Фонарь светодиодный схема – Как отремонтировать фонарь на светодиодах? Схема китайского фонарика с зарядкой от сети

Содержание

Фонарь светодиодный – схема, ремонт и модернизация своими руками

Для безопасности и возможности продолжать активную деятельность в темное время суток человек нуждается в искусственном освещении. Первобытные люди раздвигали темень, поджигая ветки деревьев, далее придумали факел и керосинку. И только после изобретения французским изобретателем Жорджом Лекланше в 1866 году прототипа современной батарейки, а в 1879 году Томсоном Эдисоном лампы накаливания, у Дэвида Майзелла появилась возможность запатентовать 1896 году первый электрический фонарь.

С тех пор в электрической схеме новых образцов фонарей ничего не изменялось, пока в 1923 году российский ученый Олег Владимирович Лосев не нашёл связь люминесценции в карбиде кремния и p-n-переходе, а в 1990 году ученым не удалось создать светодиод с большей светоотдачей, позволяющий заменить лампочку накаливания. Применение светодиодов вместо ламп накаливания, благодаря низкому энергопотреблению светодиодов, позволило многократно увеличить время работы фонарей при той же емкости батареек и аккумуляторов, повысить надежность фонариков и практически снять все ограничения на область их использования.

Светодиодный аккумуляторных фонарь, который Вы видите на фотоснимке попал мне в ремонт с жалобой, что купленный на днях китайский фонарик Lentel GL01 за $3, не светит, хотя индикатор заряда аккумулятора светится.

Внешний осмотр фонаря произвел положительное впечатление. Качественное литье корпуса, удобная ручка и включатель. Стержни вилки для подключения к бытовой сети для зарядки аккумулятора сделаны выдвижными, что исключает необходимость хранения сетевого шнура.

Внимание! При разборке и ремонте фонаря, если он подключен к сети следует соблюдать осторожность. Прикосновение незащищенным участком тела к неизолированным проводам и деталям может привести к поражению электрическим током.

Как разобрать светодиодный аккумуляторный фонарь Lentel GL01

Хотя фонарик подлежал гарантийному ремонту, но вспоминая свои хождения при при гарантийном ремонте отказавшего электрочайника (чайник был дорогим и в нем перегорел ТЭН, поэтому своими руками его отремонтировать не представлялось возможным), решил заняться ремонтом самостоятельно.

Разобрать фонарь оказалось легко. Достаточно повернуть на небольшой угол против часовой стрелки кольцо, фиксирующее защитное стекло и оттянуть его, затем отвинтить несколько саморезов. Оказалось кольцо фиксируется на корпусе с помощью байонетного соединения.

После снятия одной из половинок корпуса фонарика появился доступ ко всем его узлам. Слева на фотоснимке видна печатная плата со светодиодами, к которой прикреплен с помощью трех саморезов рефлектор (отражатель света). В центре расположен аккумулятор черного цвета с неизвестными параметрами, имеется только маркировка полярности выводов. Правее аккумулятора находится печатная плата зарядного устройства и индикации. Справа установлена сетевая вилка с выдвижными стержнями.

При внимательном рассмотрении светодиодов оказалось, что на излучающих поверхностях кристаллов всех светодиодов имелись черные пятна или точки. Стало ясно даже без проверки светодиодов мультиметром, что фонарик не светит по причине их перегорания.

Почерневшие области имелись также на кристаллах двух светодиодов, установленных в качестве подсветки на плате индикации зарядки аккумулятора. В светодиодных лампах и лентах обычно выходит из строя один светодиод, и работая как предохранитель, защищает остальные от перегорания. А в фонаре вышли из строя все девять светодиодов одновременно. Напряжение на аккумуляторе не могло увеличиться до величины, способной вывести светодиоды из строя. Для выяснения причины пришлось начертить электрическую принципиальную схему.

Поиск причины отказа фонаря

Электрическая схема фонаря состоит из двух функционально законченных частей. Часть схемы, расположенная левее переключателя SA1, выполняет функцию зарядного устройства. А часть схемы, изображенная справа от переключателя, обеспечивает свечение.

Работает зарядное устройство следующим образом. Напряжение от бытовой сети 220 В поступает на токоограничивающий конденсатор С1, далее на мостовой выпрямитель, собранный на диодах VD1-VD4. С выпрямителя напряжение подается на клеммы аккумулятора. Резистор R1 служит для разряда конденсатора после изъятия вилки фонарика из сети. Таким образом, исключается удар током от разряда конденсатора в случае случайного прикосновения рукой одновременно двух штырей вилки.

Светодиод HL1, включенный последовательно с токоограничивающим резистором R2 в противоположном направлении с правым верхним диодом моста, как, оказалось, светится всегда при вставленной вилке в сеть, даже если аккумулятор неисправен или отсоединен от схемы.

Переключатель режимов работы SA1 служит для подключения к аккумулятору отдельных групп светодиодов. Как видно из схемы получается, что если фонарь подключен к сети для зарядки и движок переключателя находится в положении 3 или 4, то напряжение с зарядного устройства аккумулятора попадает и на светодиоды.

Если человек включил фонарик и обнаружил, что он не работает, и, не зная, что движок выключателя обязательно необходимо установить в положение «выключено», о чем в инструкции по эксплуатации фонаря ничего не сказано, подключит фонарь к сети на зарядку, то за счет броска напряжения на выходе зарядного устройства на светодиоды попадет напряжение, значительно превышающее расчетное. Через светодиоды потечет ток, превышающий допустимый и они перегорят. При старении кислотного аккумулятора за счет сульфитации свинцовых пластин напряжение заряда аккумулятора возрастает, что тоже приводит к перегоранию светодиодов.

Еще одно схемное решение, которое удивило, это параллельное включение семи светодиодов, что недопустимо, так как вольтамперные характеристики даже светодиодов одного типа отличаются и поэтому проходящий ток через светодиоды тоже будет не одинаковым. По этой причине при выборе номинала резистора R4 из расчета протекания через светодиоды максимально допустимого тока, один из них может перегружаться и выйти из строя, а это приведет к перегрузке по току параллельно включенных светодиодов, и они тоже перегорят.

Переделка (модернизация) электрической схемы фонаря

Стало очевидным, что поломка фонаря связана с ошибками, допущенными разработчиками его электрической принципиальной схемы. Чтобы отремонтировать фонарь и исключить его повторную поломку необходимо его переделать, заменив светодиоды и внести незначительные изменения в электрическую схему.

