Источник тока источник напряжения – —

1.04. Источники тока и напряжения

ОСНОВЫ ЭЛЕКТРОНИКИ

Напряжение, ток и сопротивление

Идеальный источник напряжения — это «чёрный ящик», имеющий два вывода, между которыми он поддерживает постоянное падение напряжения независимо от величины сопротивления нагрузки. Это означает, например, что он должен порождать ток, равный
I = UR, если к выводам подключить резистор с сопротивлением R. Реальный источник напряжения не может дать ток, больший некоторого предельного максимального значения, и в общем случае он ведёт себя как идеальный источник напряжения, к которому последовательно подключён резистор с небольшим сопротивлением. Очевидно, чем меньше сопротивление этого последовательно подключённого резистора, тем лучше. Например, стандартная щелочная батарея на 9 В в последовательном соединении с резистором, имеющим сопротивление 3 Ом, ведёт себя как идеальный источник напряжения 9 В и даёт максимальный ток (при замыкании накоротко) величиной 3 А (который, к сожалению, погубит батарею за несколько минут). По понятным причинам источник напряжения «предпочитает» нагрузку в виде разомкнутой цепи, а нагрузку в виде замкнутой цепи «недолюбливает». (Понятия «разомкнутая цепь» и «замкнутая цепь» очевидны: к разомкнутой цепи ничего не подключено, а в замкнутой цепи кусок провода замыкает выход.) Условные обозначения источников напряжения приведены на рис. 1.7.

Рис. 1.7.

Идеальный источник тока — это «чёрный ящик», имеющий два вывода и поддерживающий постоянный ток во внешней цепи независимо от величины сопротивления нагрузки и приложенного напряжения. Для того чтобы выполнять свои функции, он должен уметь поддерживать нужное напряжение между своими выводами. Реальные источники тока (самая нелюбимая тема для большинства учебников) имеют ограниченный диапазон, в котором может изменяться создаваемое ими напряжение (он называется рабочим диапазоном выходного напряжения или просто диапазоном), и, кроме того, выходной ток источника нельзя считать абсолютно постоянным. Источник тока «предпочитает» нагрузку в виде замкнутой цепи, а нагрузку в виде разомкнутой цепи «недолюбливает». Условные обозначения источника тока приведены на рис. 1.8.

Рис. 1.8.

Хорошим примером источника напряжения может служить батарея (для источника тока подобной аналогии найти нельзя). Например, стандартная батарейка от карманного фонаря обеспечивает напряжение 1.5 В, ее эквивалентное последовательное сопротивление составляет 1/4 Ом, а общий запас энергии равен приблизительно 10000 Вт·с (постепенно эти характеристики ухудшаются; к концу срока службы батарейки напряжение может составлять около 1 В, а внутреннее сопротивление — несколько ом). О том, как создать источник напряжения с лучшими характеристиками, вы узнаете, когда мы изучим обратную связь. В электронных устройствах, за исключением портативных, батарейки используются редко. В гл. 14 мы рассмотрим интересную тему конструирования маломощных схем (на батарейках).

Сигналы

www.skilldiagram.com

Идеальный источник тока

  1. Источники
    напряжения и тока, их свойства,
    характеристики и схемы замещения.
    Законы Ома и Кирхгофа.

Источник ЭДС (идеальный
источник напряжения
) — двухполюсникнапряжение на
зажимах которого постоянно (не зависит
от тока в цепи). Напряжение может быть
задано как константа, как функция
времени, либо как внешнее управляющее
воздействие.

В
простейшем случае напряжение определено
как константа, то есть напряжение
источника ЭДС постоянно.

Реальные
источники напряжения

Рисунок
2

Идеальный
источник напряжения (источник ЭДС)
является физической абстракцией, то
есть подобное устройство не может
существовать. Если допустить существование
такого устройства, то электрический
ток
 I,
протекающий через него, стремился бы к
бесконечности при подключении нагрузки,
сопротивление RH которой
стремится к нулю. Но при этом получается,
что мощность источника
ЭДС также стремится к бесконечности,
так как .
Но это невозможно, по той причине, что
мощность любого источника энергии
конечна.

