Индукционный нагреватель ламповый – Индукционные нагреватели своими руками. Самодельный индукционный нагреватель: схема :: SYL.ru

Индукционный нагрев, основные принципы и технологии.

1 августа 2013

Индукционный нагрев (Induction Heating) — метод бесконтактного нагрева токами высокой частоты (англ. RFH — radio-frequency heating, нагрев волнами радиочастотного диапазона) электропроводящих материалов.

Описание метода.

Индукционный нагрев — это нагревание материалов электрическими токами, которые индуцируются переменным магнитным полем. Следовательно — это нагрев изделий из проводящих материалов (проводников) магнитным полем индукторов (источников переменного магнитного поля). Индукционный нагрев проводится следующим образом. Электропроводящая (металлическая, графитовая) заготовка помещается в так называемый индуктор, представляющий собой один или несколько витков провода (чаще всего медного). В индукторе с помощью специального генератора наводятся мощные токи различной частоты (от десятка Гц до нескольких МГц), в результате чего вокруг индуктора возникает электромагнитное поле. Электромагнитное поле наводит в заготовке вихревые токи. Вихревые токи разогревают заготовку под действием джоулева тепла (см. закон Джоуля-Ленца).

Система «индуктор-заготовка» представляет собой бессердечниковый трансформатор, в котором индуктор является первичной обмоткой. Заготовка является вторичной обмоткой, замкнутой накоротко. Магнитный поток между обмотками замыкается по воздуху.

На высокой частоте вихревые токи вытесняются образованным ими же магнитным полем в тонкие поверхностные слои заготовки Δ (Поверхностный-эффект), в результате чего их плотность резко возрастает, и заготовка разогревается. Нижерасположенные слои металла прогреваются за счёт теплопроводности. Важен не ток, а большая плотность тока. В скин-слое Δ плотность тока уменьшается в e раз относительно плотности тока на поверхности заготовки, при этом в скин-слое выделяется 86,4 % тепла (от общего тепловыделения. Глубина скин-слоя зависит от частоты излучения: чем выше частота, тем тоньше скин-слой. Также она зависит от относительной магнитной проницаемости μ материала заготовки.

Для железа, кобальта, никеля и магнитных сплавов при температуре ниже точки Кюри μ имеет величину от нескольких сотен до десятков тысяч. Для остальных материалов (расплавы, цветные металлы, жидкие легкоплавкие эвтектики, графит, электролиты, электропроводящая керамика и т. д.) μ примерно равна единице.

Например, при частоте 2 МГц глубина скин-слоя для меди около 0,25 мм, для железа ≈ 0,001 мм.

Индуктор сильно нагревается во время работы, так как сам поглощает собственное излучение. К тому же он поглощает тепловое излучение от раскалённой заготовки. Делают индукторы из медных трубок, охлаждаемых водой. Вода подаётся отсасыванием — этим обеспечивается безопасность в случае прожога или иной разгерметизации индуктора.

Применение:
Сверхчистая бесконтактная плавка, пайка и сварка металла.
Получение опытных образцов сплавов.
Гибка и термообработка деталей машин.
Ювелирное дело.
Обработка мелких деталей, которые могут повредиться при газопламенном или дуговом нагреве.
Поверхностная закалка.
Закалка и термообработка деталей сложной формы.
Обеззараживание медицинского инструмента.

Преимущества.

Высокоскоростной разогрев или плавление любого электропроводящего материала.

Возможен нагрев в атмосфере защитного газа, в окислительной (или восстановительной) среде, в непроводящей жидкости, в вакууме.

Нагрев через стенки защитной камеры, изготовленной из стекла, цемента, пластмасс, дерева — эти материалы очень слабо поглощают электромагнитное излучение и остаются холодными при работе установки. Нагревается только электропроводящий материал — металл (в том числе расплавленный), углерод, проводящая керамика, электролиты, жидкие металлы и т. п.

За счёт возникающих МГД усилий происходит интенсивное перемешивание жидкого металла, вплоть до удержания его в подвешенном состоянии в воздухе или защитном газе — так получают сверхчистые сплавы в небольших количествах (левитационная плавка, плавка в электромагнитном тигле).

Поскольку разогрев ведётся посредством электромагнитного излучения, отсутствует загрязнение заготовки продуктами горения факела в случае газопламенного нагрева, или материалом электрода в случае дугового нагрева. Помещение образцов в атмосферу инертного газа и высокая скорость нагрева позволят ликвидировать окалинообразование.

Удобство эксплуатации за счёт небольшого размера индуктора.

Индуктор можно изготовить особой формы — это позволит равномерно прогревать по всей поверхности детали сложной конфигурации, не приводя к их короблению или локальному непрогреву.

Легко провести местный и избирательный нагрев.

Так как наиболее интенсивно разогрев идет в тонких верхних слоях заготовки, а нижележащие слои прогреваются более мягко за счёт теплопроводности, метод является идеальным для проведения поверхностной закалки деталей (сердцевина при этом остаётся вязкой).

Лёгкая автоматизация оборудования — циклов нагрева и охлаждения, регулировка и удерживание температуры, подача и съём заготовок.

Установки индукционного нагрева:

На установках с рабочей частотой до 300 кГц используют инверторы на IGBT-сборках или MOSFET-транзисторах. Такие установки предназначены для разогрева крупных деталей. Для разогрева мелких деталей используются высокие частоты (до 5 МГц, диапазон средних и коротких волн), установки высокой частоты строятся на электронных лампах.

Также для разогрева мелких деталей строятся установки повышенной частоты на MOSFET-транзисторах на рабочие частоты до 1,7 МГц. Управление транзисторами и их защита на повышенных частотах представляет определённые трудности, поэтому установки повышенной частоты пока ещё достаточно дороги.