Для того чтобы индикатор заряда аккумулятора действительно сигнализировал о его зарядке, необходимо светодиод HL1 включить последовательно с аккумулятором. Для свечения светодиода необходим ток несколько миллиампер, а выдаваемый ток зарядным устройством должен составлять около 100 мА.

Для обеспечения этих условий достаточно отсоединить HL1-R2 цепочку от схемы в местах, указанных красными крестиками и параллельно с ней установить дополнительный резистор Rd номиналом 47 Ом мощностью не менее 0,5 Вт. Ток заряда, протекая через Rd будет создавать на нем падение напряжения около 3 В, которое обеспечить необходимый ток для свечения индикатора HL1. Заодно точку соединения HL1 и Rd необходимо подключить к выводу 1 переключателя SA1. Таким простым способом будет исключена возможность подачи напряжения с зарядного устройства на светодиоды EL1-EL10 во время заряда аккумулятора.

Для выравнивания величины токов, протекающих через светодиоды EL3-EL10, необходимо исключить из схемы резистор R4 и последовательно с каждым светодиодом включить отдельный резистор номиналом 47-56 Ом.

Электрической схема после доработки

Внесенные в схему незначительные изменения повысили информативность индикатора заряда недорогого китайского светодиодного фонаря и многократно повысили его надежность. Надеюсь, что производители светодиодных фонарей после прочтения этой статьи внесут изменения в электрические схемы своих изделий.

После модернизации электрическая принципиальная схема приняла вид, как на чертеже выше. Если необходимо освещать фонариком продолжительное время и не требуется большой яркости его свечения, то можно дополнительно установить токоограничивающий резистор R5, благодаря которому время работы фонарика без подзарядки увеличится в два раза.

Ремонт светодиодного аккумуляторного фонаря

После разборки в первую очередь нужно восстановить работоспособность фонаря, а потом уже заниматься модернизацией.

Проверка светодиодов мультиметром подтвердила их неисправность. Поэтому все светодиоды пришлось выпаять и освободить от припоя отверстия для установки новых диодов.

Судя по внешнему виду, на плате были установлены ламповые светодиоды из серии HL-508H диаметром 5 мм. В наличии имелись светодиоды типа HK5h5U от линейной светодиодной лампы с близкими техническими характеристиками. Они и пригодились для ремонта фонаря. При запайке светодиодов на плату нужно не забывать соблюдать полярность, анод должен быть соединен с плюсовым выводом аккумулятора или батарейки.

После замены светодиодов печатная плата была подключена к схеме. Яркость свечения некоторых светодиодов из-за общего токоограничивающего резистора несколько отличалась от других. Для устранения этого недостатка необходимо удалить резистор R4 и заменить его семью резисторами, включив последовательно с каждым светодиодом.

Для выбора резистора, обеспечивающего оптимальный режим работы светодиода, была измерена зависимость величины тока, протекающего через светодиод, от величины последовательно включенного сопротивления при напряжении 3,6 В, равному напряжению аккумуляторной батареи фонаря.

Исходя из условий применения фонаря (в случае перебоев подачи в квартиру электроэнергии) большой яркости и дальности освещения не требовалось, поэтому резистор был выбран номиналом 56 Ом. С таким токоограничивающим резистором светодиод будет работать в легком режиме, и потребление электроэнергии будет экономным. Если от фонаря требуется выжать максимальную яркость, то следует применить резистор, как видно из таблицы, номиналом 33 Ом и сделать два режима работы фонарика, включив еще один общий токоограничивающий резистор (на схеме R5) номиналом 5,6 Ом.

Чтобы включить последовательно с каждым светодиодом резистор, необходимо предварительно подготовить печатную плату. Для этого на ней нужно перерезать по одной любой токоведущей дорожке, подходящей к каждому светодиоду и сделать дополнительные контактные площадки. Токоведущие дорожки на плате защищены слоем лака, который необходимо соскоблить лезвием ножа до меди, как на фотоснимке. Затем оголенные контактные площадки залудить припоем.

Подготавливать печатную плату для монтажа резисторов и припаивать их лучше и удобнее, если плату закрепить на штатном рефлекторе. В этом случае поверхность линз светодиодов не будет царапаться, и удобнее будет работать.

Подключение диодной платы после ремонта и модернизации к аккумулятору фонаря показало достаточную для освещения и одинаковую яркость свечения всех светодиодов.

Не успел отремонтировать предыдущий фонарь, как в ремонт попал второй, с такой же неисправностью. На корпусе фонарика информации о производителе и технических характеристиках не нашел, но судя по почерку изготовления и причине поломки, производитель тот же, китайский Lentel.

По дате на корпусе фонарика и на аккумуляторе удалось установить, что фонарю уже четыре года и со слов его хозяина фонарь работал безотказно. Очевидно, что прослужил фонарик долго благодаря предупреждающей надписи «Не включать во время зарядки!» на откидной крышке, закрывающей отсек, в котором спрятана вилка для подключения фонаря к электросети для зарядки аккумулятора.

В этой модели фонаря светодиоды включены в схему по правилам, последовательно с каждым установлен резистор номиналом 33 Ом. Величину резистора легко узнать по цветовой маркировке с помощью онлайн калькулятора. Проверка мультиметром показала, что все светодиоды неисправны, резисторы тоже оказались в обрыве.

Анализ причины отказа светодиодов показал, что за счет сульфатации пластин кислотного аккумулятора его внутреннее сопротивление увеличилось и как следствие, напряжение его зарядки возросло в несколько раз. Во время зарядки фонарик был включен, ток через светодиоды и резисторы превысил предельный, что и привело к выходу их из строя. Пришлось заменить не только светодиоды, но и все резисторы. Исходя из выше оговоренных условиях эксплуатации фонаря были для замены выбраны резисторы номиналом 47 Ом. Величину резистора для любого типа светодиода можно рассчитать с помощью онлайн калькулятора.

ydoma.info

Схемы и конструкции фонариков и модернизация китайских излучателей


В жизни каждого человека бывают моменты, когда необходимо наличие освещения, а электричества нет. Это может быть и банальное отключение электроэнергии, и необходимость ремонта проводки в доме, а возможно, и лесной поход или что-либо подобное.

И, конечно же, все знают, что в таком случае выручит только электрический фонарик – компактное и в то же время функциональное устройство. Сейчас на рынке электротехники множество различных видов данного товара. Это и обычные фонари с лампами накаливания, и светодиодные, с аккумуляторами и батарейками. Да и фирм, производящих эти приборы, великое множество – «Дик», «Люкс», «Космос» и т. п.

