Ir2153 микросхема – 404 ТАКОЙ СТРАНИЦЫ НЕТ НА САЙТЕ

ИМПУЛЬСНЫЙ БЛОК ПИТАНИЯ НА ir2153 CAVR.ru


Рассказать в:

      В этой статье будет рассмотрена миросхема IR2153, представляющая из себя высоковольтный драйвер с внутренним генератором. Такой набор узлов позволяет на базе этой микросхемы организовывать полумостовые импульсные блоки питания мощностью до 1,5 кВт с минимальной обвязкой.
      Микросхема выпускается в двух типах корпусов: PDIP-8 и SOIC-8:

      Функционально микросхемы IR2153 отличаются лишь установленным в планарном корпусе диода Вольтодобавки:


Функциональная схема IR2153


Функциональная схема IR2153D

      Для начала рассмотрим как работает сама микросхема, а уж потом будем решать что из нее можно приготовить. Для начала ррасмотрим как работает сам генератор. На рисунке ниже приведен фрагмент резистивного делителя, три ОУ и RS триггер:

      В первоначальный момент времени, когда только-только подали напряжение питания конденсатор С1 не заряжен на всех инвертирующих входах ОУ присутствует ноль, а на не инвертирующих положительное напряжение формируеммое резестивным делителем. В результате получается, что напряжение на иневртирующих входах меньше чем на не инвертирующих и все три ОУ на своих выхода формируют напряжение близкое к напряжению питания, т.е. лог единицу.
      Поскольку вход R (установка нуля) на триггере инвертирующий, то для него это будет состояние при котором он не оказывает влияние на состояние триггера, а вот на входе S будет присутствовать лог единика, устанавливающая на выходе триггера тоже лог единицу и конденсатор Ct через резистор R1 начнет заряжаться. На рисунке напряжение на Ct показанно синей линией, красной — напряжение на выходе DA1, зеленой — на выходе DA2, а розовой — на выходе RS триггера:

      Как только напряжение на Ct превысит 5 В на выходе DA2 образуется лог ноль, а когда, продолжая заряжать Ct напряжение достигнет значения чуть больше 10-ти вольт лог ноль появится на выходе DA1, что в свою очередь послужит установкой RS триггера в состояние лог нуля. С этого момента Ct начнет разряжаться, так же через резистор R1 и как только напряжение на нем станет чуть меньше установленноно делитеме значения в 10 В на выходе DA1снова появится лог единица. Когда же напряжение на конденсаторе Ct станет меньше 5 В лог единица появится на выходе DA2 и переведет RS триггер в состояние единицы и Ct снова начнет заряжаться. Разумеется, что на инверсном выходе RS триггера напряжение будет иметь противоположные логические значения.
      Таким образом на выходах RS триггера образуются противоположные по фазе, но равные по длительности уровни лог единицы и нуля:

      Поскольку длительность управляющих импульсов IR2153 зависит от скорости заряда-разряда конденсатора Сt необходимо тщательно уделить внимание промывке платы от флюса — ни каких утечек ни с выводов конденсатора, ни с печатных проводников платы не должно быть, поскольку это чревато намагничиванием сердечника силивого трансформатора и выходом из строя силовых транзисторов. 
      Так же в микросхеме есть еще два модуля — UV DETECT и LOGIK. Первый из них отвечает за запуск-остановку генераторного процесса, зависящую от напряжения питания, а второй формирует импульсы DEAD TIME, которые необходимы для исключения сквозного тока силового каскада.
      Дальше происходит разделение логических уровней — один становится управляющим верхним плечом полумоста, а второй нижним. Отличие заключается в том, что управление верхним плечом осуществляется двумя полевыми транзисторами, которые, в свою очередь, управляют «оторванным» от земли и «оторванным» от напряжения питания оконечным каскадом. Если рассматривать упрощенную принципиальную схему включения IR2153, то получается примерно так:

 