Индуктор для нагрева мелких деталей имеет небольшие размеры и небольшую индуктивность, что приводит к уменьшению добротности рабочего колебательного контура на низких частотах и снижению КПД, а также представляет опасность для задающего генератора (добротность колебательного контура пропорциональна L/C, колебательный контур с низкой добротностью слишком хорошо «накачивается» энергией, образует короткое замыкание по индуктору и выводит из строя задающий генератор). Для повышения добротности колебательного контура используют два пути:
— повышение рабочей частоты, что приводит к усложнению и удорожанию установки;
— применение ферромагнитных вставок в индукторе; обклеивание индуктора панельками из ферромагнитного материала.

Так как наиболее эффективно индуктор работает на высоких частотах, промышленное применение индукционный нагрев получил после разработки и начала производства мощных генераторных ламп. До первой мировой войны индукционный нагрев имел ограниченное применение. В качестве генераторов тогда использовали машинные генераторы повышенной частоты (работы В. П. Вологдина) или искровые разрядные установки.

Схема генератора может быть в принципе любой (мультивибратор, RC-генератор, генератор с независимым возбуждением, различные релаксационные генераторы), работающей на нагрузку в виде катушки-индуктора и обладающей достаточной мощностью. Необходимо также, чтобы частота колебаний была достаточно высока.

Например, чтобы «перерезать» за несколько секунд стальную проволоку диаметром 4 мм, необходима колебательная мощность не менее 2 кВт при частоте не менее 300 кГц.

Выбирают схему по следующим критериям: надёжность; стабильность колебаний; стабильность выделяемой в заготовке мощности; простота изготовления; удобство настройки; минимальное количество деталей для уменьшения стоимости; применение деталей, в сумме дающих уменьшение массы и габаритов, и др.

На протяжении многих десятилетий в качестве генератора высокочастотных колебаний применялась индуктивная трёхточка (генератор Хартли, генератор с автотрансформаторной обратной связью, схема на индуктивном делителе контурного напряжения). Это самовозбуждающаяся схема параллельного питания анода и частотно-избирательной цепью, выполненной на колебательном контуре. Она успешно использовалась и продолжает использоваться в лабораториях, ювелирных мастерских, на промышленных предприятиях, а также в любительской практике. К примеру, во время второй мировой войны на таких установках проводили поверхностную закалку катков танка Т-34.

Недостатки трёх точки:

Низкий кпд (менее 40 % при применении лампы).

Сильное отклонение частоты в момент нагрева заготовок из магнитных материалов выше точки Кюри (≈700С) (изменяется μ), что изменяет глубину скин-слоя и непредсказуемо изменяет режим термообработки. При термообработке ответственных деталей это может быть недопустимо. Также мощные твч-установки должны работать в узком диапазоне разрешённых Россвязьохранкультурой частот, поскольку при плохом экранировании являются фактически радиопередатчиками и могут оказывать помехи телерадиовещанию, береговым и спасательным службам.

При смене заготовок (например, более мелкой на более крупную) изменяется индуктивность системы индуктор-заготовка, что также приводит к изменению частоты и глубины скин-слоя.

При смене одновитковых индукторов на многовитковые, на более крупные или более малогабаритные частота также изменяется.

Под руководством Бабата, Лозинского и других учёных были разработаны двух- и трёхконтурные схемы генераторов, имеющих более высокий кпд (до 70 %), а также лучше удерживающие рабочую частоту. Принцип их действия состоит в следующем. За счёт применения связанных контуров и ослабления связи между ними, изменение индуктивности рабочего контура не влечёт сильного изменения частоты частотозадающего контура. По такому же принципу конструируются радиопередатчики.

Недостаток многоконтурных систем — повышенная сложность и возникновение паразитных колебаний УКВ-диапазона, которые бесполезно рассеивают мощность и выводят из строя элементы установки. Также такие установки склонны к затягиванию колебаний — самопроизвольному переходу генератора с одной из резонансных частот на другую.

Современные твч-генераторы — это инверторы на IGBT-сборках или мощных MOSFET-транзисторах, обычно выполненные по схеме мост или полумост. Работают на частотах до 500 кГц. Затворы транзисторов открываются с помощью микроконтроллерной системы управления. Система управления в зависимости от поставленной задачи позволяет автоматически удерживать

а) постоянную частоту
б) постоянную мощность, выделяемую в заготовке
в) максимально высокий КПД.

Например, при нагреве магнитного материала выше точки Кюри толщина скин-слоя резко увеличивается, плотность тока падает, и заготовка начинает греться хуже. Также пропадают магнитные свойства материала и прекращается процесс перемагничивания — заготовка начинает греться хуже, сопротивление нагрузки скачкообразно уменьшается — это может привести к «разносу» генератора и выходу его из строя. Система управления отслеживает переход через точку Кюри и автоматически повышает частоту при скачкообразном уменьшении нагрузки (либо уменьшает мощность).

Замечания.

Индуктор по возможности необходимо располагать как можно ближе к заготовке. Это не только увеличивает плотность электромагнитного поля вблизи заготовки (пропорционально квадрату расстояния), но и увеличивает коэффициент мощности Cos(φ).

Увеличение частоты резко уменьшает коэффициент мощности (пропорционально кубу частоты).

При нагреве магнитных материалов дополнительное тепло также выделяется за счет перемагничивания, их нагрев до точки Кюри идет намного эффективнее.

При расчёте индуктора необходимо учитывать индуктивность подводящих к индуктору шин, которая может быть намного больше индуктивности самого индуктора (если индуктор выполнен в виде одного витка небольшого диаметра или даже части витка — дуги).

Имеются два случая резонанса в колебательных контурах: резонанс напряжений и резонанс токов.
Параллельный колебательный контур – резонанс токов.
В этом случае на катушке и на конденсаторе напряжение такое же, как у генератора. При резонансе, сопротивление контура между точками разветвления становится максимальным, а ток (I общ) через сопротивление нагрузки Rн будет минимальным (ток внутри контура I-1л и I-2с больше чем ток генератора).