А вот каков принцип его работы, задумываются не многие. А между тем, зная устройство и схему электрического фонарика, можно при необходимости его починить или вообще собрать собственными руками. Вот в этом вопросе и попробуем разобраться.

Простейшие фонари

Так как фонарики бывают разные, то имеет смысл начать с самого простого – с батарейкой и лампой накаливания, а также рассмотреть его возможные неисправности. Схема подобного прибора элементарна.

Схема простейшего фонарика

По сути, в нем нет ничего, кроме батарейки, кнопки включения и лампочки. А потому и проблем с ним особых не бывает. Вот несколько возможных мелких неприятностей, которые могут повлечь за собой отказ такого фонаря:

  • Окисление любого из контактов. Это могут быть контакты выключателя, лампочки или батареи. Нужно просто почистить эти элементы схемы, и приборчик снова заработает.
  • Сгорание лампы накаливания – тут все просто, замена светового элемента решит эту проблему.
  • Полный разряд батареек – замена элементов питания на новые (либо зарядка, если они аккумуляторные).
  • Отсутствие контакта или перелом провода. Если фонарик уже не новый, в таком случае есть смысл поменять все провода. Сделать это совершенно не сложно.

Фонарик на светодиодах

Этот вид фонарей отличается более мощным световым потоком и при этом потребляет очень мало энергии, а значит, и элементы питания в нем прослужат дольше. Все дело в конструкции световых элементов – в светодиодах отсутствует нить накаливания, они не расходуют энергию на нагрев, ввиду этого коэффициент полезного действия таких приборов выше на 80–85%. Также велика роль дополнительного оборудования в виде преобразователя с участием транзистора, резистора и высокочастотного трансформатора.

Если аккумулятор фонарика встроенный, то с ним в комплекте обязательно идет и зарядное устройство.

Схема подобного фонаря состоит из одного или нескольких светодиодов, преобразователя напряжения, выключателя и элемента питания. В более ранних моделях фонариков количество потребления энергии светодиодами должно было соответствовать вырабатываемому источником.

Сейчас эта проблема решена при помощи преобразователя напряжения (его также называют умножителем). Собственно, он-то и является главной деталью, которую содержит электрическая схема фонарика.

Схема преобразователя напряжения

При желании сделать такой прибор своими руками особых сложностей не возникнет. Транзистор, резистор и диоды – не проблема. Самым непростым моментом будет намотка высокочастотного трансформатора на ферритовом кольце, который называется блокинг-генератор.

Но и с этим можно справиться, взяв подобное колечко из неисправного электронного пускорегулирующего аппарата энергосберегающей лампы.  Хотя, конечно, если не хочется возиться или нет времени, то в продаже можно найти высокоэффективные преобразователи, такие как 8115. С их помощью, при применении транзистора и резистора, и стало возможным изготовление светодиодного фонарика на одной батарейке.

Сама же схема светодиодного фонаря подобна простейшему прибору, и на ней останавливаться не стоит, т. к. собрать ее способен даже ребенок.

Кстати, при применении в схеме преобразователя напряжения на старом, простейшем фонаре, работающем от квадратной батареи в 4.5 вольт, которую сейчас уже не купить, можно будет спокойно ставить элемент питания в 1.5 вольт, т. е. обычную «пальчиковую» или «мизинчиковую» батарею. Никакой потери в световом потоке наблюдаться не будет. Основная задача при этом – иметь хотя бы малейшее представление о радиотехнике, буквально на уровне знания, что такое транзистор, а также уметь держать в руках паяльник.

Доработка китайских фонариков

Иногда бывает так, что купленный (с виду вполне качественный) фонарик с аккумулятором полностью отказывает. И вовсе не обязательно покупатель виноват в неправильной эксплуатации, хотя и это тоже встречается. Чаще – это ошибка при сборке китайского фонарика в погоне за количеством в ущерб качеству.

Конечно, в таком случае придется его переделать, как-то модернизировать, ведь потрачены деньги. Сейчас необходимо понять, как это сделать и возможно ли побороться с китайским производителем и выполнить ремонт такого прибора самостоятельно.

Рассматривая наиболее часто встречающийся вариант, при котором при включении прибора в сеть индикатор зарядки светится, но фонарь не заряжается и не работает, можно заметить вот что.

Обычная ошибка производителя – индикатор заряда (светодиод) включается в цепь параллельно с аккумулятором, чего допускать никак нельзя. При этом покупатель включает фонарь, и видя, что тот не горит, снова подает питание на заряд. В результате – перегорание всех светодиодов разом.

Дело в том, что не все производители указывают, что заряжать подобные устройства с включенными светодиодами нельзя, т. к. отремонтировать их будет невозможно, останется только заменить.

Итак, задача по модернизации – подключить индикатор заряда последовательно с аккумулятором.

Модернизация китайского брака

Как видно из схемы, эта проблема вполне решаема.

А вот если китайцы в свое изделие поставили резистор 0118, то светодиоды придется менять постоянно, т. к. ток, поступающий на них, будет очень высоким, и какие бы световые элементы ни были установлены – они не выдерживают нагрузки.

Налобный светодиодный фонарь

В последние годы подобный световой прибор получил достаточно широкое распространение. Действительно, ведь очень удобно, когда руки свободны, а луч света бьет туда, куда смотрит человек, в этом как раз главное преимущество налобного фонарика. Раньше таким могли похвастаться только шахтеры, да и то для его ношения нужна была каска, на которую фонарь, собственно, и крепился.

Сейчас же крепление подобного прибора удобно, носить его можно при любых обстоятельствах, да и на поясе не висит довольно объемный и тяжелый аккумулятор, который, к тому же, еще и обязательно нужно раз в сутки заряжать. Современный намного меньше и легче, притом имеет очень маленькое энергопотребление.

Так что же представляет собой подобный фонарь? А принцип его работы нисколько не отличается от светодиодного. Варианты исполнения такие же – аккумуляторный или со съемными элементами питания. Количество светодиодов варьируется от 3 до 24 в зависимости от характеристик батареи и преобразователя.

К тому же обычно такие фонари имеют 4 режима свечения, а не один. Это слабый, средний, сильный и сигнальный – когда светодиоды моргают через короткие промежутки времени.

Схема налобного светодиодного фонаря

Режимами налобного светодиодного фонарика управляет микроконтроллер. Причем при его наличии возможен даже режим стробоскопа. К тому же светодиодам это совсем не вредит, в отличие от ламп накаливания, т. к. их срок службы не зависит от количества циклов включения-выключения по причине отсутствия нити накаливания.

