Емкостные датчики принцип работы – Электронные датчики, принцип работы и область применения емкостного, индуктивного, оптического датчиков

Содержание

Емкостные датчики. Виды и устройство. Работа и применение

Емкостные датчики – преобразователи параметров. Их работа заключается в изменении емкостного сопротивления путем изменения измеряемого параметра. Емкостный датчик преобразовывает такие величины, как влажность, давление, сила механического воздействия, уровень жидкости в изменение электрической емкости.

Устройство и работа

1 — Корпус датчика обеспечивает возможность установки выключателя, защиту от внешних воздействий различных факторов. Материалом корпуса обычно является полиамид или латунь. В комплект входят крепежные изделия.
2 — Компаунд, состоящей из специальной смолы, создает защиту элементов датчика от попадания влаги и других посторонних веществ.
3 — Триггер создает необходимую крутизну сигнала коммутации и величину гистерезиса.
4 — Подстроечный элемент.
5 — Светодиод обеспечивает оперативность настройки, показывает положение выключателя.
6 — Усилитель повышает сигнал выхода до требуемой величины.
7 — Демодулятор модифицирует изменение колебаний высокой частоты в изменение напряжения.
8 — Генератор создает электрическое поле для воздействия на объект.
9 — Электроды.

Рабочая поверхность датчика выполнена в виде двух металлических электродов. Они играют роль обкладок конденсатора, которые подключены в цепь обратной связи автогенератора высокой частоты. Генератор настроен на приближение объекта к активной поверхности.

При приближении контрольного объекта он меняет емкость, вследствие чего генератор вступает в работу и образует колебания с увеличивающейся амплитудой по приближению к объекту. Повышение амплитуды обрабатывается электронной схемой, которая создает сигнал выхода.

Емкостные датчики приводятся в действие от электропроводных объектов и диэлектриков. При приближении токопроводящих объектов расстояние срабатывания Sr значительно больше, чем при воздействии диэлектриков. Расстояние срабатывания снижается, и зависит от диэлектрической проницаемости диэлектрика Er.

Особенности конструкции

Чаще всего емкостные датчики выполняются в виде цилиндрического или плоского конденсатора. Подвергаемое контролю перемещение испытывает одна обкладка. При этом она создает изменение емкости, которая выражается:

где ε является диэлектрической проницаемостью материала, d – зазор, S – площадь пластин.

Емкостные датчики способны работать при замере разных параметров по трем направлениям, зависящим от связи контролируемой величины с параметрами:

  • Переменным расстоянием между пластинами.
  • Площадью перекрытия пластин.
  • Изменяемой диэлектрической проницаемости материала.

В случае с диэлектрической проницаемостью входным параметром будет состав, который заполняет объем между обкладками. Такие емкостные датчики стали популярными при контроле размеров малых объектов, влажности тел.

Классификация

По исполнению датчики делятся на:

  1. Одноемкостные.
  2. Двухъемкостные.

Одноемкостнй датчик имеет простое устройство и выполнена в виде конденсатора с изменяемой емкостью. Его недостатком является большое влияние внешних воздействий. К ним относятся температура и влажность. Чтобы компенсировать такие неточности, применяют дифференциальные двухъемкостные модели.

В отличие от одноемкостных датчиков, минусом дифференциальных моделей является то, что требуется минимум три соединительных экранированных проводника между измерительным устройством и датчиком, для погашения паразитных емкостей. Однако это компенсируется стабильностью, значительным увеличением точности и расширением сферы использования таких датчиков.

Иногда трудно спроектировать дифференциальный датчик емкостного типа из соображений его устройства. Особенно, если это датчик с изменяемым зазором. Но при расположении образцового конденсатора вместе с рабочим, и выполнении их конструкции одинаковыми, включая все материалы, то будет создана намного меньшая чувствительность устройства к наружному воздействию различных факторов. В этих случаях идет речь о полудифференциальной модели, относящейся к 2-х емкостным приборам.

Специфическая особенность параметра выхода двухъемкостных датчиков, представленная в виде безразмерного соотношения 2-х емкостей, позволяет назвать такие устройства датчиками отношения.

Линейные датчики

Неэлектрические параметры, которые требуется измерять на практике, очень разнообразны и многочисленны. На базе конденсатора, у которого равномерно распределено электрическое поле в рабочем промежутке, создаются устройства емкостных датчиков перемещения следующих видов:

  • С изменяемой площадью электродов.
  • С изменяемым промежутком между обкладками.

Датчики с переменной площадью удобнее для контроля значительных перемещений, а датчики с изменяемым промежутком удобнее для контроля незначительных перемещений.

Датчики угловых перемещений имеют принцип работы, аналогичный линейным датчикам. При этом эти датчики также рекомендуются для малых интервалов перемещений угла. Для таких целей часто используют в эксплуатации многосекционные модели с изменяемой площадью пластин.

Подобные датчики имеют крепление одного электрода на валу контролируемого объекта. При угловом смещении вала изменяется площадь пластин конденсатора, что приводит к изменению емкости. Это изменение обрабатывается электронной схемой.

Инклинометры

Другими словами такое устройство называют датчиком крена. Они получили название инклинометров, выполнены в виде дифференциального емкостного датчика наклона. Эта конструкция имеет чувствительный компонент в виде капсулы.

Чувствительная капсула включает в себя подложку с планарными электродами (1), которые покрыты диэлектрическим слоем, а также корпус (2), герметично зафиксированный на подложке. Частично внутренняя часть корпуса заполнена токопроводящей жидкостью (3). Она является общим выводом чувствительного компонента.

Общий электрод создает с электродами своеобразный дифференциальный конденсатор. Сигнал выхода датчика прямо зависит от размера емкости, которая зависит от расположения корпуса.

Инклинометр сконструирован с линейной зависимостью сигнала выхода от угла наклона в рабочей плоскости и не меняет значения в нерабочей плоскости. В этом случае сигнал имеет незначительную зависимость от изменения температуры. Чтобы определить расположение плоскости применяется два инклинометра, находящихся между собой под прямым углом.

Инклинометры небольшого размера с сигналом, зависящим от угла наклона датчика, нашли применение совсем недавно. Они имеют высокую точность, малые габариты, у них нет движущихся деталей. Стоимость их также невысока. Все эти достоинства позволяют рекомендовать их для применения датчиками наклона, а также для замены угловых датчиков, в том числе и на движущихся объектах.

Датчики уровня токонепроводящих веществ, находящихся в жидком состоянии, представляют собой схему из двух соединенных параллельно емкостей. Они стали популярными в различных отраслях, системах проверки, при работе с сыпучими и вязкими материалами, в условиях конденсата.