В
реальности, любой источник напряжения
обладает внутренним сопротивлением r,
которое имеет обратную зависимость от
мощности источника. То есть, чем больше
мощность, тем меньше сопротивление (при
заданном неизменном напряжении источника)
и наоборот. Наличие внутреннего
сопротивления отличает реальный источник
напряжения от идеального. Следует
отметить, что внутреннее сопротивление —
это исключительно конструктивное
свойство источника энергии. Эквивалентная
схема реального источника напряжения
представляет собой последовательное
включение источника ЭДС — Е
(идеального
источника напряжения) и внутреннего
сопротивления — r.

где

 —
падение напряжения
на внутреннем сопротивлении;

 —
падение напряжения
на нагрузке.

При
коротком замыкании (),
то есть вся мощность источника энергии
рассеивается на его внутреннем
сопротивлении. В этом случае токбудет
максимальным для данного источника
ЭДС. Зная напряжение холостого хода и
ток короткого замыкания, можно вычислить
внутреннее сопротивление источника
напряжения:

Исто́чник
то́ка
 (также генератор
тока
) — двухполюсник,
который создаёт ток ,
не зависящий от сопротивления нагрузки,
к которой он присоединён. В быту
«источником тока» часто неточно называют
любой источник электрического напряжения
(батарею, генератор, розетку), но в строго
физическом смысле это не так, более
того, обычно используемые в быту источники
напряжения по своим характеристикам
гораздо ближе к источнику
ЭДС,
чем к источнику тока.

Свойства:

Напряжение на
клеммах идеального источника тока
зависит только от сопротивления внешней
цепи:

Мощность,
отдаваемая источником тока в сеть,
равна:

Так
как для источника тока ,
напряжение и мощность, выделяемая им,
неограниченно растут при росте
сопротивления..

Реальный источник тока

Реальный
источник тока, так же как и источник
ЭДС,
в линейном приближении может быть описан
таким параметром, как внутреннее
сопротивление .
Отличие состоит в том, что чем больше
внутреннее сопротивление, тем ближе
источник тока к идеальному (источник
ЭДС, наоборот, чем ближе к идеальному,
тем меньше его внутреннее сопротивление).
Реальный источник тока с внутренним
сопротивлением эквивалентен
реальному источнику ЭДС, имеющему
внутреннее сопротивление и
ЭДС .

Напряжение
на клеммах реального источника тока
равно:

Сила
тока в цепи равна:

Мощность,
отдаваемая реальным источником тока в
сеть, равна:

Схемы
замещения источников энергии

Простейшая
электрическая цепь и ее схема замещения,
как указывалось, состоят из одного
источника энергии с ЭДС Е и внутренним
сопротивлением rвт и
одного приемника с сопротивлением r.
Ток
во внешней по отношению к источнику
энергии части цепи, т. е. в приемнике с
сопротивлением r,
принимается направленным от точки а с
большим потенциалом к
точке b с
меньшим потенциалом .
Направление
тока будем обозначать на схеме стрелкой
с просветом или указывать двумя индексами
у буквы I, такими
же, как и у соответствующих точек схемы.
Так, для схемы рис. 1.3 ток в приемнике I = Iаb,
где индексы а и b обозначают направление
тока от точки а к точке b.
Покажем,
что источник энергии с известными
ЭДС E и
внутренним сопротивлением rвт,
может быть представлен двумя
основными схемами замещения
 (эквивалентными
схемами).
Как
уже указывалось, с одной стороны,
напряжение на выводах источника энергии
меньше ЭДС на падение напряжения внутри
источника:

 

с
другой стороны, напряжение на
сопротивлении r 

 

Ввиду
равенства из
(1.5а) и (1.56) получается или 

 