В идеальном случае полное сопротивление контура равно бесконечности — схема не потребляет тока от источника. При изменение частоты генератора в любую сторону от резонансной частоты полное сопротивление контура уменьшается и линейный ток (I общ) возрастает.

Последовательный колебательный контур – резонанс напряжений.

Главной чертой последовательного резонансного контура является то, что его полное сопротивление минимально при резонансе. (ZL + ZC – минимум). При настройке частоты на величину, превышающую или лежащую ниже резонансной частоты, полное сопротивление возрастает.
Вывод:
В параллельном контуре при резонансе ток через выводы контура равен 0, а напряжение максимально.
В последовательном контуре наоборот — напряжение стремится к нулю, а ток максимален.

Статья взята с сайта http://dic.academic.ru/ и  переработана в более понятный для читателя текст, компанией ООО «Проминдуктор».

prominductor.ru

Индукционный нагреватель Low ZVS 12-48 В 20 A

Добрый день, уважаемые читатели. Сегодня рассмотрим необычный предмет — индукционный нагреватель мощностью до 1 кВт.

Несмотря на специфичность этого предмета, обзоры на слабенькие подобные нагреватели мелькали на сайте:
Вот и еще вот.
Обозреваемый нагреватель имеет мощность на порядок большую и его хоть как то можно применить для практических целей, а не для опытов по физике.

Не буду останавливать на теории индукционного нагрева (подробно изложено на вики)

Для тестов изделия нам нужно учесть две основные особенности:

  • Нагрев происходит только у токопроводящих магнитных материалов.
  • Нагрев происходит в поверхностных слоях.

Промышленные установки закалки ТВЧ имеют приличные габариты, вот, например, наша на заводе:

Закалка зубчатого колеса:

Китайский же кит отлично поместится на верстаке или рабочем столе, а делать будет то же самое, конечно с меньшей мощностью и размерами закаливаемых заготовок.
Где его можно применить практически:

  • Закалка инструмента
  • Бесконтактный нагрев
  • Ювелирка, переплавка

Перейдем непосредственно к предмету обзора.
Доставка была ТК с отслеживаемым треком.

Упаковка

Кит нагревателя упакован в плотную картонную коробку:

Плата в антистатическом пакете, индуктор был обернут в пупырчатую пленку:

Кит индукционного нагревателя состоит из двух частей:

  • Медный индуктор
  • Плата генератора

Для использования нагревателя нужно добавить блок питания 12-48 В до 20 А и желательно водяное охлаждение индуктора.

Рассмотрим индуктор:


Похож на кипятильник или змеевик самогонного аппарата, но в данном случае это катушка. 7 витков 6 мм медной трубки.

Внутренний диаметр (куда вносится заготовка) — 46 мм.

Длина намотки 54 мм.

Водяное охлаждение так и просится:


А вот такого размера индуктор в индукционной печи для плавки:

Плата генератора:


Размеры платы: 100х100 мм, есть 4 отверстия диаметром 4 мм для стоек или крепления в корпус. На клеммах подачи напряжения питания обозначен только «-«. Есть зеленый светодиод — индикатор работы.

Снизу:


флюс смывать ленятся.

Примерная схема подобных устройств:


Это двухтактный полумостовой преобразователь в автогенераторном режиме.

С боков платы:


Стойки индуктора латунные шестигранники 6 мм по 3 шт, но сверху хиленькая скоба. Максимальный ток указан 20 А.

Радиаторы мосфетов:


Китайцы такие китайцы, плата выходит за радиаторы на добрый сантиметр, это будет мешать нормальному их обдуву.

Мосфеты IRFP260N в корпусе TO-247AC:


Конденсаторы 0,33 мкф 600 VAC 50 кГц:

На работе электрики помогли составить схему именно этой платы (я далек от этого) и заодно промоделировали частоту генератора:


Осциллограмма генератора:


теоретическая частота 90 кГц.

Теперь перейдем к практической части:

Для удобства подключения индуктора его выводы нужно согнуть, я использовал трубогиб, но все равно плохо получилось, стенки тонкие:


Получилось так:


некоторые в отзывах выводят индуктор на бок, но мне показалось так удобней.

Я когда выбирал нагреватель, рассчитывал на свой БП wanptek KPS305D 30 В 5 А, но он отказался работать с нагревателем, уходит в защиту и скидывает напряжение с 12 до 5 В:


Почему кстати?

Пришлось воспользоваться БП от ноутбука 19 В 4,7 А.

Ток на холостом режиме:


Напряжение на индукторе:


Ток при нагреве сверла:


Частота работы генератора:


Близка к расчетной.

Так как при работе индуктор быстро разогревается (от нагреваемой детали больше всего), опыты я проводил при проточном водном охлаждении:


организовать его просто, две трубки одна к крану с холодной водой, вторая в раковину в слив. Главное разместить надежно, весит плата с индуктором почти полкило.
Опыты:

Классическая проверка на гвозде))


Подкалил китайский зенкер:


на разогрев ушло пару минут, все таки тока 4 А маловато.

Олово с припоем плавится не захотело:


Мелкие сверла разогреваются за минуту:


Извращение с народным кухонным термометром:


Узнать температуру стали для закалки можно по цвету или измерить бесконтактным способом:

Доработка кита нагревателя из отзывов:

  • Для плавки в тигле логично упрятать индуктор в изолятор.
  • Обдув большим вентилятором платы.
  • Усиленные медные прижимные пластины для выводов индуктора.

Это напрашивается при постоянной работе с нагревателем.

Так как получить максимум возможностей от своего БП я не смог, поехал к другу — у него есть техника посерьезней:


24 В и 24 А.

Пробуем на фрезе 6 мм:


Ток холостой 4 А. Ток рабочий около 10 А, нагревается быстро.

А теперь задача посложнее — плавка алюминия (660 С):


так не заработало, там виток, втулка полая.

В стальном тигле дело пошло (на 15 А):


но лопнула керамическая пластинка. Индуктор обувается вентилятором 120 мм, температура его не выше 50 С. Мосфеты примерно так же.