Датчики давления

Конструкция таких датчиков отличается устройством преобразователя. Он выполнен в виде воздушного конденсатора. Одна его пластина является неподвижной, а вторая передвигается под воздействием упругого преобразователя.

Достоинства

Емкостные датчики имеют множество преимуществ в отличие от других видов. К ним можно отнести:

  • Форма датчика легко совмещается с разными конструкциями и поставленными задачами.
  • Не требуется больших усилий для передвижения чувствительного компонента.
  • Длительная эксплуатация.
  • Отсутствие подвижных контактов.
  • Повышенная чувствительность.
  • Малый расход электроэнергии.
  • Небольшие габаритные размеры и масса.
  • Технологичность при изготовлении, применение дешевых материалов и веществ.

Емкостные датчики славятся своей простой конструкцией, что дает возможность создания надежных и прочных устройств. Свойства конденсатора зависят всего лишь от геометрических параметров, и не имеют зависимости от свойств применяемых материалов, при условии их правильного подбора. Поэтому при проектировании пренебрегают влиянием температуры на площадь поверхности и размера между пластинами, при правильном выборе изоляции и металла.

Недостатки
  • Работа на высокой частоте.
  • Повышенные требования к экранированию элементов.
  • Малый коэффициент преобразования.

При использовании емкостных датчиков необходимо обеспечивать защиту от ложных сработок. Они возникают из-за случайного касания работника, атмосферными осадками, различными жидкостями.

Применение

Емкостные датчики используются в разных сферах производства и деятельности человека. Они применяются в управлении технологическими процессами и системах регулировки во всех промышленных производствах. Сегодня наиболее популярными датчиками стали датчики присутствия, которые являются надежными конструкциями. Они имеют невысокую цену, и широкий спектр направлений по использованию. Основными областями применения датчиков стали:

  • Подсчет штучного товара.
  • Регулировка натяжения конвейера.
  • Сигнализация обрыва проводника при намотке.
  • Контроль наполнения упаковки.
  • Сигнализация при заполнении стеклянных и пластиковых сосудов.
Похожие темы:

 

electrosam.ru

Электронные датчики, принцип работы и область применения емкостного, индуктивного, оптического датчиков

ЕМКОСТНЫЕ — ИНДУКТИВНЫЕ — ОПТИЧЕСКИЕ

Электронные датчики (измерители) – важная составляющая в автоматизации любых технологических процессов и в управлении различными машинами и механизмами. С помощью электронных устройств можно получить полную информацию о параметрах контролируемого оборудования.

Принцип работы любого электронного датчика построен на преобразовании контролируемых показателей в сигнал, который передается для дальнейшей обработки управляющим устройством. Возможно измерение любых величин – температуры, давления, электрического напряжения и силы тока, силы света и других показателей.

Популярность электронных измерителей обуславливается рядом конструкционных особенностей, в частности возможно:

  • передать измеряемые параметры на практически любое расстояние;
  • преобразовать показатели в цифровой код для достижения высокой чувствительности и быстродействия;
  • осуществлять передачу данных с максимально высокой скоростью.

По принципу действия электронные датчики разделяют на несколько категорий в зависимости от принципа действия. Одними из самых востребованных считаются:

  • емкостные;
  • индуктивные;
  • оптические.

Каждый из вариантов обладает определенными преимуществами, которые определяют оптимальную сферу его применения. Принцип работы любого типа измерителя может различаться в зависимости от конструкции и используемого контролирующего оборудования.

ЕМКОСТНЫЕ ДАТЧИКИ

Принцип работы электронного емкостного датчика построен на изменении емкости плоского или цилиндрического конденсатора в зависимости от перемещения одной из обкладок. Также учитывается такой показатель как диэлектрическая проницаемость среды между обкладок. Одно из преимуществ подобных устройств – очень простая конструкция, которая позволяет достичь хороших показателей прочности и надежности.

Также измерители этого типа не подвержены искажениям показателей при перепадах температуры. Единственно условие для точных показателей – защита от пыли, влажности и коррозии.

Емкостные датчики широко используются в самых разнообразных отраслях. Простые в изготовлении приборы отличаются низкой себестоимостью производства, при этом обладают длительным сроком эксплуатации и высокой чувствительностью.

В зависимости от исполнения устройства делятся на одноемкостные и духъемкостные. Второй вариант более сложен в изготовлении, но отличается повышенной точностью измерений.

Область применения.

Наиболее часто емкостные датчики используют для измерения линейных и угловых перемещений, причем конструкция устройства может различаться в зависимости от метода измерения (меняется площадь электродов, либо зазор между ними). Для измерения угловых перемещений используют датчики с переменной площадью обкладок конденсатора.

Также емкостные преобразователи используют для измерения давления. Конструкция предусматривает наличие одного электрода с диафрагмой, которая под действием давления изгибается, меняя емкость конденсатора, что фиксируется измерительной схемой.

Таким образом, емкостные измерители могут использоваться в любых системах управления и регулирования. В энергетике, машиностроении, строительстве обычно используют датчики линейных и угловых перемещений. Емкостные преобразователи уровня наиболее эффективны при работе с сыпучими материалами и жидкостями, и часто используются в химической и пищевой промышленности.

Электронные емкостные датчики применяются для точного измерения влажности воздуха, толщины диэлектриков, различных деформаций, линейных и угловых ускорений, гарантируя точность показателей в самых разных условиях.

В начало

ИНДУКТИВНЫЕ ДАТЧИКИ

Бесконтактные индуктивные датчики работают по принципу изменения показателя индуктивности катушки с сердечником. Ключевая особенность измерителей данного типа – они реагируют только на изменение местоположения металлических предметов. Металл оказывает непосредственное влияние на электромагнитное поле катушки, что приводит к срабатыванию датчика.

Таким образом, с помощью индуктивного датчика можно эффективно отслеживать положение металлических предметов в пространстве. Это позволяет использовать индуктивные измерители в любой отрасли промышленности, где требуется наблюдение за положением различных конструктивных элементов.

Одна из интересных особенностей датчика – электромагнитное поле изменяется по-разному, в зависимости от вида металла, это несколько расширяет сферу применения устройств.

Индуктивные датчики обладают рядом преимуществ, из которых отдельного внимания заслуживает отсутствие подвижных частей, что существенно повышает надежность и прочность конструкции. Также датчики можно подключать к промышленным источникам напряжения, а принцип работы измерителя гарантирует высокую чувствительность.

Индуктивные датчики изготавливают в нескольких форм-факторах, для максимально удобной установки и эксплуатации, например двойные измерители (две катушки в одном корпусе).

Область применения.

Сфера использования индуктивных измерителей – автоматизация в любой сфере промышленности. Простой пример – устройство можно использовать в качестве альтернативы концевому выключателю, при этом будет увеличена скорость срабатывания. Датчики выполняют в пылевлагозащитном корпусе для эксплуатации в самых сложных условиях.