  •       Выводы 8, 7 и 6 микросхемы IR2153 являются соответственно выходами VB, HO и VS, т.е. питанием управления верхним плечом, выходом оконечного каскада управления верхним плечом и минусовым проводом модуля управления верхним плечом. Внимание следует обратить на тот факт, что в момент включения управляющее напряжение присутствует на Q RS триггера, следовательно силовой транзистор нижнего плеча открыт. Через диод VD1 заряжается конденсатор С3, посколько его нижний вывод через транзистор VT2 соединен с общим проводом.
          Как только RS триггер микросхемы меняет свое состояние VT2 закрывается, а управляющее напряжение на выводе 7 IR2153 открывает транзистор VT1. В этот момент напряжение на выводе 6 микросхемы начинает увеличиваться и для удержания VT1 в открытом состоянии напряжение на его затворе должно быть больше чем на истоке. Поскольку сопротивление открытого транзистора равно десятым долям Ома, то и на его стоке напрежение не намного больше, чем на истоке. Получается, что удержания транзистора в открытом состоянии необходимо напряжение как минимум на 5 вольт больше, чем напряжение питания и оно действительно есть — конденсатор С3 заряжен до 15-ти вольт и именно он позволяет удерживать VT1 в открытом состоянии, поскольку запасенная в нем энергия в этот момен времени является питающим напряжение для верхнего плеча окнечного каскада микросхемы. Диод VD1 в этот моент времени не позволяет разряжаться С3 на шину питания самой микросхемы.
          Как только управляющий импульс на выводе 7 заканчивается транзистор VT1 закрывается и следом открывается VT2, который снова подзаряжает конденсатор С3 до напряжения 15 В.

          Довольно часто параллельно конденсатору С3 любители устанавливают электролитический конденсатор емкостью от 10 до 100 мкФ, причем даже не вникая в необходимость этого конденсатора. Дело в том, что микросхема способна работать на частотах от 10 Гц до 300 кГц и необходимость данного электролита актуально лишь до частот 10 кГц и то при условии, что электролитический конденсатор будет серии WL или WZ — технологически имеют маленький ers и больше известны как компьютерные конденсаторы с надписями золотистой или серебристой краской:

          Для популярных частот преобразования, используемых при создании импульсных блоков питания частоты берут выше 40 кГц,а порой доводят до 60-80 кГц, поэтому актуальность использования электролита попросту отпадает — емкости даже 0,22 мкФ уже достаточно для открытия и удержания в открытом состоянии транзистора SPW47N60C3, который имеет емкость затвора в 6800 пкФ. Для успокоения совести ставится конденсатор на 1 мкФ, а давая поправку на то, что IR2153 не может коммутировать такие мощные транзисторы напрямую, то накопленной энергии конденсатором С3 хватит для управления транзисторами с емкостью затворов до 2000 пкФ, т.е. всеми транзисторами с максимальным током порядка 10 А ( перечень транзисторов ниже, в таблице ). Если же все таки есть сомнения, то вместо рекомендуемого 1 мкФ используйте керамический конденсатор на 4,7 мкФ, но это безсмысленно:

          Было бы не справедлило не отметить, что у микросхемы IR2153 есть аналоги, т.е. микросхемы с аналогичным функциональным назначением. Это IR2151 и IR2155. Для наглядности сведем основные параметры в таблицу, а уж потом разберемся что из них лучше приготовить:

    МИКРОСХЕМА



    Раздел:
    [Схемы]

    Сохрани статью в:

    Оставь свой комментарий или вопрос:



    www.cavr.ru

    Упрощенный мост на IR2153 — эффективная схема преобразователя

    Упрощенный мост на IR2153

    Упрощенный мост на IR2153 — такое устройство как мост реализованный на универсальном драйвере для управления полевыми транзисторами, справедливо считается одним из наиболее эффективных модулей преобразователя. Но, чтобы собрать такой прибор потребуются существенные денежные вложения, а также нужно учитывать технологический уровень сложности при его изготовлении. Это если вы собираетесь взяться за конструирование высоко мощного моста на несколько киловатт, тогда да, будут некоторые затруднения.

    А вот если воспользоваться приведенной ниже схемой, то никаких проблем не будет, тем более устройство собрано на двух популярных чипах IR2153 , представляющих собой высоковольтные драйвера с внутренним генератором. Принцип включения микросхем обычный и неоднократно тестировался на полумосте. Особенность вызывает первоочередное тактирование второй микросхемы от R-входа.