Так какой же фонарь выбрать?

Конечно, фонарики могут быть различными и по потребляемому напряжению (от 1.5 до 12 В), и с различными выключателями (сенсорный или механический), с наличием звукового оповещения о разряде батареи. Это может быть оригинал или его аналоги. Да и не всегда можно определить, что же за прибор перед глазами. Ведь пока он не выйдет из строя и не начнется его ремонт, нельзя увидеть, какая в нем стоит микросхема или транзистор. Наверное, лучше выбирать тот, который нравится, а возможные проблемы решать уже по мере поступления.

lampagid.ru

Электрические схемы фонариков

 Электрический фонарик относится как бы к дополнительному вспомогательному инструменту для проведения каких либо работ при наличии плохого освещения либо отсутствия освещения вообще.   Каждый из нас выбирает тип фонарика по своему усмотрению:

  • налобный фонарик;
  • карманный фонарик;
  • фонарик на ручном генераторе

и так далее.

 

Схема простого фонарика

рис.1

Электрическая схема простого фонарика \рис.1\  состоит из:

  • батареи элементов;
  • лампочки;
  • ключа \выключателя\.

 

Схема в своем исполнении простая и разъяснений на этот счет не требует.   Причинами неисправности  фонарика при такой схеме могут быть:

  • окисление контактных соединений с батарейками;
  • окисление контактов патрона лампочки;
  • окисление контактов самой лампочки;
  • неисправность ключа \выключателя света\;
  • неисправность самой лампочки \перегорела лампочка\;
  • отсутствие контактного соединения с проводом;
  • отсутствие питания батареек.

Другими причинами неисправности могут быть какие либо механические повреждения корпуса фонарика.

Схема аккумуляторного фонарика на светодиодах

 

фонарик налобный со светодиодами  BL — 050 — 7C

Фонарик  BL — 050 — 7C  поступает в продажу со встроенным зарядным устройством,  при подключении такого фонарика к внешнему источнику переменного напряжения — осуществляется подзарядка аккумуляторной батареи.

Аккумуляторные батарейки, а точнее электрохимические аккумуляторы,-  принцип зарядки  таких элементов  основан  на использовании обратимых электрохимических систем.  Вещества, образовавшиеся в процессе разряда аккумулятора, под воздействием электрического тока — способны восстанавливать свое первоначальное состояние.  То есть подзарядили фонарик и можем дальше им пользоваться.  Такие электрохимические аккумуляторы или отдельные элементы, могут состоять из определенного количества, — в зависимости от потребляемого напряжения:

  • количества лампочек;
  • типа лампочек.

Количество, комплект таких отдельных элементов фонарика, — представляют из себя батарею.

 

рис.2

Электрическую схему  фонарика \рис.2\ можно рассматривать как состоящей из простой лампочки накаливания так и из определенного количества  светодиодных лампочек.  Для любой схемы фонарика что именно важно? — Важно то, чтобы потребляемая энергия лампочками состоящими в электрической цепи —  соответствовала выдаваемому напряжению источника питания  \батареи, состоящей из отдельных элементов\.

Читаем схему соединений:

Резистор   R1 сопротивлением —  510 кОм и номинальным значением мощности — 0,25 Вт в электрической цепи соединен параллельно, за счет данного большого сопротивления,  напряжение  на дальнейшем участке  электрической цепи значительно теряется, а точнее, часть электрической энергии преобразовывается в тепловую энергию.

С резистора R2 \сопротивлением 300 Ом и номинальным значением мощности — 1 Вт\ ток поступает на светодиод VD2.  Данный светодиод служит индикаторной лампочкой, показывающей подключение зарядного устройства фонарика к внешнему источнику переменного напряжения.

На анод диода VD1 ток поступает от конденсатора C1.  Конденсатор в электрической цепи является  сглаживающим фильтром, часть электрической энергии теряется при положительном полупериоде синусоидального напряжения, так как при данном полупериоде конденсатор заряжается.

При отрицательном полупериоде конденсатор разряжается и ток поступает на анод катода VD1.  Внешнее падение напряжения для данной электрической цепи происходит при наличии в электрической схеме — двух резисторов и лампочки.  Так же, можно учесть, что  при переходе тока  от  анода к катоду — в диоде VD1 — так же существует свой потенциальный барьер.  То есть диоду тоже свойственно в какой то степени подвергаться нагреванию, при котором происходит внешнее падение напряжения.

На батарею GB1 состоящей из трех элементов, от зарядного устройства \при подключении фонарика к внешнему источнику переменного напряжения\ поступает ток двух потенциалов \+ -\.   В батарее  происходит восстановление электрохимического состава батареи — в свое первоначальное состояние.

Следующая схема \рис.3\ которая встречается в светодиодных фонариках, состоит из следующих элементов электроники:

рис.3

  • двух резисторов \R1; R2\;
  • диодного моста состоящего из четырех диодов;
  • конденсатора;
  • диода;
  • светодиода;
  • ключа;
  • батареи;
  • лампочки.

Для данной схемы, внешнее падение напряжения происходит за счет всех состоящих элементов электроники — соединенных в этой цепи.  Одна диагональ диодного моста мостовой схемы подключается к внешнему источнику переменного напряжения, другая диагональ диодного моста соединена с нагрузкой — состоящей из определенного количества светоизлучающих диодов.

Все подробные описания по замене элементов электроники при проведении ремонта фонарика, а так же проведение диагностики данных элементов — Вы сможете найти в этом сайте, где приведены подобные темы в которых усматривается ремонт бытовой техники.

Как отремонтировать светодиодный фонарик

 

По своей работе  приходится иногда пользоваться налобным фонариком.   Примерно через полгода после приобретения аккумуляторная батарея  фонарика перестала заряжаться после его включения на подзарядку через сетевой шнур.

При установлении причины поломки налобного фонарика, ремонт сопровождался  фотоснимками,  чтобы изложить данную тему в наглядном примере.

Причина неисправности была в начале не ясна, так как при включении фонарика на подзарядку — сигнальная лампочка при этом загоралась и сам фонарик при нажатии кнопки выключателя — излучал слабый свет.   Так в чем же может быть причина такой неисправности?   В неисправности аккумуляторной батареи или в какой либо другой причине?

Необходимо было вскрыть корпус фонарика для его осмотра.   На фотоснимках \фото №1\  наконечником отвертки указаны места скрепления \соединения\ корпуса.

                                                                                                       

                                                                                                                                                                                   фото №1

Если корпус фонарика не поддается вскрытию,   нужно внимательно  осмотреть — все ли вывернуты шурупы.