Подложили под тигель керамический патрон:


За 4 минуты алюминиевая втулка толщиной с палец размякла (ток при этом 12 А).



Остывший расплав:


При должном оснащении, этому нагревателю по силам и плавка легкоплавких металлов. Главное иметь мощный блок питания.

Есть купон SJZVS снижающий цену до $27.99 (до 30 августа).

Спасибо за просмотр. Удачных покупок!

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

mysku.ru

ПРОСТОЙ ИНДУКЦИОННЫЙ НАГРЕВАТЕЛЬ

Приветствую пользователей сайта Радиосхемы. Недавно у меня появилась идея сделать индукционный нагреватель. На просторах интернета были найдены несколько схем для построения устройства. Из них выбрал самую, на мой взгляд, простую по сборке и настройке, и главное — реально рабочую.

Схема устройства

Список деталей

1. Полевой транзистор IRFZ44V 2 шт.
2. Диоды ультра быстрые UF4007 или UF4001 2 шт. 
3. Резистор на 470 Ом на 1 или 0.5 Вт 2 шт.
4. Конденсаторы плёночные 
   1) 1 мкФ на 250в 3 шт.
   2) 220 нФ на 250в 4 штуки.
   3) 470 нФ на 250в 
   4) 330 нФ на 250в
5. Провод медный диаметром 1.2 мм.
6. Провод медный диаметром 2 мм.
7. Кольца от дросселей компьютерном блоке питания 2 шт.

Сборка устройства

Задающая часть нагревателя выполнена на полевых транзисторах IRFZ44V. Распиновка транзистора IRFZ44V.

Транзисторы нужно поставить на большой радиатор. Если устанавливать транзисторы на один радиатор то транзисторы нужно установить на резиновые прокладки и пластмассовые шайбочки чтобы не было замыкания между транзисторов.

Дросселя намотаны на кольцах от компьютерных БП. Сделанные из порошкового  железа. Проводом 1,2 мм 7-15 витков.

Батарея конденсаторов должна быть на 4.7 мкФ. Желательно использовать не один конденсатор, а несколько конденсаторов. Конденсаторы должны быть подключены параллельно.

Катушка нагревателя сделана на проводе диаметром 2 мм 7-8 витков.

После сборки устройство работает сразу. Питается устройство от аккумулятора 12 вольт 7.2 А/ч. Напряжение питания устройства 4.8-28 вольт. При продолжительной работе перегреваются: батарея конденсаторов, полевые транзисторы и дросселя. Потребление тока при холостом ходу 6-8 Ампер.

При внесении в контур металлического предмета потребление тока сразу увеличивается до 10-12 А.

Фото готового устройства смотрите далее.

Видео работы индукционного нагревателя

Далее можно оформить прибор в подходящий красивый корпус и использовать для различных опытов. С мощностью и размером катушки лучше поэкспериментировать, чтоб достичь наилучшего эффекта. Автор статьи 4ei3

   Форум

   Обсудить статью ПРОСТОЙ ИНДУКЦИОННЫЙ НАГРЕВАТЕЛЬ

radioskot.ru

Индукционный нагреватель. Огонь, вода, работающие люди, но не пожар!

Эту игрушку я ждал с нетерпением. Об индукционном нагреве я знал давно, со времен студенчества. Иногда видел ролики, как закаляют заготовки, припавают твердосплавные пластины на резцы и прочая-прочая. Но для меня все это было чем-то из области производства, грязных жарких и душных цехов.

Поэтому, когда в списке предлагаемых на обзор гаджетов я увидел данный нагреватель, колебаний не было. Я его просто возжелал!

Оговорка по Фрейду и п.18

Как и, наверное, большинство читателей, я интересуюсь разными вещами. Всегда есть соблазн и желание приобрести что-то для своего увлечения, либо просто хочется поиграть с приглянувшимся гаджетом, как известно с возрастом лишь меняется цена игрушек.

Обзоры — это совмещение приятного с полезным. Мне нравится делиться своим опытом взаимодействия с различными вещами, спонсорам нравится видимо, как я это делаю, и получается взаимовыгодное сотрудничество. Я никогда не беру на обзор вещи, которые мне не интересны, и с которыми я не хочу провести какое-то время. Как правило я беру вещи, предназначение и характеристики которых я себе неплохо представляю, так я избегаю своего и вашего, мои уважаемые читатели, разочарования в большинстве случаев.

Обзоры я делаю объективно, товары не рекламирую, и моя цель дать вам пищу для размышления, и поделиться своим опытом пользования данной вещи. Читайте, думайте, пишите свое мнение в комментариях — в общении и обмене мнениями рождается истина!

Недавно был обзор данного устройства от уважаемого dia. В этом обзоре dia даже выпаял часть деталей, чтобы лучше понять устройство этого гаджета и нарисовал его электрическую схему. Не буду дублировать его работу, можно сходить в тот обзор и все посмотреть. И не забудьте поставить dia плюсик пожалуйста.

В своем обзоре я бы хотел рассказать, что такое индукционные нагреватели, зачем они вообще нужны, и почему же я так радовался и ждал приезда этого гаджета. И самое интересное — что я с ним делал 🙂

Как обычно, начнем с небольшого экскурса в историю.

Явление электромагнитной индукции открыл Майкл Фарадей в 1831 году. Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него. Без открытия Фарадея не было бы у нас трансформаторов, генераторов, радио и вообще электротехнической и электронной промышленности.

Индукционный нагрев — это нагревание материалов электрическими токами, которые индуцируются переменным магнитным полем. Т.е. создав переменное магнитное поле и поместив туда материал мы сможем его нагреть. И уже в 1900 г. шведская фирма «Benedicks Bultfabrik» построила и запустила первую индукционную сталеплавильную печь!

Для того, чтобы расплавить или хотя бы нагреть металл, нам необходимо создать колебательный контур и в поле, создаваемое данным контуром поместить металлический предмет.