    Номинальные значения электронных компонентов:

    B1 — диодный мост RS2007, RS3507 и тому подобные. При эксплуатации на мощностях более пары сотен ватт необходимо поставить на него радиатор.
    C1, C7 — электролиты 630…1000мкФ х 400В
    R1, R5 — 33..56кОм 2Вт. Для более точного расчета можете воспользоваться формулой
    R=310/(2*Cзатвора*15.6*fраб+0.003)
    C2, C5 — электролиты 220мкФ 25В
    C8, C9 — керамика 0.1мкФ 25В
    R8 — 2Ом 0.25Вт
    R9 — 24кОм
    R10 — 6кОм
    R2, C3 — рассчитываются по даташиту на IR2153 исходя из требуемой частоты
    IC1, IC2 — IR2153, IR2153D, IR21531 (если применяется IR2153D то D1 и D2 не ставить!)
    D1, D2, D3, D4 — UF4007, BYW26C, BY329 или другие подобные ультрабыстрые диоды
    C4, C6 — танталовые 22мкФ 25В
    R3, R4, R6, R7 — 10…30Ом 0.25Вт (меньшее значение для тяжелых затворов, большее — для легких)
    Q1, Q2, Q3, Q4 — IRF840 или что-то подобное. Все зависит от ваших потребностей

    Насчет расчетов например: R2,С3 как сказано выше, нужно определять по даташиту, к тому же есть множество программ для расчета. Если для кого то это дремучий лес то я считаю, тогда и не надо вообще браться за конструирование.

    Ниже показана печатная плата с нанесенной на нее обозначениями деталей и их места установки.

    В качестве нагрузки данного моста могут послужить выходной трансформатор строчной развертки телевизора, SSTC-катушка либо что-то аналогичное им, но мощность не должна превышать 1000 Вт. Если использовать большие мощности, то нет никакой гарантии в стабильной работе микросхемы. Если же все таки возникает необходимость реализовать высокие мощности, то тогда необходимо добавить емкость конденсаторов в цепи фильтров 310v, то тогда существует вероятность, что будет прекрасно работать и на высокой мощности.

    Техническая информация

    1. Когда осуществляется запуск, то создается сильный импульсный бросок тока в следствии происходящего цикла зарядки конденсаторов в цепи фильтра. При этом возможно срабатывание автоматов, если такое происходит, то нужно в сетевую цепь установить NTC-термистор, который применяется для защиты импульсных питающих источников и электронных балластных систем, предварительно подобрав его значения по необходимому току.
    2. При подключении к мосту в качестве нагрузки выходной строчный трансформатор, то первичную обмотку нужно наматывать в количестве 65 витков не меньше.
    3. При компоновке элементов на печатную плату, лучше всего под микросхемы нужно будет устанавливать панельки, а в них уже помещать саму микросхему после полного завершения монтажа схемы.

    Тестирование на практике:

    usilitelstabo.ru

    Блок питания для всего на 350 Вт

    Блок питания для всего на 350 Вт

    Блок питания для всего на 350 Вт — представляю вашему вниманию конструкцию источника питания реализованного на микросхеме IR2153. Вначале было желание собрать его с использованием популярной TL494, но познакомившись поближе со схемой, то оказалось что элементов обвязки требуется очень много. К тому же в этом варианте необходимо построение гальванической развязки напряжения с использованием трансформатора, а его придется собственноручно наматывать. Поэтому этот вариант сборки я отложил на «потом».

    Блок питания для всего на 350 Вт я рассчитывал изготовить высокоэффективным и в то же время менее затратным, поэтому следующим на рассмотрение взял ШИМ-контроллер UC3825, элементов обвязки там значительно меньше, но все равно требуются трансформаторы для гальванической развязки и по току. С изготовлением трансформаторов я не захотел связываться и начал искать другие, устраивающие меня варианты. Вспомнил про такой чип как полу мостовой драйвер IR2153, предназначенный для работы в схеме с полевыми транзисторами, который имеет лучшие функциональные возможности, чем аналогичные микросхемы, да и в его использовании нет ничего сложного. Выходной ток конечно слабоват, но для работы MOSFET IRF740 будет вполне достаточно. p>

    Но как обычно бывает проблемы возникают ниоткуда — оказалось, что в этой микросхеме, а именно в контуре управления, отсутствует усилитель сигнала ошибки — следовательно создать защиту при помощи самого IR2153 не представляется возможным. Но почти всегда в таких случаях находится выход из создавшегося положения, то есть существует схема триггерной защиты, в которую входит пара транзисторов, четыре постоянных резистора и один конденсатор. Вот в принципе и вся защита, которая была задействована в этой конструкции. Теперь перейдем к непосредственному рассмотрению двух принципиальных схем — блока питания и схемы защиты.