Устройства можно использовать для измерения самых различных величин – для этого используют преобразователи измеряемого показателя в величину перемещения, которая и фиксируется устройством.

В начало

ОПТИЧЕСКИЕ ДАТЧИКИ

Бесконтактные электронные оптические датчики – один из самых востребованных типов измерителей в отраслях промышленности, где требуется эффективное позиционирование любых объектов с максимальной точностью.

Принцип работы данного типа измерителей построен на фиксации изменения светового потока, при прохождении через него объекта. Самая простая схема устройства это излучатель (светодиод) и фотоприемник, преобразующий световое излучение в электрический сигнал.

В современных оптических измерителях используется современная электронная система кодирования, позволяющая исключить влияние посторонних источников света (защита от ложных срабатываний).

Конструктивно, оптические измерители могут выполняться как в отдельных корпусах для излучателя и приемника, так и в одном, в зависимости от принципа работы устройства и области его применения. Корпус дополнительно обеспечивает защиту от пыли и влаги (для работы при низких температурах используют специальные термокожухи).

Оптические датчики классифицируются в зависимости от схемы работы. Самый распространенный тип – барьерный, состоящий из излучателя и приемника, расположенных строго напротив друг друга. Когда постоянный световой поток прерывается объектом, устройство подает соответствующий сигнал.

Второй востребованный тип – диффузный оптический измеритель, в котором излучатель и фотоприемник располагаются в одном корпусе. Принцип действия основан на отражение луча от объекта. Отраженный световой поток улавливается фотоприемником, после чего происходит срабатывание электроники.

Третий вариант – рефлекторный оптический датчик. Как и в диффузном измерителе, излучатель и приемник конструктивно выполнены в одном корпусе, но световой поток отражается от специального рефлектора.

Использование.

Оптические датчики широко применяются в системах автоматизированного управления и служат для обнаружения предметов и их пересчета. Относительно простая конструкция обуславливает надежность и высокую точность измерения. Кодированный световой сигнал обеспечивает защиту от внешних факторов, а электроника позволяет определять не только наличие объектов, но и определять их свойства (габариты, прозрачность и т.д.).

Широкое распространение оптические устройства получили в охранных системах, где используются в качестве эффективных датчиков движения. Вне зависимости от типа, электронные датчики это лучший вариант для современных систем управления и автоматического оборудования.

Высокая точность и скорость измерения обеспечивают надлежащее функционирование оборудования с минимальными отклонениями. При этом большинство электронных измерителей бесконтактные, что в несколько раз повышает надежность устройств и гарантирует длительный срок эксплуатации даже в сложных производственных условиях.

В начало

© 2012-2018 г. Все права защищены.

Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

eltechbook.ru

Устройство и принцип работы датчиков уровня

 О чем эта статья

Перейти к выбору и покупке датчиков уровня

Датчики уровня — это устройства, позволяющие отслеживать количество жидкого или сыпучего вещества по уровню его поверхности в некоторой ёмкости. Датчики уровня могут выдавать дискретный (по достижении некоторого уровня) или непрерывный сигнал (абсолютная высота текущего уровня) в зависимости от принципа действия, что сказывается на их технической сложности, а также на цене. Кроме того, датчики уровня могут быть контактными и бесконтактными, что также сказывается на стоимости и на области их применения.

По принципу действия датчики уровня могут быть:


  • Емкостными
  • Поплавковыми
  • Радарного типа
  • Ультразвуковыми
  • Гидростатическими

Ниже кратко рассмотрены основные виды.

Емкостной датчик уровня

В основу работы данного типа датчика положено свойство конденсатора изменять свою ёмкость при изменении состава и распределения материала диэлектрика, разделяющего пластины конденсатора. Это свойство применяется во многих емкостных детекторах например в емкостных датчиках влажности.

Предположим, имеется коаксиальный конденсатор, помещённый в жидкость (Рисунок 1), которая может свободно проникать в пространство между пластинами. Если известна диэлектрическая проницаемость жидкости, то можно составить следующее равенство:

С=С0l0*G0l*Gl       (1)

С – Общая ёмкость конденсатора
С0 – Ёмкость участка конденсатора, не содержащего жидкость
Сl – Ёмкость участка конденсатора, содержащего жидкость
ε0 – Диэлектрическая проницаемость газовой среды
εl – Диэлектрическая проницаемость жидкой среды
G0 – Геометрический коэффициент участка конденсатора, не содержащего жидкость
Gl – Геометрический коэффициент участка конденсатора, содержащего жидкость

При изменении уровня жидкости величина суммарной ёмкости конденсатора также изменятся. Если конденсатор включен в электрическую цепь, не составляет труда отследить изменение ёмкости, по которому можно однозначно судить об изменении уровня жидкости.




Рисунок 1. Общая схема емкостного датчика уровня

Емкостные датчики лишены подвижных элементов, поэтому достаточно надёжны и долговечны. К их недостаткам следует отнести значительную температурную зависимость (которая, впрочем, может быть скомпенсирована), а также необходимость погружения в жидкость.

Поплавковый датчик уровня

Датчики данного типа имеют достаточно простое устройство. Существует несколько конфигураций, выдающих на выход как дискретный, так и непрерывный сигнал, последние можно разделить на две категории – механические и магнитострикционные. В магнитострикционных датчиках в качестве одного из элементов также используется поплавок, в остальном же они довольно сильно отличаются от обычных механических поплавковых датчиков.

Дискретные поплавковые датчики уровня

В реализации датчика, выдающего дискретный сигнал, обычно используется набор поплавков, расположенных на различных уровнях резервуара. При достижении жидкостью уровня, на котором располагается поплавок, он выталкивается за счёт силы Архимеда, направленной вверх. Это приводит в движение механическую систему или электромеханическую систему, и выходной сигнал появляется, например, при замыкании электрических контактов герконового реле.

В альтернативной конфигурации присутствует направляющая, содержащая набор реле. Вдоль направляющей вслед за уровнем жидкости перемещается поплавок, содержащий постоянный магнит. Приближение поплавка к реле вызывает его срабатывание (Рисунок 2).




Рисунок 2. Общая схема поплавкового датчика уровня с дискретным выходом

Дискретный выходной сигнал может быть использован для «пошагового» мониторинга уровня жидкости в резервуаре — датчик просто сообщает, достиг ли уровень жидкости конкретной отметки или нет. Также датчик уровня с дискретным выходным сигналом может служить элементом автономного регулятора в случае, например, когда необходимо поддерживать постоянный уровень жидкости в резервуаре – для реализации данной схемы выходной сигнал может непосредственно управлять силовым реле, открывающим/закрывающим входной/выходной клапан резервуара.