Вот чертеж индукционной сталеплавильной печи. Как раз на нем видно, что тигель с расплавляемым металлом, окружен катушками, наводящими на него переменное магнитное поле.

А это печь в действии.

В общем случае схема индукционного нагрева выглядит следующим образом: У нас есть генератор и колебательный контур. Частота колебания в контуре зависит от индуктивности катушки и емкости конденсаторов. Различные материалы восприимчивы к различным частотам колебаний. Например, при частоте колебаний контура, при которой происходит плавления стали, например, цветные металлы могут даже не начать толком нагреваться. И наоборот.

Где же используется индукционный нагрев. На самом деле в огромном количестве мест. Он везде вокруг нас. Индукционные электроплиты, как самый яркий пример

Индукционные проточные водонагреватели

Портативные нагреватели, с их помощью например можно разогреть и открутить приржавевшую гайку.

А на производстве индукционный нагреватель используется для поверхностной закалки изделий. Это быстро, экономично и безопасно, с точки зрения отсутствия огня и горючих материалов.

И самое для меня наверное интересное, т.к. я обладатель небольших домашних токарного и фрезерного станков — напайка твердосплавных пластин на державки резцев.

Как я и говорил, для меня системы индукционного нагрева всегда были либо уделом промышленности, либо умельцев, паяющих огромные монструозные схемы с гигантскими блоками питания, которым место дома можно найти с огромной натяжкой. И какое же удивление вызвало обнаружение крохотного устройства из класса — «воткни в блок питания и получай удовольствие».

Переходим к герою нашего обзора. Состоит он из двух частей. Генератор построенный на основе обычного двухтранзисторного мультивибратора (за схемой можно сходить в обзор уважаемого dia), для тех кто разбирается в электронике, то ничего сложного, а для тех, для кого это незнакомые термины, то в двух словах — простая и надежная схема, работающая «из коробки». На плате генератора размещена сборка из емкостей. Вторая деталь — катушка колебательного контура. Соединяются обе детали винтовым разъемом.

Размер миниатюрный 5.5 см на 4 см и толщиной 2 см. Диаметр катушки 2.8 см, длина 7.5 см. Питание устройства 5-12В, ток до 5А.

Т.е. максимальная потребляемая мощность может составить 12В х 5А = 60Вт. Это потребление не самой яркой лампочки накаливания. Много это или мало? Давайте прикинем на пальцах. Современная сталелитейная промышленность в среднем тратит 650 кВтч на плавку 1 тонны стали, т.е. 650 Втч на 1 кг или 65 Втч на плавку 100 грамм. Таким образом наша малявка при должном подходе и минимизации теплопотерь в атмосферу за час может расплавить чуть меньше 100 грамм стали. Очень и очень недурственно. Казалось бы 60 Вт потребляемой мощности и 100 грамм расплавленной стали. Весьма полезно все считать, т.к. на глазок некоторые вещи совсем не очевидны, как например мне было в этом случае.

Давайте перейдем от слов к развлечениям делу.

У меня была целая куча идей, которые я хотел реализовать.

По всем идеям я снял подробное видео. Его можно будет посмотреть в конце обзора.

Идея номер 1. Закалка отверточных бит. Частенько, если приходится много закручивать шуруповертом винтов приходится наблюдать картину слизывания крестовины бит.

Есть способ продлить жизнь битам. Частенько биты продают чуть недозакалеными. Это делают видимо для избежания их раскалывания в процессе эксплуатации. Либо по каким-то другим неведомым причинам. Такие биты можно дозакалить. Этим мы и займемся.

Как же закаливают металлы? Существует огромное количество сплавов и индивидуальных режимов их термической обработки. Я не буду погружаться в рамках данного обзора в эти дебри. Если все предельно упростить, то для закалки в примитивных домашних условиях изделий из неопознанной стали можно (с кучей условностей разумеется) использовать следующий способ.

а. Нагрев до вишневого цвета (750 градусов по Цельсию).

б. Охлаждение в воде

в. Отпуск в духовке при температуре 180-190 градусов по Цельсию в течении 1 часа. Отпуск необходим для снятия внутренних напряжений, чтобы изделие не лопнуло у нас в руках в процессе эксплуатации

Привожу картинку с цветами металла и соответствующим им температурам

Соответственно, разогреваем биту

И охлаждаем ее в воде. Затем отпуск в духовке и… вуаля. Более прочная бита у нас в арсенале.

Идея номер 2. Из остатков ножовочного полотна сделать мини стамески по дереву. Подробный процесс в видео. Делюсь лишь фоткой конечных изделий

Выглядят они неказисто, но древесину режут исправно. Тест есть на видео.

Идея номер 3. Из подручных гвоздей и железяк сделать настоящее сверло. И сверло получилось! Оно успешно просверлило дерево, алюминий… и не только. Посмотрите на видео))) Заточка и закаленный кончик все выдержали, кроме тела сверла, которое я отпустил, но повторно не закалил. Вот что с ним стало после моих издевательств)))

Идея номер 4. Водонагреватель. Проверка концепции. Кладем гвоздь в трубочку, трубочку в спираль — вода кипит.

Можно сделать подогрев чего — либо, например воды в емкости. Туда поставить банку с молоком, подключить термодатчик, для контроля температуры и будет йогуртница))).

Вот видео моих издевательств над материей )))

Как резюме. Мне индукционный нагреватель понравился. Для домашнего использования мне лично пригодится однозначно. Я периодически нуждаюсь в необходимости закалить какую-либо небольшую деталь (ось накатки для токарника, например). И этот способ мне нравится больше горелки в домашних условиях. Также я получил большое удовольствие от процесса созидания из обломков пилки и ненужных ключей качественно новых вещей.

Хочу ли я нагреватель большей мощности? В квартиру — однозначно нет. Другие режимы, другая техника безопасности. В отдельную мастерскую — однозначно да.