    Как было сказано выше, блок питания для всего на 350 Вт и его принципиальная схема довольно простая для ее повторения. Хотя некоторые нюансы стоит упомянуть. Во первых это принцип преобразования частоты сигнала, в котором заключается проблема установки частоты больше 60 кГц. Так как в случае увеличении частоты сигнала, номинальное значение балластного резистора пришлось бы снижать для того, чтобы конденсатор в запирающем контуре смог как можно быстрее разрядиться.

    Тогда, в таком случае, микросхема не сможет обеспечить нормальную работу полевых транзисторов с установленными резисторами на 10 Ом (это при частоте сигнала более 60 кГц). Вследствие чего желательно выставлять частоту до 56-57 кГц. Небольшое уточнение! Я в приведенной здесь схеме упустил из виду указать конденсатор в цепи между общей точкой трансформатора и конденсаторов, а он должен быть там ОБЯЗАТЕЛЬНО!! Его отсутствие может привести к большому перекосу напряжения на конденсаторах при этом емкость может взорваться.

    Второй нюанс — это конденсатор в цепи вольт-добавки (bootstrap). Здесь закавыка в том, что IR2153 отпирает верхний по схеме транзистор принудительно с помощью диода и конденсатора. Для правильного переключения переходов верхнего полевого транзистора требуется конденсатор, а уже с помощью диода конденсатор разряжается. Может возникнуть вопрос: — И что из этого вытекает? Ответ такой — номинальное значение этого конденсатора во многом зависит от частоты сигнала. У меня блок питания нормально заработал с установленным конденсатором 1uF. В вашем варианте номинал емкости может быть другим, а по поводу этого я уже подробнее остановлюсь, когда будем настраивать это устройство.

    Ниже показана принципиальная схема защиты от короткого замыкания:

    Эта схема также не представляет никакой сложности. Особенность ее работы основана на том, что в зависимости от мощности начинает падать напряжение на сопротивлениях R5-R6 до установленного подстроечным резистором R4 определенного значения, тогда открывается переход ключа VT2 BC556, и своим импульсом также открывает транзисторный переход VT1 C945, в следствии чего шунтируется напряжение питание драйвера на корпус и процесс генерации импульсов прекращается. Модуль защиты и сам блок питания являются самостоятельными устройствами и работать могут как в составе определенной схемы, так и раздельно друг от друга.

    Что касается трансформатора, то его я наматывал на кольцевом сердечнике из низкочастотного феррита PC40TDK размером 38х13х18 выпускаемый TDK. Первичная обмотка получилась 68 витков, вторичная обмотка содержит 40 витков с отводом провода на 20 витке для средней точки, то есть 2 по 20 витков. Если использовать вместо кольца Ш-образный сердечник, то в таком случае есть возможность снизить количество витков в первичной обмотке, а во вторичной обмотке увеличить сечение провода, тем самым вы поднимите габаритную мощность транса, при этом его размеры будут меньше.

    Настройка блока питания также отличается своей простотой, но делать все нужно достаточно осторожно.

    1. Блок питания должен быть собран без ошибок.

    2. Включать в сеть БП желательно через лампу накаливания мощностью 60 Вт.

    3. Обязательно замерить напряжение питания драйвера, первый вывод «+», четвертый вывод «-«, оно должно составлять примерно ±16v.

    4. Подключить мультиметр на выход драйвера и убедиться в наличии напряжения около 5v — это 5-4 и 6-7 выводы микросхемы.

    5. Соблюдая осторожность замерить напряжение на конденсаторах диодного моста, которое должно составлять примерно 160v в каждом плече.

    6. Замерить выходное напряжение, оно должно составлять столько, сколько вы сами определили изначально и должно держаться стабильно, без явных колебаний.

    7. Подключить к выходным клеммам блока питания нагрузку. Теперь измеряем действующее напряжение под нагрузкой, которое должно упасть примерно на 2v относительно значения без нагрузки.

    8. Далее нужно подключить такую нагрузку, с которой БП будет работать на максимальной мощности. Подстроечным резистором R4 устанавливаем значение сопротивления, при котором устройство работает в стабильном режиме, но должно отключатся, если регулятор немного сместить в какую либо сторону. Вот этот момент и будет порогом пиковой мощности. При мощности выше этого порога блок питания будет отключаться.

    Здесь показаны пара фотографий уже собранного блока питания:

    На фото платы еще без корпуса, так как находятся в процессе настройки, но номинальная мощность уже определена — 350 Вт. Под эту мощность и защита настроена.