В
частности, при холостом ходе (разомкнутых
выводах а и b)
получается E=Uх,
т. е. ЭДС равна напряжению холостого
хода. При коротком замыкании (выводов
а и b)
ток 

 

Из
(1.7 6)
следует, что rвт источника
энергии, так же как и сопротивление
приемника, ограничивает ток.
На
схеме замещения можно показать элемент
схемы с rвт,
соединенным последовательно с элементом,
обозначающим ЭДС E (рис.
1.7, а). Напряжение U зависит от тока
приемника и равно разности между
ЭДС E источника
энергии и падением напряжения rвтI (1.6а).
Схема источника энергии, показанная на
рис. 1.7, а, называется первой
схемой замещения
 или
схемой с источником ЭДС.
Если rвт<<r и
напряжение Uвт<<U,
т. е. источник электрической энергии
находится в режиме, близком к холостому
ходу, то можно практически пренебречь
внутренним падением напряжения и
принять Uвт = rвт =
0
.
В этом случае для источника энергии
получается более простая эквивалентная
схема только с источником ЭДС, у которого
в отличие от реального источника
исключается режим короткого замыкания
(U =0). Такой источник энергии без внутреннего
сопротивления (rвт =
0
),
обозначенный кружком со стрелкой внутри
и буквой E (рис.
1.7,6), называют идеальным
источником ЭДС
 или источником
напряжения
 (источником
с заданным напряжением). Напряжение на
выводах такого источника не зависит от
сопротивления приемника и всегда равно
ЭДС E.
Его внешняя характеристика — прямая,
параллельная оси абсцисс (штриховая
прямая ab на
рис. 1.4).

studfiles.net

Помогите решить / разобраться (Ф)

Уже было упомянуто выше, ну да я уточню.
Простейшую электрическую цепь можно разделить на 2 части: внутреннюю и внешнюю. Внутренняя принадлежит источнику электрической энергии, внешнюю же цепь часто называют нагрузкой источника. Реальный источник характеризуется внутренним сопротивлением . Нагрузку же описывают вводя сопротивление . Часто, если вводят понятие идеального источника (генератора) ЭДС, пренебрегая величиной сопротивления источника. Выходное напряжение такого источника естественно не зависит от тока протекающего в цепи (а полностью определяется величиной ЭДС ).
В противоположной ситуации говорят о режиме генератора тока. Такой идеализированный источник с (источник тока), позволяет иметь ток в цепи независимый от величины сопротивления нагрузки (что неудивительно, ведь сопротивление самого источника «забьет» нагрузку .

dxdy.ru

Идеальный источник тока | Электрикам

Идеальный источник тока представляет собой активный элемент, ток которого не зависит от напряжения на его зажимах. Предполагается, что внутреннее сопротивление идеального источника тока бесконечно велико, и поэтому параметры внешней электрической цепи, от которых зависит напряжение на зажимах источника, не влияют на ток источника.
Условные обозначения идеального источника тока приведены на рис. Стрелка в источнике тока или знаки «+» и «—» указывают положительное направление тока i(t) или полярность источника, т. е. направление перемещения положительных зарядов.

Сейчас принято обозначать источники тока буквой J, и чаще всего применяется нижнее условно графическое изображение.

По мере неограниченного увеличения сопротивления внешней электрической цепи, присоединенной к идеальному источнику тока, напряжение на его зажимах и соответственно мощность, развиваемая им, неограниченно возрастают. Поэтому идеальный источник тока, так же как и идеальный источник напряжения, рассматривается как источник бесконечной мощности.

Источник тока конечной мощности изображается в виде идеального источника тока с параллельно подключенным к его зажимам пассивным элементом  который характеризует внутренние параметры источника и

Представляя собой теоретическое понятие, источник тока применяется в ряде случаев для расчета электрических цепей.