Меня поражает скорость прогресса, если честно. И технологии. Устройство размером со спичечный коробок позволяет ощутить себя и кузнецом, и термистом и сантехником- отопителем))

Получайте удовольствие от жизни, выбирайте себе инструменты и игрушки по вкусу, и Удачи!

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

mysku.ru

Индукционный нагреватель | Катушки Тесла и все-все-все

Индукционным нагревом называют явление бесконтактного разогрева проводников, расположенных в мощном переменном (обычно высокочастотном) поле внутри индуктора, происходящее вследствие токов Фуко. Статья в википедии и подробная инструкция по изготовлению данного устройства для лабораторных задач (т. е. прогрева, закалки и мелкого литья практически любых металлов, равно как и иной их термообработки), широко известная среди интересующихся темой, являются почти исчерпывающими для ознакомления с идеей и для самостоятельного построения подобного устройства.

Мой индукционный нагреватель имеет в силовой части полумост с внешним генератором IRS27952 (улучшенная версия хорошо известной IR2153, специально предназначенная для построения резонансных инверторов) и драйвером MIC4423, включенных по даташитным схемам. Развязка сделана на GDT. В силовой части стоят два IGBT-транзистора HGTG20N60A4D, обвязанные снабберами и силовыми плёнками по питанию. Питание идёт от ЛАТРа с выпрямителем и 1000 мкф в фильтре после выпрямителя. Обычно для индукционки используют генератор с подстройкой частоты и фазы (ФАПЧ), но, поскольку я ещё не принимался за её изучение, а сделать индукционку хотелось, было применено более простое и менее удобное в работе решение в виде внешнего генератора без подстройки фазы.

Полумост нагружен на ферритовый трансформатор тока на двух синих кольцах EPCOS (материал неизвестен, но работают они до 500 кгц) сечением приблизительно 16х9 мм каждое. Намотан трансформатор литцендратом для уменьшения тепловых потерь, существенных вследствие скин-эффекта на обычном проводе, и содержит около 16 витков. Точное количество можно изменять в соответствии с размерами нагреваемой заготовки, но на практике это не требуется. Трансформатор надет на медную трубку вывода индуктора. Индуктор сменный: будучи намотан медной трубкой в 6 мм диаметром, он имеет на концах припаянные трубки 8 мм диаметром, от которых при необходимости может быть отпаян и заменён на другой индуктор, например, иной формы.

Параллельно индуктору для образования резонансного контура стоят силовые плёночные конденсаторы EFD (Eurofarad). Решив, что набирать батарею MMC из мелких плёнок типа К78-2 или CBB61, как это обычно делают, слишком утомительно, я взял заказанные некоторое время назад в США эти белые «таблетки», специально предназначенные для использования в индукционных нагревателях. При ёмкости в 3.75 мкф каждая, и будучи соединены последовательно, они образуют превосходный конденсатор на ~1.8 мкф, предназначенный для работы при большой реактивной мощности и больших токах.

Контроль работы осуществляется на данный момент осциллографом, подключенным одним каналом к GDT (одному витку через него), а вторым — к трансформатору тока в первичной обмотке трансформатора индукционки. Согласно его показаниям, ток в первичном контуре через ключи достигает 50 ампер при правильной регулировке, активная мощность при этом может быть до 3 киловатт (9-10А потребление по постоянному току из розетки). На ключах выделяется очень небольшая её часть, а охлаждение индуктора проточной водой позволяет избежать и его саморазогрева своим же полем.

Сам процесс разогрева и плавки — отдельная тема, относящаяся больше к металлургии, чем к электронике, и выходящая за рамки данной статьи. Индукционка нагревает стальной болт М12, опущенный шляпкой в индуктор, дожелта примерно за 15-20 секунд, в зависимости от его положения в индукторе, как видно из видео. Более мелкие объекты разогреваются просто моментально. Несколько хуже греются цветные металлы, хуже всего — медь (КПД при этом наиболее низкий, ниже только при нагреве серебра).

Интересный эффект наблюдается при использовании индуктора специальной формы и нагреве алюминия: ввиду сочетания высокой проводимости и малой плотности он начинает левитировать внутри индуктора. Чтобы предотвратить выталкивание его полем за пределы индуктора, делают индуктор, во-первых, конусовидной формы, и, во-вторых, содержащим т. н. обратный виток: крайний верхний виток наматывают в другую сторону, чем остальные витки индуктора, и его поле стабилизирует летающий кусочек алюминия, не давая ему улететь. Форму индуктора следует подбирать довольно тщательно, мои эксперименты пока не дали устойчивой левитации, хотя сам эффект имеет место (как видно из последней части видео).

 

При помещении внутрь индуктора теплоизолированного тигля можно заниматься литьём металлов. К сожалению, первый же эксперимент в этой области окончился несколько неудачно: около 20-30 грамм кипящей стали раскололи тигль, не выдержавший контраста температур расплава и водоохлаждаемой трубки, и вылились огромной раскалённой каплей прямёхонько на мой многострадальный ковёр, воспламенив его и начав прожигать дыру до деревянного пола. Пламя сбили огнетушителем, а каплю стали пришлось заливать водой из чайника. В результате в ковре образовалась огромная чёрная дыра с углём. Мораль — необходимо использовать по крайней мере керамический лоток или подобный несгораемый поддон при занятии такой хренотенью.

Более удачной была плавка меди: удалось сплавить около 90 г. в этакую медную чушку. Она выглядит, конечно, ужасно, но тем не менее.


Метки отсутствуют.

teslacoil.ru

Вихревой индукционный нагреватель. Мини. Питание 5 -12V.

Из товаров предоставленных на обзор, выбор пал на этот индукционный нагреватель. Зачем он мне..?