  На фотоснимке №2 показан понижающий преобразователь как по напряжению так и по силе тока.

                                                                                                                                                                                                                                                                                                                  

                                                                                                                                                                                                                                                                                                                                   фото №2

В схеме не следует искать причину неисправности, так как при подключении к внешнему источнику — сигнальная лампочка светится \фото №2 красная светодиодная лампочка\.   Проверяем дальше соединения.

Перед нами на фотоснимке \фото №3\ изображен выключатель света светодиодного фонарика.   Контакты кнопочного поста выключателя представляют из себя устройство двойного выключателя  света, где для данного примера загораются:

  • шесть светодиодных ламп,
  • двенадцать светодиодных ламп

фонарика.   Два контакта выключателя как мы видим, замкнуты накоротко и к данным контактам припаян общий провод.   К двум следующим контактам выключателя припаяны два провода — по отдельности, от которых поступает ток на освещение:

  • шести ламп;
  • двенадцати  ламп.

                                         

                                                                                 фото №3

Контакты выключателя света \при переключении\ достаточно проверить пробником как это показано на фотоснимке №4.   К общему контакту \два короткозамкнутых контакта\ прикасаемся пальцем руки  и к другим двум контактам поочередно соприкасаемся пробником.

фото №4

При исправности выключателя,  светодиодная лампочка пробника загорается \фото №4\.   Выключатель света исправный, проводим дальше диагностику.

Сетевой шнур здесь также можно проверить пробником \фото №5\.   Для этого, пальцем руки нужно  замкнуть штырьки штепсельной вилки накоротко и поочередно к первому и ко второму контакту разъема кабеля  подсоединить пробник.   Загорание лампочки пробника будет указывать на отсутствие разрыва в проводе сетевого шнура.

фото №5

 Сетевой шнур для подзарядки аккумуляторной батареи исправен,  проводим дальше диагностику.   Необходимо также проверить аккумуляторную батарею фонарика.

 

                                                                                                                          фото №6                                                                      

 На увеличенном  изображении  аккумуляторной батареи \фото №6\  видно, что для ее подзарядки поступает постоянное напряжение — 4 Вольт.   Сила тока данного напряжения составляет — 0,9 ампер\час.     Проверяем аккумуляторную батарею.

фото №7

 Прибор мультиметр в этом примере устанавливается в диапазон измерения постоянного напряжения от 2 до 20 Вольт, чтобы измеряемое напряжение соответствовало установленному диапазону.

 

фото №7

Как мы видим, дисплей прибора показывает постоянное напряжение батареи — 4,3 Вольт.   Фактически,  данный  показатель должен принимать большее значение, — то есть здесь недостаточное напряжение для питания светодиодных ламп.   В светодиодных лампах учитывается потенциальный барьер для каждой такой лампы, — как нам известно из электротехники.   Следовательно, батарея не получает необходимое напряжение при подзарядке.

фото №8

А вот и вся причина неисправности \фото №8\.   Данная причина неисправности  была установлена не сразу, — в разрыве контактного соединения провода с аккумуляторной батареей.

Что здесь можно отметить:

Провода в данной схеме ненадежные для паяния, так как тонкое  сечение провода не позволяет надежно крепиться в месте припаивания.

Но и такая причина поломки  устранима, проводка была заменена на более надежное сечение и светодиодный фонарик в настоящее время действующий,  работает безотказно.

Изложенную тему считаю незаконченной, будут приводиться в примерах для Вас, — ремонты  других типов фонариков.

На этом пока все.

 

 

zapiski-elektrika.ru

СХЕМА ФОНАРИКА НА СВЕТОДИОДАХ

Всем доброго времени суток. Валялся дома фонарик с диодной матрицей на 16 светодиодов, захотел его переделать в смысле усовершенствования схемы питания, тем более было из чего. Сама по себе матрица светит достаточно ярко, но все же не то, как говориться. За основу взял светодиод 1 Вт с коллиматором на 60 градусов, в качестве драйвера светодиода взял схему уже мной приводимую в других материалах.

Схема номер 1

В качестве источника питания выбрал конечно литиевый аккумулятор SAMSUNG 18650 2600ma/h.

Для контроллера разряда аккумулятора применил специализированный контроллер, который стоит в АКБ мобильных телефонов — микросхему DW01-P с ключом на полевом транзисторе.

Задача стояла всё это хозяйство утолкать без переделки корпуса фонаря, так как свободного места оказалось очень мало, а точнее вообще не оказалось, кроме как внутри резьбовой гайки, крепящей родную диодную матрицу в корпусе. Всё это дело поместил на двух печатных платах: на первой сам контроллер разряда АКБ, на второй драйвер светоизлучающего диода. Светодиод припаян к алюминиевой подложке и прижимается к корпусу фонаря все той же резьбовой гайкой. В виду того, что гайка имеет непосредственный тепловой контакт с подложкой светодиода и корпусом фонаря, который также из алюминия, мы получили превосходный радиатор.

Платы между собой спаяны шпильками, для жесткости, на плате контроллера разряда имеется контактная пружина под минус аккумулятора.

Выключатель питания, как и всё остальное, остался не тронутым. Для зарядки аккумулятора его необходимо извлечь из корпуса фонаря. Плата драйвера светодиода на одностороннем текстолите, плата контроллера разряда двусторонняя. На второй стороне контактная пружина, соединение обоих сторон через пропаянную сквозную шпильку. Вот что в результате вышло:

Но на этом дело не закончилось, позже решил разобрать временно свой фонарик. Причина — кривая работа контроллера разряда аккумулятора. Оказался дохлым элемент DW01-P, собственно это и следовало ожидать, так как взят он был из раздутого аккума. Всёже очень хотелось организовать контроль разряда и заряда, и отключение нагрузки при переходе ниже допустимого уровня.

Очередной донор был выковырян из аккумулятора — какого-то SIEMENS, купленного по спекулятивной цене аж 5 гривен, и имел вид примерно такой же как на фото. Пришлось конечно проверить режимы на минимальных и максимальных предельных напряжениях. Он показал свою устойчивую и четкую работу защиты при КЗ. Так как мой аккумулятор не имеет своего контроллера, пришлось его прицепить поверх его корпуса, благо он очень мал и имеет малую толщину. Это дало возможность выкинуть первую плату контроллера в мусорное ведро и немного освободить места под аккумулятором, что дало скрутить части фонарика до упора — теперь все стало как влитое. Доделка платы драйвера не особенная, только в дополнении площадки под пружину для аккумулятора и всё. Если изначально приобрести аккумулятор со встроенным контроллером, то задача переделки сводится вообще к минимуму. 