Некоторым подобием источника тока может служить устройство, состоящее из аккумулятора, соединенного последовательно с дополнительным большим сопротивлением  Другим примером источника тока может являться пяти электродная усилительная электронная лампа (пентод). Имея внутреннее сопротивление  несоизмеримо большее,  чем сопротивление внешней электрической цепи, эти устройства отдают ток, почти не зависящий от изменения внешней нагрузки в широких пределах, и именно в этом отношении они аналогичны источнику тока.

Идеальный источник эдс
Материал взят из книги: Атабеков Г.И., Основы теории цепей.

electrikam.com

Источник напряжения и источник тока.




Стр 1 из 10Следующая ⇒

В теории электрических цепей используют понятия идеальные источники электрической энергии: источник напряжения и источник тока.

Им приписывают следующие свойства:

Источник напряжения представляет собой активный элемент с двумя зажимами, напряжение на котором не зависит от тока, проходящего через источник

 

Рис.2. Идеальный источник напряжения и

его вольтамперная характеристика(BAX).

 

Предполагается, что внутри идеального источника напряжения пассивные сопротивление, индуктивность и емкость отсутствуют и, следовательно, прохождение тока не вызывает падения напряжения.

Упорядоченное перемещение положительных зарядов в источнике напряжения от меньшего потенциала к большему возможно за счет работа сторонних сил, которые присущи источнику.

Величина работы, производимой данными сторонними силами по перемещению единицы положительного заряда от отрицательного полюса источника напряжения к положительному по полюсу, называется электродвижущей силой (э.д.с.) источника и обозначается e(t).

На рис.2(а) указано направление напряжения на зажимах идеального источника, которое всегда равно э.д.с. источника по величине и противоположно ей по направлению.

Идеальный источник напряжения называют еще источником бесконечноймощности. Это — теоретическое понятие. Величина тока в пассивной цепи зависит от параметров этой цепи и e(t). Если зажимы идеального источника напряжения замкнуть накоротко, то ток цепи должен быть теоретически равен бесконечности. В действительности при замыкании зажимов источника ток имеет конечное значение, так как реальный источник обладает внутренним сопротивлением.

Обычно внутренние параметры источника конечной мощности незначительны по сравнению с параметрами внешней цепи и в не которых случаях (по условию задачи) могут вообще не учитываться. Внутреннее сопротивление источника э.д.с.(r0) на схемах замещения изображается последовательно соединенным с самим источником.

 

Рис.3. Источник напряжения конечной мощности.


 

Источник тока представляет собой активный элемент, ток которого не зависит от напряжения на его зажимах.

 

Рис.4. Идеальный источник тока и его вольтамперная характеристика.

 

Предполагается, что внутренне сопротивление идеального источника тока равно бесконечности, и поэтому параметры внешней цепи, от которых зависит напряжение на зажимах источника тока, не влияют на ток источника.

При увеличении напряжения внешней цепи, присоединенной к источнику тока, напряжение на его зажимах, и следовательно, мощность возрастают. Поэтому идеальный источник тока теоретически так же рассматривается как источник бесконечной мощности.

Источник тока конечной мощности изображен на рис.5. g0 – внутренняя проводимость источника. Она характеризует внутренние параметры источника и ограничивает мощность, отдаваемую в цепь.

Рис.5. Источник тока конечной мощности.

 

Часто при решении задач методом эквивалентных преобразований возникает необходимость заменить реальный источник напряжения эквивалентным источником тока или наоборот. Преобразование осуществляется по схеме и формулам рис.6.

 

(1)

 

Рис.6. Преобразования источников конечной мощности.

Сопротивление.

Сопротивлением называется идеализированный элемент цепи в котором происходит необратимый процесс преобразования электрической энергии в тепловую.

Кроме того, данный термин применяется для количественной оценки величины, равной отношению напряжения на данном элементе к току, проходящему через него:

[Ом] (2)

Формула 2 выражает закон Ома.

Сопротивление всегда положительно.

Величина обратная сопротивлению носит название проводимости:

[См] (3)

 

Рис.7. Графическое изображение сопротивления

с выбранными положительными направлениями тока и напряжения.