Дискретные поплавковые датчики дёшевы, просты и достаточно надёжны, однако требуют погружения в жидкость и имеют подвижную механику.

Магнитострикционные поплавковые датчики

Поплавковые датчики, выдающие непрерывный сигнал, обычно относятся к датчикам магнитострикционного типа и имеют довольно сложное устройство (Рисунок 3). Основным элементом конструкции по-прежнему является поплавок, в данном случае он содержит постоянный магнит. Поплавок может свободно передвигаться вдоль направляющей, внутри которой располагается волновод из магнитострикционного материала. С определённой периодичностью блок электроники датчика генерирует импульс тока, который распространяется вдоль волновода. Когда импульс достигает области, где располагается поплавок, магнитное поле поплавка и магнитное поле импульса взаимодействуют, что приводит к возникновению механических колебаний, которые распространяются обратно по волноводу и фиксируются чувствительным пьезоэлементом. По временной задержке между отправкой импульса тока и получением механического импульса можно судить о расстоянии до поплавка, а значит и об уровне жидкости в резервуаре.




Рисунок 3. Общая схема магнитострикционного датчика уровня

Магнитострикционные датчики очень точны, выдают непрерывный сигнал, а также могут использоваться с гибким волноводом, что расширяет сферу их применения. К их недостаткам можно отнести их стоимость, техническую сложность и необходимость погружения в жидкость.

Радарный датчик уровня

Главным элементом данного датчика является радиолокатор, частота излучения которого изменяется по линейному закону. Предполагается, что жидкость отражает излучение локатора, поэтому если расположить излучатель-приёмник внутри резервуара согласно схеме (Рисунок 4) и фиксировать задержку отражённого сигнала относительно сигнала источника – можно определить уровень жидкости по величине задержки. Для определения задержки используется линейная модуляция частоты источника. Если частота исходного сигнала изменяется по линейному закону (например, непрерывно возрастает), то отражённый сигнал, имеющий временной сдвиг относительно исходного, будет иметь также и меньшую частоту. По величине частотного сдвига можно однозначно судить о величине временной задержки между двумя сигналами, а значит и о расстоянии до поверхности жидкости.

Дальнейшая обработка полученного сигнала осуществляется в цифровом тракте, и на этом этапе возможна, например, нейтрализация шумовых сигналов, возникающих в результате волнений на поверхности жидкости или поглощения радиоизлучения.




Рисунок 4. Общий принцип функционирования датчика уровня радарного типа

Данный метод на сегодняшний день является наиболее технологичным и совершенным, к числу достоинств датчика на его основе следует отнести:


  1. Отсутствие подвижных элементов
  2. Отсутствие контакта с жидкой средой
  3. Универсальность – возможность работать практически с любой средой при различных условиях
  4. Высокая точность
  5. Возможность адаптировать алгоритм обработки данных для конкретных применений

Основным недостатком радарных датчиков является их цена.

Ультразвуковой датчик уровня

В датчиках данного типа используется схема, во многом сходная со схемой датчика радарного типа. В резервуаре устанавливается блок, состоящий из генератора и приёмника ультразвуковых волн (точно также как например в    ультразвуковых расходомерах и  ультразвуковых дефектоскопах). Излучение генератора УВ проходит газовую среду, отражается от поверхности жидкости и попадает на приёмник. Определив временную задержку между излучением и приёмом и зная скорость распространения ультразвука в данной газовой среде, можно вычислить расстояние до поверхности жидкости – то есть определить её уровень.

Ультразвуковым датчикам уровня свойственны практически все достоинства датчиков радарного типа, однако УД обычно имеют более низкую точность, хотя и более просты по внутреннему устройству.

Гидростатический датчик уровня

С помощью датчиков данного типа уровень жидкости в резервуаре определяется путём измерения гидростатического давления столба жидкости над чувствительным элементом датчика (детектором давления). Согласно зависимости (2) высота столба определённой жидкости пропорциональна давлению в данной точке:

P – Давление в данной точке
ρ – Плотность жидкости
g – Ускорение свободного падения
h – Высота столба жидкости над чувствительным элементом

Такие датчики компактны, относительно просты, недороги, а также способны выдавать непрерывный сигнал, однако не являются бесконтактными, что затрудняет их применение в агрессивных средах.

Опубликована 05-03-12.

Если вам понравилась статья нажмите на одну из кнопок ниже

www.devicesearch.ru.com

Ёмкостный датчик

Ёмкостный датчик,
измерительный преобразователь
неэлектрических величин (уровня жидкости,
механические усилия, давления, влажности
и др.) в значения электрической ёмкости.
Конструктивноемкостный
датчик
представляет собой
конденсатор электрический плоскопараллельный
или цилиндрический. Различаютемкостные
датчики
, действие которых основано
на изменении зазора между пластинами
или площади их взаимного перекрытия,
деформации диэлектрика, изменении его
положения, состава или диэлектрической
проницаемости. Наиболее частоемкостные
датчики
применяют для измерений
меняющихся давления или уровня, точных
измерений механических перемещений и
т. п.

Устройство и принципы работы емкостного датчика

Устройство емкостного датчика

Ёмкостный бесконтактный датчикфункционирует следующим образом:

1.
Генератор обеспечивает электрическое
поле взаимодействия с объектом.
2.
Демодулятор преобразует изменение
амплитуды высокочастотных колебаний
генератора в изменение постоянного
напряжения.
3. Триггер обеспечивает
необходимую крутизну фронта сигнала
переключения и значение гистерезиса.
4.
Усилитель увеличивает выходной сигнал
до необходимого значения.
5. Светодиодный
индикатор показывает состояние
выключателя, обеспечивает работоспособности,
оперативность настройки.
6. Компаунд
обеспечивает необходимую степень защиты
от проникновения твердых частиц и
воды.
7. Корпус обеспечивает монтаж
выключателя, защищает от механических
воздействий. Выполняется из латуни или
полиамида, комплектуется метизными
изделиями.