    Здесь можно скачать готовую печатную плату, созданную в Layout-5: Скачать печатную плату

    usilitelstabo.ru

    Страничка эмбеддера » Резонансный полумост на IR2153

    Этот источник высокого напряжения был сделан давным-давно, но вот я нашел его на полке и решил описать. Это практически обычный полумост (в сети их огромная куча) на IR2153 за исключением нескольких моментов.

    Во-первых, строчный трансформатор тут работает на резонансной частоте, а значит, выдает очень высокое напряжение. Для того, чтобы строчник не пробился, его нельзя включать без нагрузки! Думаю, нужно сделать защитный разрядник.

    Во-вторых, используются довольно необычные для подобных схем “тяжелые” транзисторы (stw29nk50, такие были) на довольно высокой частоте – порядка 120кГц. Для того, чтобы дать возможность IR2153 управлять ими, введены буфера. И вообще IR2153 разгружена как только можно. Стабилизация по напряжению внешняя, буфера тоже внешние. Жизнь микрухи превратилась в сказку )

    В-третьих, IR2153 после запуска питает сама себя. Сильно уменьшается нагрев резистора R4, да и тока в затворы она может больше выдать. Еще одно преимущество такого подхода — если на долго замкнуть выходы источника, питание ir2153 падает ниже порога срабатывания UVLO, она отключается, и периодически включается от сетевого резистора. Таким образом, вероятность выноса от К.З примерно нулевая.

    Схема (кликабельна)

    Количество витков в первичке – 45, в обмотке питаня IRки – 4.

     

    Транзисторы вынесены на радиатор сверху.

     

    Собранная схема

     

    Сам строчник никак не хотел влезать в корпус, поэтому пришлось корпус немного подпилить, а чтобы это смотрелось красиво, я сделал красную крышечку с большим знаком восклицания, нарисовать молнию таланта не хватило ))

    Потребляемая мощность – 120Вт, К.З. в нагрузке выдерживает без проблем.

     

    Видео

    Брат, похоже, уже привык что я отбираю у него фотик для того, чтобы снимать видушники своих поделок. Поэтому, воть:

     

     

    Почему дуга такая дохлая? Когда она появляется, полумост выходит из резонанса, и, из-за этого, уменьшается выдаваемая мощность. Мощность можно всегда увеличить, снизив рабочую частоту и уменьшив количество витков. Благо, транзисторы это позволяют сделать.

    bsvi.ru

    ИМПУЛЬСНЫЙ БЛОК ПИТАНИЯ НА IR2153 ПРОДОЛЖЕНИЕ….. CAVR.ru


    Рассказать в:

     

          Подбирая схемы для этой статьи попалась и вот такая. Идея заключается в использовании двух IR2153 в мостовом преобразователе. Идея автора вполне понятна — выход RS триггера подается на вход Ct и по логике на выходах ведомой микросхемы должны образоваться управляющие импульсы противоположные по фазе.
          Идея заинтргировала и был проден следственный эксперимент на тему проверки работоспособности. Получить устойчивые управляющие импульсы на выходах IC2 не удалось — либо работал верхний драйвер, либо нижний. Кроме этого сдивагалсь фаза пауза DEAD TIME, на одной микросхеме отностительно другой, что существенно снизит КПД и от идеи были вынуждены отказаться. 

     

     Отличительная черта следующего блока питания на IR2153 заключается в том, что если он и будет работать, то работа эта сродни пороховой бочке. Прежде всего бросилась в глаза дополнительная обмотка на силовом трансформаторе для питания самой IR2153. Однако после диодов D3 и D6 нет токоограничивающего резистора, а это означает, что пятнадцативольтовый стабилитрон, находящийся внутри микросхемы будет ОЧЕНЬ сильно нагружен. Что произойдет при его перегреве и тепловом пробое можно только гадать. 
          Защита от перегрузки на VT3 шунтирует время задающий конденсатор С13, что вполне приемелемо. 

     

     

     

     

          Эта схема импульсного блока питания способна развивать довольно большую мощность, поскольку после выходного каскада микросхемы установлены дополнительные эмиттерные повторители на биполярных транзисторах которые собственно управляют затворами силовых транзисторов. В этом варианте максимальная мощность преобразователя уже будет зависеть от максимального тока биполярных транзисторов и максимального тока силовых полевиков. Поскольку выросло потребление на переключение силовых транзисторов емкость конденсатора вольтодобавки увеличина до 2,2 мкФ.

