мембран клеток тканей. При воздействии одиночного СВЧ-импульса длительностью от 0,1 до 100 мс с плотностью энергии до 100 мДж/см2 меняется активность нервных клеток, возникают изменения в электроэнцефалограмме. Импульсы малой плотности (до 0,04 мДж/см2 ) вызывают слуховые галлюцинации, а при более высокой плотности энергии может быть парализован слух или даже повреждена ткань слуховых органов.

  1.  Тактика применения ЭМО

Электромагнитное оружие может применяться как в стационарном, так и мобильном вариантах. При стационарном варианте легче выполнить массогабаритные и энергетические требования к аппаратуре и упростить ее обслуживание. Но в этом случае необходимо обеспечивать высокую направленность электромагнитного излучения в сторону цели во избежание поражения собственных радиоэлектронных устройств, что возможно только благодаря применению остронаправленных антенных систем. При реализации СВЧ-излучения использование остронаправленных антенн не составляет проблемы, чего нельзя сказать относительно низкочастотного ЭМО, для которого мобильный вариант имеет ряд преимуществ. Прежде всего, легче решается проблема защиты собственных радиоэлектронных средств от воздействия ЭМО, поскольку боевое средство можно доставить непосредственно к месту расположения объекта воздействия и только там привести его в действие. И кроме того, отпадает необходимость в применении направленных антенных систем, а в ряде случаев вообще можно обойтись без антенн, ограничившись непосредственной электромагнитной связью между генератором ЭМО и электронными устройствами противника.

При реализации мобильного варианта ЭМО необходимо предусмотреть сбор соответствующей информации о целях, подлежащих электромагнитному воздействию, в связи с чем важная роль отводится средствам радиотехнической разведки. Поскольку подавляющее большинство интересующих целей излучают радиоволны, обладающие определенными характеристиками, средства разведки способны не только их идентифицировать, но и устанавливать их местоположение с достаточной точностью. Средствами доставки ЭМО в мобильном варианте могут служить самолеты, вертолеты, беспилотные летательные аппараты, различные ракеты, корабли, планирующие бомбы.

Эффективное средство доставки ЭМО к цели представляет планирующая бомба, которую можно запускать с самолета (вертолета) с расстояния, превышающего дальность действия системы ПВО противника, что минимизирует риск поражения самолета этой системой и риск повреждения собственных бортовых радиоэлектронных средств при взрыве бомбы. При этом автопилот планирующей бомбы можно запрограммировать таким образом, что профиль полета бомбы к цели и высота ее подрыва будут оптимальны. При использовании бомбы в качестве носителя ЭМО доля массы, приходящаяся на боеголовку, доходит до 85%. Подрыв бомбы может быть осуществлен с помощью радиолокационного высотомера, барометрического устройства или глобальной спутниковой навигационной системы (ГСНС). На рис. 4 представлен комплект бомб, а на рис.5 – профили их доставки к цели с использованием ГСНС [1].

Доставка ЭМО к цели возможна также с помощью специальных снарядов. Электромагнитный боеприпас среднего калибра (100–120 мм) при срабатывании формирует импульс излучения длительностью в несколько микросекунд со средней мощностью в десятки мегаватт и пиковой – в сотни раз больше. Излучение – изотропное, способное на расстоянии 6–10 м подорвать детонатор, а на расстоянии до 50 м – вывести из строя систему опознавания “свой-чужой”, блокировать пуск зенитной управляемой ракеты из переносного зенитно-ракетного комплекса, временно или окончательно вывести из строя неконтактные противотанковые магнитные мины [11].

При размещении ЭМО на крылатой ракете момент его срабатывания определяется датчиком навигационной системы, на противокорабельной ракете – радиолокационной головкой наведения, а на ракете “воздух-возудух” – непосредственно системой взрывателя. Использование ракеты в качестве носителя электромагнитной боеголовки неизбежно влечет ограничение массы ЭМО из-за необходимости размещения электрических аккумуляторов для приведения в действие генератора электромагнитного излучения. Отношение полной массы боеголовки к массе запускаемого оружия составляет примерно от 15 до 30% (для американской ракеты AGM/BGM-109 “Томагавк” – 28%).

Эффективность ЭМО была подтверждена в военной операции “Буря в пустыне”, где применялись преимущественно самолеты и ракеты и где основой военной стратегии было воздействие на электронные устройства сбора и обработки информации, целеуказания и элементы связи с целью парализации и дезинформации системы ПВО.