Активная поверхностьемкостного бесконтактного датчикаобразована двумя металлическими
электродами, которые можно представить
как обкладки «развернутого»
конденсатора (см. рис.). Электроды включены
в цепь обратной связи высокочастотного
автогенератора, настроенного таким
образом, что при отсутствии объекта
вблизи активной поверхности он не
генерирует. При приближении к активной
поверхностиемкостного бесконтактного
датчика
объект попадает в
электрическое поле и изменяет емкость
обратной связи. Генератор начинает
вырабатывать колебания, амплитуда
которых возрастает по мере приближения
объекта. Амплитуда оценивается последующей
схемой обработки, формирующей выходной
сигнал.Емкостные бесконтактные
датчики
срабатывают как от
электропроводящих объектов, так и от
диэлектриков. При воздействии объектов
из электропроводящих материалов реальное
расстояние срабатывания Sr максимально,
а при воздействии объектов из
диэлектрических материалов расстояние
Sr уменьшается в зависимости от
диэлектрической проницаемости материала
er (см. график зависимости Sr от er и таблицу
диэлектрической проницаемости
материалов). При работе с объектами из
различных материалов, с разной
диэлектрической проницаемостью,
необходимо пользоваться графиком
зависимости Sr от er. Номинальное расстояние
срабатывания (Sn) и гарантированный
интервал воздействия (Sa), указанные в
технических характеристиках выключателей,
относятся к заземленному металлическому
объекту воздействия (Sr=100%). Соотношение
для определении реального расстояния
срабатывания (Sr): 0,9 Sn < Sr < 1,1
Sn.Зависимость
реального расстояния срабатывания Sr
от диэлектрической проницаемости
материала объекта er
Диэлектрическая
проницаемость некоторых материалов:

Аммиак………………………………….16
Аралдит…………………………………3,6
Бакелит…………………………………3,6
Бензол…………………………………..2,3
Бумага…………………………………..2,3
Бумага
промасленная……………..4,0
Вода………………………………………80
Винипласт……………………………..4,0
Воздух……………………………………1,0
Гетинакс………………………………..4,5
Древесина…………………………….2-7
Компаунд
кабельный…………..2,5
Керосин…………………………………2,2
Мрамор………………………………….8,0
Масло
трансформаторное……2,2
Нефть…………………………………….2,2
Оргстекло………………………………3,2
Полиамид………………………………5,0
Парафин………………………………..2,2
Кварцевый
песок…………………..4,5
Кварцевое
стекло………………….3,7
Поливинилхлорид…………………2,9
Полипропилен………………………2,3
Полистирол…………………………..3,0
Полиэтилен…………………………..2,3
Резина
мягкая………………………2,5
Резина
силиконовая…………….2,8
Слюда……………………………………6,0
Скипидар………………………………2,2
Спирт
этиловый……………………25,8
Стеклотекстолит…………………..5,5
Стекло…………………………………..5,0
Тальк…………………………………….1,6
Текстолит………………………………7,5
Фторопласт
(Тефлон)…………..2,0
Фарфор………………………………….4,4
Целлулоид…………………………….3,0
Цемент………………………………….2,0
Эбонит…………………………………..4,0
Электрокартон……………………..4,0
Толуол…………………………………..2,4
Фанера………………………………….4,0

Особенности эксплуатации.При
применении емкостных выключателей
важнозащититьсяот ложных
срабатываний, которые могут быть
вызваны, например, атмосферными осадками
(налипание снега), технологическими
жидкостями и др. (случайное прикосновение
оператора к выключателю также вызовет
его срабатывание). Чтобы скомпенсировать
влияние осадков, пыли (при производстве
стройматериалов), защитных перегородок
т.п., введена регулировка чувствительности
выключателя встроенным. Разнообразие
объектов воздействия, вызывающих
срабатываниеемкостных датчики,
обуславливает широкий областей, в
которых они применяются. Наибольший
эффект достигается при использовании
в системах:
— контроля уровня наполнения
резервуаров, емкостей, контейнеров
сыпучими и жидкими материалами;

контроля уровня содержимого в упаковке,
в таре;
— сигнализации разрыва лент;

счета и позиционирования объектов
любого рода.

Контроль
уровня сыпучих вешеств емкостными
датчиками
Контроль
содержимого упаковки и счет тары
емкостными датчиками
Контроль
разрыва ленты емкостными
датчиками
Контроль
позиционирования объекта емкостными
датчиками

Возможно применение емкостных
датчиков
в пищевой и в химической
отраслях промышленности. При этом для
исключения непосредственного контакта
активной поверхности выключателя с
пищевыми продуктами или с химически
агрессивными средами, можно рекомендовать
использовать защитную диэлектрическую
перегородку, изготовленную из
соответствующих материалов. При
необходимости обнаружения веществ и
материалов, находящихся за металлической
стенкой, в ней следует выполнить окно,
закрытое диэлектрической перегородкой,
перед которой устанавливаютемкостный
выключатель
. Толщина перегородки
должна быть значительно меньше расстояния
воздействия выключателя, а диэлектрик
должен иметь малую диэлектрическую
проницаемость.

studfiles.net

обзор, принцип действия, назначение. Сенсорный выключатель :: SYL.ru

Нередко в электронике находит свое применение такой радиоэлемент, как геркон. Его особенность состоит в способности замыкания контактов при облучении магнитным полем. Что это означает? Взяв простой магнит или разместив недалеко от геркона электромагнит, можно легко производить замыкание и размыкание контактов этого радиоэлемента. По своей сути он и является своеобразным бесконтактным датчиком.

Определение понятия

Что же такое бесконтактный датчик? Под ним понимают такой электронный прибор, который регистрирует присутствие определенного объекта в зоне своего действия и срабатывает без каких-либо механических или любых других воздействий.

Бесконтактные датчики применяются в самых различных сферах. Это создание бытовых приборов и системы охраны объектов, промышленные технологии и автомобилестроение. Кстати, в народе данный элемент называют «бесконтактным выключателем».

Преимущества

Среди основных достоинств бесконтактных датчиков выделяют их:

— компактные размеры;

— высокую степень герметичности;

— долговечность и надежность;

— небольшой вес;

— разнообразие вариантов установки;

— отсутствие контакта с объектом и обратного воздействия.

Классификация

Существуют различные типы бесконтактных датчиков. Они классифицируются по принципу действия и бывают:

— емкостными;

— оптическими;

— индуктивными;

— ультразвуковыми;

— магниточувствительными;

— пирометрическими.

Рассмотрим каждый из этих видов приборов отдельно.

Емкостные датчики

В основе этих приборов находится измерение электроконденсаторов. В их диэлектрике и находится тот объект, который подлежит регистрации. Назначение бесконтактных датчиков такого типа заключается в работе со множеством приложений. Это, например, распознавание жестов. Емкостными выпускают автомобильные датчики дождя. Такие приборы дистанционно измеряют уровень жидкости в процессе обработки различных материалов и т. д.

Емкостной бесконтактный датчик представляет собой аналоговую систему, работающую на расстоянии до семидесяти сантиметров. В отличие от других типов подобных приборов, он обладает большей точностью и чувствительностью. Ведь изменение в нем емкости происходит всего лишь в несколько пикофарад.

Схема бесконтактного датчика данного типа включает в себя пластины, состоящие из проводящей печатной платы, а также зарядку. В этом случае происходит формирование конденсатора. Причем это будет происходить в любое время либо в проводящем заземленном элементе, либо в каком-то объекте, диэлектрическая проницаемость которого отлична от воздуха. Такой прибор сработает и в случае появления в зоне действия устройства человека или части его тела, которая будет аналогична потенциалу земли. По мере приближения, например, пальца, изменится емкость конденсатора. И даже учитывая то, что система является нелинейной, обнаружить возникший в просматриваемых границах посторонний объект для нее не составит никакого труда.