 



Мгновенная мощность, поступающая в сопротивление равна:

Pr = Ui = i2r = U2q (4)

Параметр r в общем случае зависит от тока i (например, вследствие нагревания проводника током).

Вольтамперная характеристика (зависимость напряжения на сопротивлении от тока) носит нелинейный характер.

 

Рис.8. BAX сопротивления: а – нелинейная; б – линейная.

 

Если сопротивление не зависит от тока, то имеет место прямая пропорциональность, выражающая закон Ома. В этом случае сопротивление называется линейным.

Индуктивность.

Индуктивностью называется идеализированный элемент электрической цепи, приближающейся по свойствам к индуктивной катушке, в котором накапливается энергия магнитного поля.

При этом термин «индуктивность» и его обозначение L применяется как для обозначения самого элемента цепи, так и для количественной оценки отношения потокосцепления самоиндукции к току в данном элементе:

[Гн] (5)

Индуктивность всегда положительна, так как потокосцепления и ток имеют одинаковые знаки.

В общем случае индуктивность зависит от тока и является нелинейной.

Если зависимостьy(i) линейная, то индуктивность – величина постоянная.

 

 

Рис.9. Зависимость потокосцепления от тока:

а — нелинейная, б – линейная.

 

 

Рис.10. Графическое изображение индуктивности.

(6)

eLэлектродвижущая сила самоиндукции, которая по закону Ленца противодействует изменению потокосцепления, что учитывается знаком « — ».

Если индуктивность L величина постоянная (не зависит от тока), то

= (7)

Напряжение на индуктивности определяется:

(8)

Ток на индуктивности:

(9)

Формулы (8) и (9) выражают закон Ома дифференциальной и интегральной форме для индуктивности.

Мгновенная мощность, поступающая в индуктивность равна:

(10)

Мощность индуктивности связана с процессом нарастания или убывания энергии магнитного поля.

Емкость.

 

Емкостью называется идеализированный элемент электрической цепи приближенно заменяющий конденсатор, в котором накапливается энергия электрического поля.

При этом данный термин применяется как для обозначения самого элемента, так и для количественной оценки отношения заряда к напряжению на этом элементе:

[Ф] (11)

Емкость всегда положительна, так как заряд и напряжение имеют одинаковый знак.

В общем случае зависимость заряда от напряжения носит нелинейный характер и, следовательно, параметр С зависит от напряжения.

Если зависимость заряда от напряжения линейная, емкость C – величина постоянная.

 

Рис.11. Зависимость электрического заряда от напряжения,

а – нелинейная, б – линейная.

 

Ток емкости равен производной электрического заряда по времени:

(12)

Формула (12) выражает закон Ома для емкости.

Напряжение на емкости:

(13)

Условное графическое изображение емкости указано на рис.11. Там же даны положительные направления тока и напряжения.

 

Рис.12. Условное обозначение емкости.

 

Мгновенная мощность, поступающая в емкость, равна:

(14)

Мощность емкости связана с процессом накопления или убыли электрического заряда в емкости. Когда заряд положительный и возрастает ток положительный и в емкость поступает электрическая энергия из внешней цепи. Когда заряд положителен, но убывает, т.е. ток отрицателен, энергия, ранее накопленная в электрическом поле емкости, возвращается во внешнюю цепь.

Контрольные вопросы:

 

1. Изложите основные задачи электротехники.

2. Элементы электрической цепи, их классификация.

3. Определение электрического тока, падения напряжения.

4. Что понимают под положительными направлениями тока и напряжения.

5. Изложите основные сведения об источниках тока и источниках напряжения, их взаимном преобразовании.

6. Чем отличается идеальный источник энергии от источника энергии конечной мощности.

7. Дать краткую характеристику следующим элементам и терминам, их определяющим: сопротивление, емкость, индуктивность.

 

 

Законы электрических цепей

Цель лекции № 2.

Ознакомившись с лекцией № 2 по электротехнике студент должен уметь:

1. В смешанном соединении электрических элементов определять участки с последовательным и параллельным их соединением.