     

     

          Последний приемлемый вариант схемы истоника питания на IR2153 не представляет собой ни чего уникального. Правда автор зачем то уж слишком уменьшил сопротивление резисторов в затворах силовых транзисторов и установил стабилитроны D2 и D3, назначение которых весьма не понятно. Кроме этого емкость С11 слишком мала, хотя возможно речь идет о резонансном преобразователе.

     

          Есть еще один вариант импульсного блока питания с использованием IR2155 и именно для управления мостовым преобразвателем. Но там микросхема управляет силовыми транзисторами через дополнительный драйвер и согласующий трансформатор и речь идет об индукционной плавке металлов, поэтому этот вариант заслуживает отдельной страницы, а всем кто понял хотя бы половину из прочитанного стоит переходит на страницу с печатными платами.

     

    ВИДЕОИНСТРУКЦИЯ ПО САМОСТОЯТЕЛЬНОЙ СБОРКЕ
    ИМПУЛЬСНОГО БЛОКА ПИТАНИЯ НА БАЗЕ IR2153 ИЛИ IR2155

     

     

        

        

     

    Адрес администрации сайта: [email protected]
        



    Раздел:
    [Блоки питания (импульсные)]

    Сохрани статью в:

    Оставь свой комментарий или вопрос:



    www.cavr.ru

    ИМПУЛЬСНЫЙ БЛОК ПИТАНИЯ НА IR2153 ПРОДОЛЖЕНИЕ….. 2ZV.ru

    Рассказать в:

     

          Подбирая схемы для этой статьи попалась и вот такая. Идея заключается в использовании двух IR2153 в мостовом преобразователе. Идея автора вполне понятна — выход RS триггера подается на вход Ct и по логике на выходах ведомой микросхемы должны образоваться управляющие импульсы противоположные по фазе.
          Идея заинтргировала и был проден следственный эксперимент на тему проверки работоспособности. Получить устойчивые управляющие импульсы на выходах IC2 не удалось — либо работал верхний драйвер, либо нижний. Кроме этого сдивагалсь фаза пауза DEAD TIME, на одной микросхеме отностительно другой, что существенно снизит КПД и от идеи были вынуждены отказаться. 

     

     Отличительная черта следующего блока питания на IR2153 заключается в том, что если он и будет работать, то работа эта сродни пороховой бочке. Прежде всего бросилась в глаза дополнительная обмотка на силовом трансформаторе для питания самой IR2153. Однако после диодов D3 и D6 нет токоограничивающего резистора, а это означает, что пятнадцативольтовый стабилитрон, находящийся внутри микросхемы будет ОЧЕНЬ сильно нагружен. Что произойдет при его перегреве и тепловом пробое можно только гадать. 
          Защита от перегрузки на VT3 шунтирует время задающий конденсатор С13, что вполне приемелемо. 

     

     

     

     

          Эта схема импульсного блока питания способна развивать довольно большую мощность, поскольку после выходного каскада микросхемы установлены дополнительные эмиттерные повторители на биполярных транзисторах которые собственно управляют затворами силовых транзисторов. В этом варианте максимальная мощность преобразователя уже будет зависеть от максимального тока биполярных транзисторов и максимального тока силовых полевиков. Поскольку выросло потребление на переключение силовых транзисторов емкость конденсатора вольтодобавки увеличина до 2,2 мкФ.

     

     

          Последний приемлемый вариант схемы истоника питания на IR2153 не представляет собой ни чего уникального. Правда автор зачем то уж слишком уменьшил сопротивление резисторов в затворах силовых транзисторов и установил стабилитроны D2 и D3, назначение которых весьма не понятно. Кроме этого емкость С11 слишком мала, хотя возможно речь идет о резонансном преобразователе.

     

          Есть еще один вариант импульсного блока питания с использованием IR2155 и именно для управления мостовым преобразвателем. Но там микросхема управляет силовыми транзисторами через дополнительный драйвер и согласующий трансформатор и речь идет об индукционной плавке металлов, поэтому этот вариант заслуживает отдельной страницы, а всем кто понял хотя бы половину из прочитанного стоит переходит на страницу с печатными платами.

     

    ВИДЕОИНСТРУКЦИЯ ПО САМОСТОЯТЕЛЬНОЙ СБОРКЕ
    ИМПУЛЬСНОГО БЛОКА ПИТАНИЯ НА БАЗЕ IR2153 ИЛИ IR2155

     

     

        

        

     

    Адрес администрации сайта: [email protected]
        



    Раздел:
    [Блоки питания (импульсные)]

    Сохрани статью в:



    2zv.ru