Схема подключения такого бесконтактного датчика может быть усложнена. В устройстве могут быть задействованы сразу несколько независимых друг от друга элементов в направлениях влево/вправо, а также вниз/вверх. Это позволит расширить возможности прибора.

Оптические датчики

Такие бесконтактные выключатели на сегодняшний день находят свое широкое применение во многих отраслях человеческой деятельности, где работает оборудование, необходимое для обнаружения объектов. При подключении бесконтактного датчика используется кодирование. Это позволяет не допустить ложного срабатывания устройства при постороннем влиянии источников света. Работают подобные датчики и при низких температурах. В этих условиях на них надевают термокожухи.

Что представляют собой оптические бесконтрольные датчики? Это электронная схема, реагирующая на изменение того светового потока, который падает на приемник. Подобный принцип действия позволяет зафиксировать наличие или же отсутствие объекта в той или иной пространственной области.

В конструкции оптических бесконтактных датчиков имеется два основных блока. Один из них – источник излучения, а второй – приемник. Они могут находиться как в одном, так и в различных корпусах.

При рассмотрении принципа действия бесконтактного датчика можно выделить три типа оптических устройств:

  1. Барьерный. Работа оптических выключателей такого типа (Т) осуществляется на прямом луче. При этом приборы состоят из двух отдельных частей – передатчика и приемника, располагающихся соосно друг относительно друга. Тот поток излучения, который испускается излучателем, должен быть направлен точно в приемник. При прерывании луча объектом выключатель срабатывает. Такие датчики имеют хорошую помехозащищенность. Кроме этого, им не страшны ни капли дождя, ни пыль и т. д.
  2. Диффузный. Работа оптических выключателей типа D основана на использовании отраженного от объекта луча. Приемник и передатчик такого устройства располагают в одном корпусе. Излучателем направляется поток на объект. Луч, отражаясь от его поверхности, распределяется в различных направлениях. При этом часть потока возвращается назад, где и улавливается приемником. В результате выключатель срабатывает.
  3. Рефлекторный. Такие оптические бесконтактные датчики относятся к типу R. В них используется луч, отраженный от рефлектора. Приемник и излучатель такого устройства также располагаются в одном корпусе. При попадании на рефлектор луч отражается, оказывается в зоне приемника, в результате чего и происходит срабатывание устройства. Такие приборы действуют при расстоянии до объекта не более 10 метров. Возможно, их применение для фиксации полупрозрачных предметов.

Индуктивные датчики

В основе работы данного прибора лежит принцип учета изменений индуктивности основных его составляющих – катушки и сердечника. Отсюда пошло и само название такого датчика.

Изменения индукции свидетельствуют о том, что в магнитном поле катушки появился металлический предмет, который изменил его и, соответственно, всю схему подключения, основная функция в которой возложена на компаратор. При этом происходит подача сигнала на реле и отключение электрического тока.

Исходя из этого можно говорить об основном предназначении такого прибора. Его используют для измерения перемещений части оборудования, которое должно быть отключено, если превышены пределы проходимости. Сами датчики имеют границы движения, варьируемые в пределах от одного микрона до двадцати миллиметров. В связи с этим такой прибор называют еще и индуктивным выключателем положения.

Обзор бесконтактных датчиков подобного типа позволяет выделить из них несколько разновидностей. Подобная классификация основана на различном количестве проводов подключения:

  1. Двухпроводные. Такие индуктивные датчики подключают непосредственно в цепь. Это наиболее простой, но при этом достаточно капризный вариант. Он требует номинального сопротивления нагрузке. При снижении или увеличении данного показателя работа прибора становится некорректной.
  2. Трехпроводные. Подобный вид индукционного датчика является самым распространенным. В таких схемах два провода следует подключить к напряжению, а один – непосредственно к нагрузке.
  3. Четырех- и пятипроводные. В этих датчиках два провода подключают к нагрузке, а пятый используют для возможности выбора необходимого режима работы.

Ультразвуковые датчики

Эти устройства находят свое широкое применение в самых различных сферах производства, решая множество задач по автоматизации технологических циклов. Ультразвуковые бесконтактные датчики используются для определения местонахождения и удаленности различных объектов.

Например, они служат для обнаружения этикеток, причем даже и прозрачных, для измерения расстояния и осуществления контроля над передвижением объекта. С их помощью определяют уровень жидкости. Необходимость в этом возникает, например, для учета расхода топлива при выполнении транспортных работ. И это только некоторые из большого количества применений выключателей ультразвукового типа.

Такие датчики довольно компактны. Их отличает качественная конструкция и отсутствие различных подвижных деталей. Это оборудование не боится загрязнений, что достаточно актуально в условиях производств, а также почти не требует обслуживания.

В составе ультразвукового датчика находится пьезоэлектрический обогреватель, являющийся одновременно и излучателем, и приемником. Данная конструктивная деталь воспроизводит поток звуковых импульсов, принимая его и преобразуя полученный сигнал в напряжение. Далее оно подается на контроллер, который производит обработку данных и вычисляет то расстояние, на котором находится объект. Подобная технология называется эхолокационной.

Активный диапазон ультразвукового датчика является рабочим диапазоном обнаружения. Это то расстояние, в пределах которого ультразвуковой прибор может «увидеть» объект, и неважно, приближается ли тот к чувствительному элементу в осевом направлении или движется поперек звукового конуса.

В зависимости от принципа работы выделяют ультразвуковые датчики:

  1. Положения. Такие устройства используют для исчисления временного промежутка, необходимого для прохождения звука от прибора к тому или иному объекту и назад. Бесконтактные ультразвуковые датчики положения применяют для контроля местоположения и наличия разнообразных механизмов, а также для их подсчета. Используются такие приборы и в качестве сигнализатора уровня различных жидкостей или сыпучих материалов.
  2. Расстояния и перемещения. Принцип работы подобных приборов аналогичен тому, который используется в описанном выше устройстве. Разница имеется только в типе того сигнала, который присутствует на выходе. Он аналоговый, а не дискретный. Датчики подобного типа применяются для преобразования имеющихся показателей расстояния до объекта в определенные электрические сигналы.

Магниточувствительные датчики

Эти выключатели применяются для осуществления контроля положения. Датчики срабатывают при приближении магнита, который расположен на движущейся части механизма. Такие устройства обладают расширенным температурным диапазоном (от -60 до +125 градусов по Цельсию). Подобная функциональность позволяет автоматизировать большое количество сложных производственных процессов.