2. Определять потенциал любой точки электрической цепи относительно базиса.

3. Применять обобщенный закон Ома для активного участка ветви.

4. Определять необходимое количество узловых и контурных уравнений и составлять систему уравнений по законам Кирхгофа.

5. Записывать выражение баланса мощностей для сложной электрической цепи.

 



Рекомендуемые страницы:

lektsia.com

Источники напряжения и тока | Техника и Программы

в схеме на рис. 1.4 мы можем выделить, как показано пунктиром, ее часть, включив туда батарейку и переменный резистор R1. Тогда этот резистор (вместе с сопротивлением амперметра, конечно) можно рассматривать, как внутреннее сопротивление источника электрической энергии, каковым вы­деленная часть схемы станет для нагрузки, роль которой будет играть R2. Любой источник, как легко догадаться, имеет свое внутреннее сопротивление (электронщики часто употребляют выражение «выходное сопротивле­ние») — хотя бы потому, что у него внутри есть провода определенной тол­щины.

Но на самом деле не провода служат ограничивающим фактором. В главе 4 мы узнаем, что такое мощность в строгом значении этого понятия, а пока, опираясь на интуицию, может сообразить: чем мощнее источник, тем у него меньше должно быть свое внутреннее сопротивление, иначе все напряжение «сядет» на этом внутреннем сопротивлении, и на долю нагрузки ничего не достанется. На практике так и происходит— если вы попытаетесь запустить от набора батареек типа АА какой-нибудь крупный прибор, питающийся от источника с низким напряжением (вроде настольного сканера или ноутбука), то прибор, конечно, не заработает, хотя формально напряжения должно хва­тать, — напряжение «сядет» почти до нуля. А вот от автомобильногб акку­мулятора, который гораздо мощнее, все получится как надо.

Такой источник, у которого внутреннее сопротивление мало по отношению к нагрузке, называют еще идеальным источником напряжения. Физики пред­почитают название идеальный источник э.д.с. (электродвижущей силы), но на практике это абстрактное понятие используется реже, чем менее строгое, но всем понятное «напряжение». К ним относятся в первую очередь все ис­точники питания: от батареек до промышленной сети. Кстати, для снижения внутреннего сопротивления вовсе не обязательно увеличивать мощность ис­точника напряжения до бесконечности — к тому же эффекту приводят спе­циальные меры по стабилизации напряжения, с которыми мы познакомимся в главе 9.

Наоборот, идеальный источник тока, как нетрудно догадаться, обязан обла­дать бесконечным внутренним сопротивлением — только тогда ток в цепи совсем не будет зависеть от нагрузки. Понять, как источник реального тока (не бесконечного малого) может обладать бесконечным выходным сопротив­лением, довольно трудно, и в быту такие источники вы не встретите. Однако уже обычный резистор, включенный последовательно с источником напря­жения (не тока!), как R1 на рис. 1.4, при условии, что сопротивление нагруз­ки мало (R2«R1), может служить хорошей моделью источника тока. Еще ближе к идеалу транзисторы в определенном включении, и мы с этим разбе­ремся позднее.

Рис. 1.5. Источники тока и напряжения: а — обозначение идеального источника напряжения; б —- обозначение идеального источника тока; в —• эквивалентная схема реального источника напряжения; г —- эквивалентная схема реального источника тока

Источники напряжения и тока обозначаются на схемах так, как показано на рис. 1.5, а и б. Не перепутайте — логики в этих обозначениях немного, но так уж принято. А т. н. эквивалентные схемы (их еще называют схемами заме­щения) реальных источников приведены на рис. 1.5, в и г, где Rb обозначает внутреннее сопротивление источника.