Рисунок . Генератор сжатия магнитного потока

  1.  Защита от ЭМО

Наиболее эффективная защита от ЭМО – это, конечно, предотвращение его доставки путем физического уничтожения носителей, как и при защите от ядерного оружия. Однако это не всегда достижимо, поэтому следует прибегать также к мерам электромагнитной защиты самой радиоэлектронной аппаратуры. К таким мерам, очевидно, следует прежде всего отнести полную экранировку самой аппаратуры, а также помещений, в которых она размещается. Известно, что если помещение уподобить клетке Фарадея, предотвращающей проникновение внешнего электромагнитного поля, то защита аппаратуры от ЭМО будет полностью обеспечена. Однако в реальности такая экранировка невозможна, поскольку аппаратуре необходимы подводка электропитания извне и каналы связи для приема и передачи информации. Сами каналы связи также должны иметь защиту от проникновения по ним к аппаратуре электромагнитных воздействий. Установка фильтров в данном случае не спасает, поскольку они работают только в определенной полосе частот и соответствующим образом настраиваются, и фильтры, предназначенные для защиты от низкочастотного ЭМО, не будут защищать от воздействия высокочастотного и наоборот. Хорошую защиту от электромагнитных наводок по каналам связи могут обеспечить используемые вместо них волоконно-оптические линии, однако для цепей питания этого сделать невозможно.

Проблему защиты от ЭМО усугубляет еще и то, что развитие современных информационных систем идет по пути их дезинтеграции. Вместо больших центров по приему и обработке информации в каждом учреждении предпочитают иметь свои компьютерные сети, использующие телефонные линии. Это повышает уязвимость радиоэлектронной аппаратуры по отношению к ЭМО, в результате чего применение ЭМО в военных конфликтах становится еще более целесообразным и реальным.

При рассмотрении способов защиты от ЭМО следует также учитывать необходимость устранения любых паразитных излучений защищаемой аппаратуры, поскольку они не только демаскируют аппаратуру, но и способствуют прицельному наведению ЭМО.

Существует достаточно оснований полагать, что в будущем все значимые боевые операции будут начинаться с массированного применения ЭМО, способного нанести серьезный ущерб военно-промышленному потенциалу страны и облегчить проведение последующих военных операций.

Учитывая эффективность и перспективность использования ЭМО в военных операциях, а также преимущества тех, кто владеет этим видом оружия, разработку ЭМО держат в строжайшей тайне под грифом более высоким, чем “Совершенно секретно”, и все проблемы обсуждают только на закрытых заседаниях. Примером может служить секретная научно-техническая конференция, проведенная в июне 1995 г. в предместье Вашингтона только для американцев, на которой обсуждались эффекты от воздействия ЭМО не только на радиоэлектронное оборудование, но также на животных и человека [8]. Отсутствие данных о результатах использования ЭМО в Югославии объясняется и режимом секретности, и желанием сохранить столь эффективное оружие для более серьезных боевых операций.

Сегодня технологией ЭМО в полной мере владеют только США и Россия, однако нельзя не учитывать возможности овладения этой технологией и другими странами, в том числе странами третьего мира.

Об электромагнитном оружии в последнее время ходит множество слухов, мифов и легенд – от бомб, которые «выключают свет» в городах, до чемоданчиков, которые якобы способны вывести из строя любую сложную электронику в радиусе чуть ли не нескольких километров. Хотя весьма малая часть этих слухов имеет хоть какое-нибудь отношение к действительности, электромагнитное оружие действительно существует и даже рассматривается как весьма перспективное направление развития вооружений в современном мире, где войны уже ведутся с помощью сложного, высокотехнологичного и высокоточного оружия.Разумеется, с помощью электромагнитного оружия никто не собирается «выключать свет» в городах (даже в отдельных районах или домах) – такое оружие призвано решать совсем другие задачи.

Рисунок . Взрыв ЭМО

  1.  http://www.gauss2k.narod.ru/index.htm

Основные виды ЭМО (2010)

  1.  http://www.popmech.ru/blogs/post/3375-elektromagnitnoe-oruzhie-mifyi-i-realnost/

Электромагнитное оружие «Мифы и реальность»

(Лекция Александр Прищепенко Доктор физико-математических наук 11 ноября 2010г)

  1.  http://vpk.name/news/40378_novoe_elektromagnitnoe_oruzhie_vyizyivaet_vseobshii_interes.html

Новое электромагнитное оружие 2010

PAGE   \* MERGEFORMAT1

refleader.ru

Электромагнитная пушка Гаусса: оружие будущего


Современные артиллерийские пушки представляют собой сплав новейших технологий, ювелирной точности поражения и возросшей мощности боеприпасов. И все же, несмотря на колоссальный прогресс, пушки XXI века стреляют также, как и их прабабушки — используя энергию пороховых газов.