Схема номер 2

Очередная переделка фонарика заключалась в смене драйвера светодиода на более «продвинутый», а именно ZXSC400, причина наличие дополнительного входа для строба от супервизора, дополнительный вход по токовой стабилизации светодиода. Собственно схема совмещенная с супервизором показана далее.

При достижении напряжения питания ниже порогового значения супервизора, появляется стробирующий импульс на выводе 3 микросхемы ZXSC400, что отправляет его в спящий режим до тех пор, пока напряжение питания не выйдет выше порогового уровня. Таким образом мы можем отказаться от контроллера разряда аккумулятора и не переживать за его жизнь при разряде. Все это хозяйство вместилось на одной плате всё такого же размера и установлено под аккумулятором. Внешне это имеет такой вид:

Обратная сторона двусторонней платы имеет всего лишь пружину под минус аккумулятора:

Резисторы имеют типоразмер 0603, конденсатор электролитический танталовый размер А 47,0х16 Вольт. Новая плата прилагается:

Очередная доработка фонарика, а именно установлен светодиод мощностью 3 Ватт, при этом пришлось подобрать резистор R1 до получения необходимого тока через диод и R2 для контроля тока. Привожу зависимость тока на диоде, в зависимости от питающего напряжения: 

  • 4.0 Вольт — 0.9 Ампер 
  • 3.9 Вольт — 0.9 Ампер 
  • 3.8 Вольт — 0.9 Ампер 
  • 3.7 Вольт — 0.9 Ампер 
  • 3.6 Вольт — 0.25 Ампер 

Правда тут есть один нюанс — при просадке батареи до 3.6 вольт, микросхема ZXSC переходит специально в пониженный режим потребления для ещё возможной работы фонарика (мало ли что, вот неожиданно выключился к примеру и всё, а так есть потенциальная возможность потянуть ещё значительное время, думаю не один час, правда яркость упадет до 1-ваттного) и так до тех пор пока не поступит стробирующий сигнал на вывод 3. Пришлось между резьбовой гайкой и подложкой светодиода положить медную проставку через КПТ для лучшего отвода тепла от подложки светодиода и передачи на корпус фонаря. Автор материала ГУБЕРНАТОР.

   Форум по LED

   Обсудить статью СХЕМА ФОНАРИКА НА СВЕТОДИОДАХ

radioskot.ru

МОЩНЫЕ СВЕТОДИОДНЫЕ ФОНАРИКИ

   Предлагаю на ваше усмотрение сразу три варианта схем мощных светодиодных фонариков, которыми пользовался длительное время, и лично меня вполне устраивает яркость свечения и длительность работы (в реале одной зарядки мне хватает на месяц использования – то есть пошел, нарубил дров или сходил куда нибудь). Светодиод использовал во всех схемах мощностью 3 Вт. C различием лишь в цвете свечения (теплый белый или холодный белый), но лично мне кажется, что холодный белый светит ярче, а теплый более приятный для чтения, то есть легко восприимчив для глаз, так что выбор за вами.

Первый вариант схемы фонарика

   На испытаниях эта схема показала невероятную стабильность в пределах питающего напряжения 3.7-14вольт (но знайте, при повышении напряжения падает КПД). Как настроил на выходе 3.7 вольт, так и было во всем диапазоне напряжения (выходное напряжение задаем резистором R3, при уменьшении этого сопротивления увеличивается выходное напряжение, но не советую слишком уменьшать, если экспериментируете, рассчитывайте максимальный ток на светодиоде LED1 и максимальное напряжение на втором). Если питаем эту схему от Li-ion аккумуляторов, то КПД приблизительно равен 87-95%. Спросите, а для чего тогда придумали ШИМ? Если не верите, посчитайте сами.

   При 4.2вольта КПД = 87%. При 3.8вольт КПД = 95%. P =U*I 

   Светодиод потребляет 0.7А при 3.7 вольт, а это значит 0.7*3.7=2.59 Вт, отнимаем напряжение заряженного аккумулятора и умножаем на ток потребления: (4.2 — 3.7) * 0.7 = 0.35Вт. Теперь узнаем КПД: (100/(2.59+0.37)) * 2.59 = 87.5%. И половина процента на нагрев остальных деталей и дорожек. Конденсатор C2 — плавный пуск для безопасного включения светодиода и защита от помех. Обязательно мощный светодиод устанавливать на радиатор, я использовал один радиатор от компьютерного блока питания. Вариант расположения деталей:

   Выходной транзистор не должен прикасаться задней металлической стенкой к плате, просуньте между ними бумагу или нарисуйте на листе тетради чертеж платы и сделайте ее так, как на другой стороне листа. Для питания LED фонарика использовал две Li-ion батарейки от ноутбуковского аккумулятора, но вполне возможно использование телефонных аккумуляторов, желательно, чтобы их суммарный ток был 5-10А*ч (соединяем параллельно).

Приступим ко второму варианту диодного фонаря

   Первый фонарик продал и почувствовал, что без него ночью немного напрягает, а деталей не было чтобы повторить предыдущую схему, поэтому пришлось импровизировать из того, что было в тот момент, а именно: КТ819, КТ315 и КТ361. Да, даже на таких деталях, возможно собрать низковольтный стабилизатор, но с чуть большими потерями. Схема напоминает предыдущую, но в этой все совсем наоборот. Конденсатор С4 тут тоже плавно подает напряжение. Разница в том, что тут выходной транзистор открыт резистором R1 и КТ315 закрывает его до определенного напряжения, а в предыдущей схеме выходной транзистор закрыт и открывается вторым. Вариант расположения деталей:

   Пользовался, около полугода, пока линза не треснула повредив контакты внутри светодиода. Он еще работал, но всего три ячейки из шести. Поэтому ушел как подарок:) Теперь расскажу, почему такая хорошая стабилизация с применением дополнительного светодиода. Кому интересно читаем, может пригодиться при проектировании низковольтных стабилизаторов или пропускаем и переходим к последнему варианту.

   Итак, начнем с температурной стабилизации, кто проводил опыты знает на сколько это важно зимой или летом. Так вот, в этих двух мощных фонариках действует такая система: при увеличении температуры полупроводниковый канал увеличивается разрешая проходить большему количеству электронов чем обычно, поэтому кажется что сопротивление канала уменьшается и следовательно проходимый ток увеличивается, так как на всех полупроводниках действует одинаковая система, ток через светодиод тоже увеличивается закрывая все транзисторы до определенного уровня, а то есть напряжения стабилизации (эксперименты проводились в температурном диапазоне -21…+50 градусов Цельсия). Я собирал много схем стабилизаторов в интернете и удивлялся «как можно было допускать такие ошибки!” Кто-то даже рекомендовал свою схему для питания лазера, в которой 5 градусов превышения температуры готовило лазер на выброс, так что учитывайте и такой нюанс!