Теперь нам придется отвлечься от схем и разобраться с тем, как оборудовать себе рабочее место. Теоретические знания — это важно, но на практике все познается куда лучше.

nauchebe.net

Источник тока: типы, принцип работы, особенности

Источник тока – элемент питания электрической цепи, обеспечивающий постоянное потребление, измеренное амперами, либо заданную форму закона изменения параметра. Так работают сварочные аппараты, каждой толщине металла соответствует номер (диаметр) электрода. Процесс обеспечен постоянным током. В противном случае начинается срыв дуги, происходят другие неприятные эффекты.

Отличие реального источника от идеального

Известно, мощность источника питания электрической цепи ограничена. В результате увеличение нагрузки вызывает изменение параметров. Общеизвестны скачки напряжения гаражных кооперативов, дач, прочих специфичных объектов. Подстанция выделяет ограниченный ресурс, потребление бывает немаленьким. В первую очередь, подразумеваются нагревательные приборы (воды), сварочные аппараты.

Таким образом, розетка выступает источником напряжения. Вольтаж сильно зависит от поведения потребителей. Замечено, утренние часы подстанции перегружают, соответствующим образом учитывается областями при тарификации. Что касается идеальных источников, подразумевается, параметры постоянные. До некоторых пор встретить подобное оборудование представлялось невозможным, современные технологии рамки ограничений сильно расширили.

Инвертор сварочный

Сварочный инвертор IWM 220 сохраняет работоспособность в диапазоне питающих напряжений 180 — 250 вольт, выдавая постоянное действующее значение тока на зажимы. Электронные блоки питания достигают столь высоких показателей путем гибкого регулирования режимов работы. Брать инверторы, принцип действия основан на выпрямлении, фильтрации напряжения 220 вольт, последующей нарезкой пачками импульсов. Варьированием скважности посылок, длиной достигается изменение тока.

Измерительный датчик Холла влияет, напрямую или опосредованно, на напряжение смещения силового ключа. Возможны другие, процессорные, схемы управления выходными параметрами приборов. В последнем случае заботы забирает процессор, несущий соответствующую программу, заложенную в память цифровым кодом.

Для сварки используются переменный и постоянный токи, для черных и цветных металлов. Важно понимать: источник способен поддерживать любой закон изменения параметров. Это признаётся отличительной особенностью, предназначением. Обеспечивает правильное функционирование потребителей.

Работа источника тока

Требования к факторам питания

В учебниках физики приводятся в качестве примеров источников тока:

  1. Батарейки.
  2. Аккумуляторы.

Несложно заметить, сплошь гальванические источники питания химического принципа действия. Автоводитель знает: аккумулятор бессилен выдать постоянный ток, напряжение. Мощность ограничена скоростью протекания химических реакций на пластинах, обкладках. В результате параметры не остаются постоянными.

Лучший пример источника питания тока, напряжения — инвертор. Электроника гибко изменяет параметры устройства, добиваясь достижения нужного эффекта. На выходе переменные, постоянные напряжения, токи. В зависимости от возникающих потребностей. В персональном компьютере уйма питающих напряжений: для жестких дисков, процессора, DVD-приводов. 5, 12, 3,3 В. У каждого предназначение, несколько предназначений.

Протекание тока в цепи

Таким образом, потребитель определяет, нужен постоянный ток, либо требуется напряжение, сформированное по определенному закону. Если брать сварку, скорость протекания через плазму зарядов определяет рабочую температуру процесса, напрямую предопределяет условия существования дуги, глубину плавления металла. Технологи давно просчитали условия, определили экспериментально, руководство сварочного аппарата пишет следующее:

  • толщина листа — 3 мм;
  • диаметр электрода — 3,2 мм;
  • рабочий ток процесса 100 — 140 А.

Сварщик молниеносно выставляет указанные параметры на корпусе IWM 220, берет электрод нужного диаметра, обжимает ухватом, заводит второй выход на землю. Потом надевает маску, начинает легонько постукивать детали, получая искру. Не слишком обеспокоен результатами труда, отраслевое пособие промышленности сообщает, с какой скоростью двигаться вдоль шва, под каким углом наблюдать результат процесса. Сварщик твердо знает, чего делать не нужно. Чтобы удостовериться, специальная комиссия по результатам тестов (выполнение определенных швов) присваивает рабочему разряд (ощутимо влияет на спектр полномочий, заработную плату).