Бесконтактный датчик температуры магниточувствительного типа применяют:

— на химических и металлургических производствах;

— в районах Крайнего Севера;

— на подвижном составе;

— в холодильных установках;

— на автокранах;

— в бульдозерах;

— в снегоуборочных машинах и т. д.

Свое применение они находят в охранных системах зданий, а также для автоматического открывания окон и входных дверей.

Самыми современными и быстродействующими являются магниточувствительные датчики, работающие на эффекте Холла. Они не подвержены механическому износу, так как обладают электронным выходным ключом. Ресурс таких датчиков практически неограничен. В связи с этим их применение является выгодным и практичным решением задач по измерению числа оборотов вала, фиксации расположения быстро движущихся объектов и т. д.

При измерении уровня жидкостей широко применяют поплавковые магниточувствительные датчики. Они являются оптимальным вариантом для определения необходимых показателей из-за недорогой цены и простоты конструкции.

Микроволновые датчики

Подобная разновидность бесконтактных выключателей является наиболее универсальным вариантом конструкции, чего позволяет добиться непрерывное сканирование обслуживаемой зоны. При этом стоит иметь в виду, что они находятся в более высокой ценовой категории, чем, например, ультразвуковые аналоги.

Функционирование подобного прибора происходит благодаря излучению электромагнитных волн, имеющих высокую частоту, значение которой несколько отличается в устройствах различных производителей. Микроволновые датчики настроены на сканирование и приемку отраженных волн. Это позволяет аппарату фиксировать даже самые малейшие изменения электромагнитного фона. Если это происходит, то сразу же срабатывает система оповещения, подключенная к датчику, в виде сигнализации, освещения и т. д.

Микроволновые приборы обладают повышенной точностью срабатывания и чувствительностью. Для них не являются преградами кирпичные стены, двери и предметы мебели. Данный факт следует учесть при установке системы. Уровень чувствительности прибора может быть изменен с помощью настройки датчика движения.

Применяют микроволновые выключатели для управления внутренним и наружным освещением, устройствами сигнализации, электроприборами и т. д.

Пирометрические датчики

Для организма любого живого существа характерно наличие теплового излучения, которое является пучком электромагнитных волн разной длины. При повышении температуры тела увеличивается и объем излучаемой им энергии.

На основе фиксации теплового излучения работают датчики, которые называются пирометрическими сенсорами. Они бывают:

— суммарного излучения, измеряющими полную тепловую энергию тела;

— частичного излучения, измеряющие энергию ограниченного приемником участка;

— спектрального отношения, выдающие показатель отношения энергии определенных участков спектра.

Бесконтактные датчики-сенсоры чаще всего применяются в приборах, фиксирующих движение объектов.

Сенсорные выключатели

Развивающиеся технологии затронули практически все сферы жизнедеятельности человека. Не обошли они стороной и вопросы обустройства дома. Одним из ярких примеров тому является сенсорный выключатель. Это устройство позволяет управлять освещением помещения с помощью легкого прикосновения.

Сенсорный выключатель сразу же срабатывает даже при самом слабом прикосновении к кнопке. В его конструкцию входит три основных элемента. Среди них:

  1. Блок управления, обрабатывающий поступивший сигнал и передающий его нужным элементам.
  2. Устройство коммутации. Эта деталь смыкает и размыкает цепь, а также изменяет силу тока, потребляемую светильником.
  3. Управляющая (сенсорная) панель. С помощью этой детали выключатель воспринимает сигналы с пульта ДУ или от касания. Самые современные устройства срабатывают при проведении рядом с ними рукой.

Стандартные модели могут:

— включать и выключать свет;

— регулировать яркость;

— контролировать работу отопительных приборов, сообщая об изменениях температуры;

— открывать и закрывать жалюзи;

— включать и выключать бытовые устройства.

Сенсорные выключатели производят различных видов. Конкретная модель выбирается в зависимости от потребностей офиса или жилого дома. Например, желание приобрести и установить сенсорное устройство может возникнуть из-за расположения стационарного выключателя в неудобном месте с невозможностью его переноса. А может, в доме или в квартире живет человек, подвижность которого ограничена. Порой стационарные выключатели находятся на такой высоте, что недоступны для детей. Решение проблемы потребует выбора определенной модели. Некоторые хозяева предпочитают устанавливать сенсорные выключатели для изменения яркости света не вставая с кровати и т. д.

www.syl.ru

Емкостной датчик уровня-полное описание,применение

Современную промышленность невозможно представить себе без различного рода электроники. Приборы помогают во всем, а некоторые процедуры без них выполнить вообще не представляется возможным.

К таковым помощникам относятся емкостные датчики. Так называются преобразователи, разработанные по параметрическому принципу.

Измерение некоего объема подобными приборами осуществляется колебаниями емкостного сопротивления по ходу измерения необходимых параметров. Оценивается изменение емкостей конденсаторов под влиянием внешних факторов.

Применение

Области их возможного использования чрезвычайно разнообразны. Во всех областях промышленности могут встречаться операции, которые выполняются именно такими приборами.

Их применяют для стабилизации уровней заполнения различных резервуаров с жидким, сыпучим или даже газообразным содержимым.

Распространенность их в промышленности и простой производственной деятельности тем выше, чем проще и надежнее конструкция подобных приборов.

По совокупности своих характеристик датчики настолько хороши, что могут быть использованы даже в особо агрессивных условиях, например, в трюмах нефтеналивных танкеров.

Емкостной датчик можно использовать как конечный выключатель на линии конвейера или станке производственного цеха. Устройство потребуется для повышения точности позиционирования разнообразных механизмов.

Устройство

Емкостные бecконтакные датчики функционируют следующим образом:

  • Генератором обеспечивается электрическое поле.
  • Демодулятором преобразуется изменение амплитуд высокочастотных колебаний генераторов в изменение постоянного напряжения.
  • Триггером обеспечивается необходимая крутизна фронта сигналов переключения, а также значение гистерезиса.
  • Усилители увеличивают выходной сигнал до необходимых значений.
  • Светодиодные индикаторы показывают состояние выключателей, обеспечивают работоспособность и оперативность настройки.
  • Компаунды обеспечивают защиту от проникновения твердых частей и жидкостей.
  • Корпуса обеспечивают монтаж выключателя, защищают от механических воздействий. Создаются из полиамида или латуни, комплектуются метизными изделиями.

Виды датчиков

Применяемые в промышленности методы их производства позволяют делить все выпускаемые виды датчиков на два основных типа: одноемкостные и двухъемкостные.

Двухъемкостная разновидность делится на дифференциальные и полудифференциальные.

Одноемкостный прибор. В данном примере схемы датчиков могут быть до крайности простыми, так как их основой может послужить применение обычного конденсатора с переменными емкостями.