   Теперь о самом светодиоде. Каждый, кто игрался с напряжением питания светодиодов знает, что при его увеличении резко увеличивается и ток потребления. Поэтому при незначительном изменении выходного напряжения стабилизатора транзистор (КТ361) во много раз легче реагирует, чем с простым резисторным делителем (для которого необходим серьезный коефициент усиления) что решает все проблемы низковольтных стабилизаторов и уменьшает количество деталей.

Третий вариант LED фонаря

   Приступим к последней рассматриваемой схеме и использующейся мной до сегодняшнего дня. КПД больше, чем в предыдущих схемах, и яркость свечения выше, и естественно, к светодиоду купил дополнительную фокус линзу, также тут уже 4 аккумулятора, что примерно равняется ёмкости 14А*часа. Принципиальная эл. схема:

   Схема довольно проста и собрана в SMD исполнении, здесь нет дополнительного светодиода и транзисторов, потребляющих лишний ток. Для стабилизации применен TL431 и этого вполне достаточно, КПД тут от 88 — 99%, если не верите — посчитайте. Фото готового самодельного устройства:

   LED фонарь в действии:

   Да, кстати про яркость, тут я разрешил на выходе схемы 3.9 вольт и пользуюсь уже больше года, светодиод до сих пор живой, только радиатор немного греется. Но кому захочется, может себе установить и меньше напряжение питания, подбором выходных резисторов R2 и R3 (советую это делать на лампе накаливания, когда получиться нужный вам результат подключайте светодиод). Благодарю за внимание, с вами был Левша Леша (Степанов Алексей).

   Форум по самодельным LED фонарикам

   Обсудить статью МОЩНЫЕ СВЕТОДИОДНЫЕ ФОНАРИКИ

radioskot.ru

САМОДЕЛЬНЫЙ ФОНАРИК НА СВЕТОДИОДЕ CREE

Во времена увлечения туризмом был приобретен фонарь Duracell c мощной криптоновой лампой на двух больших батарейках типоразмера D (в советском варианте тип 373). Светил отлично, но высаживал батарейки часа за 3-4.

Кроме того, дважды случилась  неприятность – батарейки потекли и электролитом залило все внутри фонаря. Контакты окислились, покрылись ржавчиной и даже после чистки и установки новых элементов питания, фонарь уже не внушал доверия, а уж батарейки тем более. Выбросить было жалко, а не имение возможности использовать, натолкнуло на мысль переделать фонарь на модные сейчас литиевый аккумулятор и светодиод. С полгода в закромах лежал литиевый аккумулятор Sanyo 18650 емкостью 2600 мА/ч, у китайских товарищей выписал вот такой светодиод (якобы Cree XML T6 U2) с рабочим напряжением 3-3,6 В, током 0,3-3 А (опять же, якобы – мощностью 10 Вт), световым потоком 1000-1155 люмен, цветовой температурой 5500-6500 К и углом рассеивания 170 градусов.

Поскольку опыт переделки фонарей на питание от литиевых аккумуляторов уже имелся (ссылка 1 и ссылка 2), то решил пойти тем же путем: применить хорошо зарекомендовавшую себя связку: АКБ 18650 и контроллер заряда TP4056. Оставалось решить одну проблему – какой драйвер использовать для светодиода? Простым токоограничивающим резистором тут не отделаешься – мощность светодиода пусть и не 10 Ватт, как утверждают китайские товарищи, но все же. Изучая материал по «драйверостроению для мощных светодиодов» набрел на очень интересную, и как оказалось, часто применяемую микросхему АМС7135. На основе данной микросхемы китайцы давно и удачно завалили планету своими фонарями). Принципиальная схема питания мощного светодиода на основе АМС7135.

Как видим, допускается питание в диапазоне 2,7…6 В, а это довольно широкий спектр источников питания, в том числе и литиевые аккумуляторы. Задача чипа – ограничить ток, протекающий через светодиод на уровне 350 мА. 
Согласно информации производителя чипа, конденсатор Со нужно использовать, если:

  • длина проводника между АМС7135 и светодиодом больше 3 см;
  • длина проводника между светодиодом и источником питания больше 10 см;
  • светодиод и микросхема не установлены на одной плате.

В реальности производители фонарей зачастую пренебрегаю этими условиями, и исключают конденсаторы из схемы. Но как показал эксперимент – напрасно, о чем несколько позже. К дополнительным преимуществам ИС типа АМС7135 можно отнести наличие встроенной защиты при обрыве, КЗ светодиода и диапазон рабочих температур -4О…85°С. Подробно документацию на чип АМС7135 можно изучить тут.

Схема электрическая фонаря

Еще одной важной и крайне полезной особенностью данной микросхемы является то, что их можно устанавливать параллельно для увеличения тока, протекающего через светодиод. В результате родилась такая схема:

Исходя из нее, ток протекающий через светодиод, составит 1050 мА, что на мой взгляд, более чем достаточно для совсем не тактического, а хозяйственного фонаря. Далее приступил к монтажу все в единую систему. При помощи дремеля в корпусе фонаря удалил направляющие для батареек и контактные шины:

   

Так же дремелем убрал посадочное гнездо для криптоновой лампы и сформировал площадку для светодиода

Поскольку мощный светодиод во время работы выделяет много тепла, то для его рассеивания решил применить теплоотвод, снятый с материнской платы.

   

По задумке, светодиод, теплоотвод и головная часть фонаря с отражателем будут создавать одно целое и накручиваясь на корпус фонаря не должны ни за что цепляться. Для этого обрезал грани теплоотвода, просверлил отверстия для проводов и приклеил светодиод к теплоотводу термоклеем.

      

В Sprint-Layout набросал плату драйвера, вытравил, спаял и так же приклеил к теплоотводу.

   

Как можно видеть, на плате драйвера установлены конденсаторы 10 мкф на входе и два по 0,1 мкф. Так вот, без них ток через светодиод составлял 850 мА, после их установки – 1030 мА. Далее, через прокладку из тонкого стеклотекстолита, приклеил к радиатору контроллер зарядки литиевого аккумулятора TP4056.