Вихревой индукционный нагреватель. Пару слов теории.
«В работе индукционного нагревателя используется энергия электромагнитного поля, которую нагреваемый объект поглощает и преобразует в тепловую. Для генерирования магнитного поля используется индуктор, т. е. многовитковая цилиндрическая катушка. Проходя через этот индуктор, переменный электрический ток создает вокруг катушки переменное магнитное поле.
Если внутрь индуктора поместить нагреваемый объект, его будет пронизывать поток вектора магнитной индукции, который постоянно меняется во времени. При этом возникает электрическое поле, линии которого располагаются перпендикулярно направлению магнитного потока и движутся по замкнутому кругу. Благодаря этим вихревым потокам электрическая энергия трансформируется в тепловую и объект нагревается.
Таким образом, электрическая энергия индуктора передается объекту без использования контактов, как это происходит в печах сопротивления. В результате тепловая энергия расходуется более эффективно, а скорость нагрева заметно повышается.»
«Система «индуктор-заготовка» представляет собой бессердечниковый трансформатор, в котором индуктор является первичной обмоткой. Заготовка является как бы вторичной обмоткой, замкнутой накоротко. Магнитный поток между обмотками замыкается по воздуху.
На высокой частоте вихревые токи вытесняются образованным ими же магнитным полем в тонкие поверхностные слои заготовки (скин-эффект), в результате чего их плотность резко возрастает, и заготовка разогревается. Нижерасположенные слои металла прогреваются за счёт теплопроводности. Важен не ток, а большая плотность тока. В скин-слое плотность тока увеличивается в несколько раз относительно плотности тока в заготовке, при этом в скин-слое выделяется 86,4 % тепла от общего тепло­выделе­ния. Глубина скин-слоя зависит от частоты излучения: чем выше частота, тем тоньше скин-слой. Также она зависит от относи­тель­ной магнитной проницаемости материала заготовки.
Например, при частоте 2 МГц глубина скин-слоя для меди около 0,25 мм, для железа ≈ 0,001 мм.
Индуктор сильно нагревается во время работы, так как сам поглощает собственное излучение. К тому же он поглощает тепловое излучение от раскалённой заготовки. Делают индукторы из медных трубок, охлаждаемых водой. Вода подаётся отсасыванием — этим обеспечивается безопасность в случае прожога или иной разгерметизации индуктора.»
В нашем случае индуктором является не медная трубка, а кусок медного провода скрученный в спираль.
Для себя, я лично наметил только одно полезное применение такому мисиписечному нагревателю. Разогрев, а потом по возможности закалка переточенных кончиков всяких разных отверточек, шильцев и ковырялок…
Заявленные ТТХ:
— Питание модуля: 5-12V
— Размеры: 5,5 х 4 х 2 см (L * W * H)
— Размер катушки: длина: 7.5cм, диаметр: 2,8 см
— Диаметр провода индуктора:
Комплект:
— модуль: 1 шт.
— катушка: 1шт.
Больше нам о нем пока ничего не известно. Ну что ж, проверим на что он способен и соответствует ли моим ожиданиям…
Приехал модуль в таком виде.


Размеры, чуть больше спичечного коробка, не считая дросселей.
Ширина платки — 37 мм.
Длина платки 55 мм.
Высота от низа кондеров до верха дросселей — 45 мм.

Размеры и диаметр катушки.
Длина катушки — 35 мм.
Диаметр — 22 мм.
Диаметр провода — 2 мм.
Длина катушки с выводами -70 мм.
Вес конструкции в сборе 114 грамм.

На платке есть надписи с рекомендуемым напряжением питания, его полярностью на разъеме.

С обратной стороны платки имеется разъем для подключения катушки.

Снизу кондеры.

Распаиваем модуль.
Сама платка сделана очень неплохо. Снизу шелкография, изображение скорпионов. Наверное какой-то фирменный знак производителя печатных плат. Надписи на транзисторах сточены напильником. :0)

Рисуем схему.
Схема оказалась самой распространенной в интернете. Хотя на данной плате стерта маркировка транзисторов и не удалось расшифровать маркировку стабилитронов, погуглив подобную схему легко найти в интернете. Хотя вполне возможно, что детали стоят несколько другие, но не суть важно. Легко найти аналог на замену при неисправности.

Используемые конденсаторы.

Теперь все собираем, прикручиваем катушку и подаем питание. Загорается синий светодиодик.

Токи на холостом ходу.

Токи под нагрузкой. В качестве «нагрузки» использовал трехгранный надфиль.

Частота генератора на холостом ходу 214 кГц, под нагрузкой падает до 210 кГц.

Маленькое видео нагрева кончика трехгранного надфиля.

Индукционный нагреватель работает, но очень много кушает на холостом ходу.
Транзисторы распаянные на плате довольно прилично греются, плата плоховато рассеивает тепло. Если платку доработать, поставить транзисторы по мощнее да вынести их на радиаторы, может получиться вполне себе нагреватель. Чем я и займусь в ближайшем будущем.
Посоветовал бы я купить? Наверное да, но не как рабочее законченное изделие, а скорее как ознакомительную версию с возможностью небольшого допила. Ну и если деньги лишние. :0)

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

mysku.ru

применение и изготовление своими руками

Сегодня все большую популярность завоёвывают индукционные обогреватели. Такие устройства имеют ряд преимуществ: они более экономичны, обладают высоким КПД и их даже можно изготовить в домашних условиях. Подобными нагревателями можно отапливать помещение, либо использовать их в качестве проточных водонагревателей.

В последнее время все больше владельцев собственных квадратов отдают предпочтение электрическим обогревателям именно такого типа. Это легко объясняется. В отличие от других видов устройств, они безопасны, не оставляют копоти, сажи и, что весьма удобно, при их эксплуатации отсутствует надобность в приобретении дров. Однако подобное оборудование нельзя назвать экономным.