К сожалению, даже минимально повышенная температура и влажность оказывают на точность показаний довольно ощутимое влияние. По этой причине довольно часто возникают различные сбои в работе датчиков.

Для нивелирования величин таких погрешностей, используются дифференцированные конструкции. Двухъемкостные датчики являются конкретным примером дифференцированной структуры.

Очень часто встречаются емкостные датчики уровня, изготовленные именно по этой схеме. Такие приборы избавлены от многих недостатков предыдущих моделей, но имеют свои слабые стороны. Одним из самых значимых их недостатков является необходимость применения между поверхностью и самим устройством нескольких экранированных проводов.

Только таким способом можно подавлять паразитные емкости. На сложные устройства емкостных датчиков можно не обращать внимания потому, что вы получаете довольно точное и чувствительное устройство.

Пишите комментарии,дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

elektronchic.ru

Емкостные датчики

Количество просмотров публикации Емкостные датчики — 258

(1) — емкость плоского конденсатора с “бесконечной” протяженностью пластин.

— диэлектрическая проницаемость вакуума;

— относительная диэлектрическая проницаемость среды.

(2)

(3)

Это емкостной преобразователь, основанный на фиксировании тока разряд-заряд емкости.

На основании (1),(2) и (3)

(4)

(4) – раскрывает возможные способы воздействия на С.

В этом варианте датчика

Некоторые варианты построения емкостных преобразователœей и соотношения:

Способы воздействия на емкость

а) – изменением S; б) – изменением h; в) – изменением .

Понятия: линœейность функции преобразования и крутизна характеристики.

— проанализировать при

— крутизна зависимости; — в общем виде.

Эквивалентная схема

— Как чистую емкость преобразователь должна быть представлен лишь на низких частотах;

— Все ранее приведенные формулы взяты без учета “краевых” эффектов;

— Эквивалентные схемы на низких и высоких частотах различны. Здесь представлена схема на низких частотах, где — сопротивление утечки по постоянному току. Им можно пренебречь можно на низких частотах;

— Диэлектрические потери в изолирующих элементах содержат составляющую проводимости и возрастают с ростом частоты. Тангенс угла потерь — ;

— — сопротивление токоподводов, обмоток; с ростом частоты они растут, т.к. возникает поверхностный эффект;

— L – полная индуктивность токоподводов.

Большинство емкостных преобразователœей можно представить как чистую емкость С. Расчет “геометрической емкости целого ряда конфигураций, часто ведут без учета краевых эффектов в соответствии с формулами таблицы 1. Поведение конденсаторов на низких и высоких частотах различно. При низких частотах эквивалентная схема представлена на рисунке. — характеризует потери из-за утечки по постоянному току. Ей можно пренебречь даже при низких частотах.

.

Чувствительность и линœейность.

(1)

(2) ,

(3)

(4) , где

В случае если , то это будет конденсатор воздушный, без диэлектрика.

Варианты включения емкостного датчика:

1. В цепь с источником постоянного напряжения:

;

;

;

В случае если , то ;

В случае если , то ;

При большой постоянной времени , в фазе с изменением С.

Но большая T должна быть обеспечено при повышении , но это ведет к снижению чувствительности. По этой причине нужно повышать R до тех пор пока оно не достигнет величины сопротивления потерь в кабале. ( — несколько герц)

Пусть =>

;

производная по времени от входного сигнала, умноженная на постоянную времени .

Стабильность преобразования зависит от стабильности R, которая обусловлено изменением нестабильных сопротивлений потерь и утечек в цепи.

2. Включение емкостного датчика в цепь колебательного контура с источником переменного напряжения:

;

;

Пусть и

Тогда

При резонансе ;

тогда вблизи резонанса:

;

;

тогда

В случае если

; ;

;

;

;

;

3. Мостовые цепи переменного тока:

в частном случае

9 Измерительные цепи

Начальные емкости большинства емкостных преобразователœей не превосходят 10…100 пФ, а их изменения составляют в относительном исчислении , ᴛ.ᴇ. пФ.

По этой причине даже на высоких частотах напряжение питания () их выходные сопротивления велики и равны:

Выходные мощности сигналов малы, и в измерительных цепях крайне важно применение усилителœей.

Основные трудности:

1)защита от наводок.

По этой причине как сами преобразователи, так и соединительные линии тщательно экранируются. При этом сам экранированный провод имеет емкость между жилой и экраном (), которая при неудачном выборе точки присоединœения экрана может оказаться включенной параллельно емкости преобразователя. При этом падает чувствительность, т.к. уменьшается относительное изменение емкости на величину:

и появляется значительная погрешность из-за нестабильности

2)обеспечение линœейность характеристики.

Измерительные цепи включают: делители напряжения, измерительные мосты, емкостно-диодные цепи, резонансные контуры. Часто в состав измерительных цепей включают операционные усилители (ОУ).

В этой схеме включения ;

В случае если

то

В случае если

то

Схема 1.

В этой схеме влияния емкости экранированных проводов можно пренебречь, т.к. включены параллельно источнику и выходу ОУ, имеющим низкие входные сопротивления. — подключена параллельно входу ОУ и напряжение на ней близко к нулю.

Дифференциальные емкостные преобразователи включаются преимущественно в мостовые измерительные цепи. параллельны обмоткам и потому не влияют. Двойной экран – схема эквипотенциальной защиты. Наружный экран – Земля. Внутренний экран – к выходу повторителя напряжения. Ток с центральной жилы на внутренний экран отсутствует, т.к. равны напряжения между точками ‘а’ и ‘б’ относительно Земли.

Схема 2.

Ток эквивалентен внутренним и внешним экраном равен 0, т.к. эти точки нагружают низкоомный выход повторителя напряжения.

Необходимость в двух экранах отпадает при подсоединœении выхода моста к инвертирующему входу ОУ, т.к. потенциал на этом входе стремится к 0, то ток между проводом, подсоединœенный к этому входу, и окружающим ею экраном стремится к 0.

Тогда

Схема 3.

Схемы 1),2),3) пригодны тогда, когда пластины датчиков изолированы от корпуса. В случае если этого сделать нельзя и одна из пластин сидит на “Земле”(не в корпусе), то тогда провода ‘а’ и ‘б’ можно не экранировать

Емкостно-диодная измерительная цепь.

В каждом периоде каждый из подсоединœен последовательно, то с токи .

По этой причине на появится постоянное напряжение, являющее выходным.

Измерительные цепи с резонансными контурами.

,

где

Цепь питается от источника стаб. частоты. При изменении С сопротивление контура меняется по резонансной кривой при , и . На склонах резонансной кривой должна быть выбран участок, близкий к линœейному. В случае если или

Пренебрегая по сравнению с и , и полагая,

что , , ,

Напряжения на контуре определим из:

referatwork.ru