Поколебать монополию пороха смогло электричество. Идея создания электромагнитной пушки зародилась практически одновременно в России и Франции в разгар Первой мировой войны. В ее основу легли труды немецкого исследователя Йоганна Карла Фридриха Гаусса, который разработал теорию электромагнетизма, воплотившуюся в необычное устройство — электромагнитную пушку.

Опережая время

Идея создания электромагнитной пушки намного опередила свое время. Тогда в начале минувшего века все ограничилось опытными образцами, показавшими к тому же очень скромные результаты. Так французская модель едва сумела разогнать 50 граммовый снаряд до скорости 200 м/сек, что ни шло ни в какое сравнение с действующими на тот момент обычными артиллерийскими системами. Ее российский аналог – магнитно-фугальная пушка и вовсе осталась в чертежах. И все же главный итог – воплощение идеи в реальное «железо», а подлинный успех был вопросом времени.

Гаусс-пушка

Разработанная немецким ученым пушка Гаусса представляет собой разновидность электромагнитного ускорителя масс. Пушка состоит из соленоида (катушки) с расположенным внутри него стволом из диэлектрического материала. Она заряжается снарядом из ферромагнетика. Чтобы заставить снаряд двигаться, на катушку подается электрический ток, создающий магнитное поле, благодаря которому снаряд втягивается в соленоид. Скорость снаряда тем быстрее, чем мощнее и короче генерированный импульс.
Принцип действия Гаусс-пушки

Преимущества электромагнитной пушки Гаусса по сравнению с другими видами оружия — возможность гибко варьировать начальную скорость и энергию снаряда, а также бесшумность выстрела. Есть и недостаток — низкий КПД, составляющий не более 27 % и связанные с этим крупные затраты энергии. Поэтому в наше время пушка Гаусса имеет перспективы скорее в качестве любительской установки. Однако, идея может получить вторую жизнь в случае изобретения новых компактных и сверхмощных источников тока.

Рельсовая электромагнитная пушка

Рельсотрон – еще один вид электромагнитной пушки. В состав рельсотрона входят источник питания, коммутационная аппаратура и два электропроводящих рельса от 1 до 5 метров, которые одновременно являются электродами, расположенными друг от друга на расстоянии 1 см. В нем энергия электромагнитного поля взаимодействует с энергией плазмы, которая образуется в результате сгорания специальной вставки в момент подачи высокого напряжения.

Принцип действия рельсотрона

Порох на большее не способен

Конечно, рано говорить о том, что время традиционных боеприпасов безвозвратно ушло в прошлое. Однако по оценкам экспертов они достигли своего предела. Скорость выпущенного с их помощью заряда ограничена 2,5 км/сек. Для войн будущего этого явно недостаточно.

Рельсовые пушки – больше не фантазия

В США полным ходом идут лабораторные испытания 475-мм рельсотрона, разработанного компаниями General Atomics и BAE Systems. Первые залпы чудо-оружия показали обнадеживающие результаты. 23-кг снаряд вылетал из ствола со скоростью, превышающей 2200 м/сек, что позволит в дальнейшем поражать цели на расстоянии до 160 км. Невероятная кинетическая энергия поражающих элементов электромагнитных орудий делает ненужными метательные заряды, а значит повышается живучесть расчетов. После доводки опытного образца рельсотрон установят на скоростной корабль JHSV Millinocket. Примерно через 5-8 лет US NAVY начнут планомерно оснащаться рельсовыми пушками.

Наш ответ

В нашей стране об электромагнитных пушках вспомнили в 50-е годы, когда началась безумная гонка по созданию очередного сверхоружия. До сих пор эти работы строго засекречены. Советским проектом руководил выдающийся физик академик Л. А. Арцимович, многие годы занимавшийся проблемами плазмы. Именно он заменил громоздкое название «электродинамический ускоритель массы» на всем известное сегодня — «рельсотрон».
Залп из рельсотрона

В России и сейчас ведутся подобные разработки. Свое видение рельсотрона недавно продемонстрировал коллектив одного из филиалов Объединенного института высоких температур РАН. Для разгона заряда был разработан электромагнитный ускоритель. Пулю весом в несколько грамм здесь удалось разогнать до скорости около 6,3 км/сек.

www.techcult.ru