   

Сначала хотел всю конструкцию приклеить к отражателю:

Но этого оказалось не достаточно и пришлось сформировать подиум.

Далее упаковка АКБ в корпус фонаря, пайка проводов к кнопке и контроллеру.

Такую компоновку выбрал по причине не желания ковырять в корпусе фонаря отверстие под зарядку – все-же фонарь водонепроницаемый. Минус конечно есть – провода перекручиваются при наворачивании конструкции на корпус фонаря, но я сделал их длину с запасом и изломов нет. В результате получился хороший фонарь на мощном светодиоде в водонепроницаемом корпусе. В качестве зарядки – зарядное от смартфона с током 1 А.

Время работы составляет порядка двух часов, далее яркость снижается, но и этого времени вполне достаточно чтоб освещать пространство очень ярким светом. Специально для сайта «Электрические схемы» — Кондратьев Николай, Г. Донецк.

   Светодиоды

 

elwo.ru

Простой светодиодный фонарик | Мастер Винтик. Всё своими руками!

Светодиодный фонарик своими руками и зарядное устройство к нему.

Уже давно известно, что фонарики на светодиодах очень экономичны, малогабаритны и имеют более продолжительный срок службы. Светодиодный фонарик можно легко сделать своими руками или переделать имеющийся ламповый. Для этого нужны яркие светодиоды повышенной мощности.

Светодиоды потребляют меньший ток, долговечней и надежней по сравнению с лампочкой. К тому же они не боятся ударов и тряски.

КПД при преобразовании электроэнергии в свет у светодиодов значительно выше, чем у обычной лампочки накаливания.

Принципиальная схема фонарика

Для выполнения фонарика достаточно трех светодиодов, подключаемых параллельно к трем аккумуляторам типоразмера LR6 (АА) или батарейки (AAA). Можно также использовать аккумулятор от любого сотового телефона.

Схема подключения светодиодов повышенной яркости.

Светодиоды напрямую подключать к обычным батарейкам (типоразмер АА) или более мощным аккумуляторам нельзя! У таких элементов из-за малого внутреннего сопротивления ток через каждый светодиод может превысить 100 мА, что больше допустимого. Для надежной длительной работы в непрерывном режиме общий ток через три светодиода (включенных параллельно) не должен превышать 90 мА.

При необходимости питать фонарик от более мощных элементов питания ток через светодиоды можно ограничить при помощи внешнего добавочного резистора. Смотрите схему выше. Его величину лучше подобрать экспериментально, так как обычно неизвестно внутреннее сопротивление источника питания.

Все три светодиода от аккумуляторов при номинальном напряжении 3,6 В потребляют ток не более 75…80 мА (по мере разряда элементов ток будет снижаться, но все равно свечение будет достаточно ярким для подсветки).

Аналогичная по светоотдаче лампа потребляет ток не менее 250…350 мА. Простейший расчет показывает, что такой фонарик на светодиодах будет значительно экономичней.

Устройство заряда аккумуляторов для фонаря

Для подзаряда аккумуляторов от бортовой сети автомобиля можно воспользоваться схемой, показанной на рисунке ниже. При этом аккумуляторы не придется вынимать из отсека фонарика, если на его корпусе установить соединительный разъем Х2.

Схема зарядного устройства для аккумуляторов фонарика от автомобильной сети

Схема зарядного устройства может подключаться в автомобиле через гнездо прикуривателя. Микросхема DA1 за счет резистора R2 имеет ограничение выходного тока на уровне 90…95 мА (при коротком замыкании нагрузки), а напряжение на выходе не превысит 4 В (устанавливается резистором R1 на холостом ходу). За счет ограничения максимального выходного напряжения полностью исключено получение элементами избыточного заряда, правда, это увеличивает время заряда элементов. Ток заряда будет находиться в интервале 30…20 мА, снижаясь по мере заряда аккумуляторов. Диод VD2 предотвращает повреждение микросхемы при отключенном входе, но подключенном аккумуляторе.

 

Рисунок печатной платы и расположение элементов

Все элементы могут быть размещены на печатной плате с размерами 42,5×25 мм. Выбор типов деталей не критичен. Микросхему КР142ЕН12А можно заменить на LM317T или LM317MP.

Конструкция фонарика

Большой отражатель для светодиодов не нужен — сами они уже имеют нужную диаграмму направленности. А располагать светодиоды удобнее в линейку, на расстоянии около 5 мм друг от друга, например, как это показано в конструкции на рисунке ниже. Для изготовления корпуса можно воспользоваться стандартным отсеком для размещения шести элементов питания (в три отсека установить сами элементы питания, а в неиспользуемой части закрепить отражатель и включатель SA1).

Возможный вариант конструкции фонаря на светодиодах.

Такой фонарик сможет непрерывно давать свет около ста часов и будет полезен не только на рыбалке, но пригодится и в быту. А если его закрепить при помощи ремня на голове или прищепкой к карману на груди, в темноте света будет вполне достаточно для чтения книги, карты или распутывания лески. Причем спектр света подсветки, приближенный к естественному, — белый, в отличие от обычной лампы.

Аналогичные фонари уже давно делают. На фото показан вариант выполнения конструкции, предусматривающей закрепление фонаря на голове (в показанном корпусе размещены 3 батарейки типоразмера AAA).

Повысить время непрерывной работы у фонаря можно, если использовать импульсное питание для светодиодов.
Импульсный режим питания позволяет светодиодам работать на большем токе, то есть можно добиться увеличения яркости света при той же самой потребляемой мощности, что и в непрерывном режиме. Но это уже другая история.

Шелестов И.П. (Электроника для рыболовов)

П О П У Л Я Р Н О Е:

  • Мини-лестница для кошек
  • Есть кошки спокойные, а есть которым так и нужно где-то лазить и карабкаться.

    Вот для этих кошек можно сделать в квартире оригинальную мини-лестницу.

    Она также обеспечит безопасность кошке, преходящей дорогу мимо двери 🙂

    Подробнее…

  • Колун для дров своими руками
  • Зима не за горами, нужно подумать о тепле. Во многих домах сейчас проведён газ, но в некоторых селениях есть ещё дрова и уголь. Также дрова нужны и для бани. Махать топором трудоёмкое занятие, а если поленья большие, то и вообще расколоть их очень тяжело. Как же облегчить этот труд? Я давно уже задумывался над этим.

    Подробнее…

  • Зарядное устройство 12В на LM317
  • Два зарядных на LM317

    Подробнее…

>>

ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ:

Популярность: 8 090 просм.

www.mastervintik.ru