Что собой представляет

Индукционные вихревые обогреватели подходят для отопления дома, гаража, квартиры, бани, в общем, любых квадратных метров, где тепла недостаточно или оно отсутствует вовсе. Индукционные обогреватели работают за счёт вихревых токов (токи Фуко), создаваемых магнитным полем. Они нагревают окружающее пространство. Для генерации такого поля необходим индуктор, представляющий собой многовитковую катушку в виде цилиндра. Переменный электрический ток, проходя через эту самую катушку, создаёт магнитное поле. Далее вихревые токи преобразуются в тепловую энергию.

Нагрев до высоких температур (70 градусов) с помощью такого устройства происходит довольно быстро, примерно за 5 минут.

Преимущества и недостатки

Анализируя рабочий процесс обогревателя и связанные с ним затраты, хочется отметить несомненные плюсы, которые получает обладатель такого устройства:

  1. КПД 99%, практически отсутствует потеря тепла.
  2. При работе системы не образовывается накипь, в отличие от нагревателей, имеющих ТЭН.
  3. Экологически безопасный обогрев помещения.
  4. При обогреве можно использовать как воду (чаще всего), так и антифриз, масло.
  5. Отсутствует надобность в частом профилактическом обслуживании.
  6. Процесс установки не требует специальных навыков, неприхотливая эксплуатация.
  7. Высокая пожаро- и электро-безопасность.
  8. Возможность совмещения с другими системами отопления.
  9. Работа от сети как переменного тока, так и постоянного.
  10. Срок службы свыше 20 лет.

Несмотря на все преимущества, которыми обладает прибор, нельзя не отметить существенные минусы:

  • высокая стоимость оборудования в магазинах;
  • дорогостоящее отопление;
  • требуется наличие стабильного электроснабжения;
  • большой вес устройства;
  • возможность установки только в закрытую систему отопления.

Применение

Отопление, основанное на вихревых токах, созданных электромагнитными полями может найти своё применение при:

  • обогреве жилого хозяйства, дома,  бани, гаража, промышленного или административного здания;
  • в системе горячего водоснабжения;
  • обогреве сооружений и конструкций, имеющих определённые требования к источникам тепла (по безопасности).

Индукционный обогреватель своими руками

Из-за дороговизны прибора многие решают изготовить подобный нагреватель самостоятельно. В интернете можно встретить много статей, в которых описывается, как сделать индукционный котел – обогреватель своими руками. Мы опишем принцип изготовления простейшего типа устройства, чтобы с подобной задачей мог справиться любой хозяин.

Перед тем как приступить к работе, подготовьте следующие инструменты: кусачки, паяльник (если вы планируете делать сердечник из металлической трубы), отвертки.

  1. Нарежьте проволоку из нержавеющей стали диаметром 7 мм на кусочки приблизительно в 5 мм.
  2. Подготовьте пластиковую или металлическую трубу (сердечник), стенки которой должны быть толщиной не менее 3-5 мм, чтобы она смогла выдерживать высокие температуры.
  3. Заполните трубу доверху обрезками из проволоки.
  4. Концы трубы закройте сеткой, чтобы исключить вероятность выпадения из неё обрезков во время работы прибора.
  5. Далее по всей длине трубы спиралью намотайте медную проволоку, сделав порядка 90 витков.
  6. Изготовьте котёл, вырезав прямоугольный участок трубы.
  7. В отверстие котла вставьте изготовленное устройство.
  8. Концы медной проволоки подключите к инвертору с высокой частотой действия. Купить его можно практически во всех магазинах, имеющих строительное направление.

Перед сборкой оборудования оцените свои силы и возможности. Не беритесь за изготовление нагревательного прибора, если ничего не понимаете в электричестве.

Индукционный обогреватель воды для системы отопления

Обогреватель имеет весьма неприхотливую конструкцию. Он высокоэффективен и надёжен. Используя его при изготовлении котла в системе отопления, можно пренебречь установкой насоса, поскольку вода будет течь по трубам в результате конвекции.

Такое устройство следует снабдить патрубками: для холодной и горячей воды. Сверху через патрубок горячая вода будет подаваться в систему отопления. А снизу на вводной части через него будет пребывать холодная вода

Безопасное использование

Учитывайте, что индукционный обогреватель – это электрическое устройство повышенной опасности. Правила, которые стоит учесть, при изготовлении такого оборудования:

  1. Оснастите устройство датчиком температуры. В случае перегрева оборудования система должна иметь возможность автоматического отключения.
  2. Для самодельного оборудования организуйте отдельную линию электропроводки с увеличенным сечением провода.
  3. Не пренебрегайте изоляцией оголённых участков, обезопасьте своих близких от удара током.
  4. Перед включением индуктора убедитесь, что труба заполнена водой. При её отсутствии прибор может сгореть, а труба расплавиться.
  5. Не размещайте оборудование в жилой зоне. Электромагнитные волны оказывают негативное влияние на здоровье людей и животных.
  6. Прибор следует установить на высоте более чем 80 см от пола, а расстояние от устройства до потолка должно составлять не менее 30 см.
  7. Заземлите оборудование.
  8. Установку прибора следует производить через автомат, чтобы в случае аварии, устройство было отключено от питания.
  9. Для снижения давления в системе не лишним будет установить предохранительный клапан в системе трубопровода.

Если обобщить информацию, то можно сделать вывод:

  1. Индукционный нагреватель имеет высокий коэффициент полезного действия, у некоторых моделей он достигает 99%.
  2. Устройство может использоваться как в виде водонагревателя, так и в виде котла в системе отопления.
  3. Конструкция нагревателя достаточно проста, поэтому её сборка и установка возможна своими силами.
  4. Использование индукционного водонагревателя на территории РФ не регламентировано.

Несмотря на все плюсы, решение об установки подобного оборудования стоит принимать взвешенно:

  1. Во-первых, оно потребляет достаточно большое количество электроэнергии.
  2. Во-вторых, прибор, особенно собранный самостоятельно, нельзя назвать полностью безопасным.
  3. В-третьих, он оказывает негативное влияние на здоровье людей и животных. Поэтому устанавливать его всё же следует на дачах или в собственных домах.

tehnika.expert