Итак, род тока определяют потребности идущего процесса. В большинстве случаев требуется напряжение, часто приборы первоначально требовали постоянства тока. Прежде это обогреватели различного толка, основывающие принцип действия законом Джоуля-Ленца. Мощность, преобразующаяся в тепло, определяется размером сопротивления, протекающим током.

В бытовых целях удобнее поддерживать напряжение. Помимо обогревателей имеется множество других приборов. Прежде всего электроника. Напряжение на активном сопротивлении проводника линейно зависит от тока. Нет разницы, что поддерживать постоянным. Отчего тогда при сварочном процессе приходится стабилизировать.

Рука сварщика неспособна двигаться с достаточной твердостью, флуктуации воздуха постоянно меняют длину дуги. Имеются другие помехи. Напряжение на участке непостоянно. Следовательно, ток менялся бы (согласно закону Ома). Недопустимо по причинам описанным выше: изменится температура, технологический процесс пойдет неправильным путем. Приходится поддерживать постоянным ток, не напряжение.

Как практики получают ток заданной формы

Исторически первыми открыты гальванические источники тока. Произошло в 1800 году. Гением, подарившим человечеству первый источник питания, является Алессандро Вольта. Последовала плеяда открытий. Первым измерителем стал гальванометр – прибор, регистрирующий силу электрического тока. Принцип действия новинки, представленной миру Швейггером, основывался на взаимодействии магнитных полей проводника, стрелки компаса.

Вопрос важен по простой причине, для поддержания нужного закона тока нужно измерить физическую величину. Первые гальванометры оценивали параметр по силе магнитного поля, создаваемого проводником. В дальнейшем заложило основу действия первых тестеров. Как работает современное оборудование?

В зарядных устройствах поддерживается постоянным напряжение. Ток измеряется с целью оценки полноты наполненности батареи. Благодаря продуманному подходу, телефон способен сигнализировать мнемонически о ходе процесса. Когда батарея полна, полоса зарядки полностью закрашивается (первые сотовые телефоны), либо исчезает (на многих смартфонах в выключенном состоянии). Ход процесса регистрируется датчиком Холла: только исчезают импульсы, считается, устройство не нуждается в дальнейшей подзарядке.

На основе указанного эффекта первое время было возможным регистрировать наличие/отсутствие тока. С развитием науки, техники появились преобразователи на основе соединений индия, отличающиеся неплохими метрологическими качествами. По величине выходного напряжения способные оценивать параметры тока. Современные аналого-цифровые преобразователи измерения позволят перевести разницу потенциалов в цифры, понятные процессору. Последний выполняет необходимые операции по управлению устройством, способствуя получению тока заданной формы.

Инвертор действует схожим образом. Последовательности импульсов, нарезаемые ключом, проходят малогабаритный параметр в неизменном виде (форма графика), с измененными характеристиками. Остается только измерить нужные величины, произвести интегрирование на некотором участке. В результате современный сварочный аппарат по определению защищен против залипания: при резком возрастании тока питания отключается. Имеются у инверторов некоторые другие полезные качества, обеспечиваемые электроникой. Вот почему сварщикам нравятся аппараты.

В мощных цепях ток контролируется трансформаторами. Датчики Холла с десятками, сотнями амперов не работают напрямую. Типичный лимит составляет десятки мА. Используется принцип, схожий с имеющим место быть в цифровых мультиметрах: из потока движущихся по электрической цепи зарядов вычленяется некоторая малая часть. Далее пропорцией оценивается полная величина. Трансформаторы тока действуют аналогичным образом. Не имея первичной обмотки, путем электромагнитной индукции передают малую часть энергии поля измерительному средству (например, счетчику, аппаратуре контроля).

Отличительные особенности

Из сказанного понимаем следующее:

  1. Физика под источником тока понимает агрегат, формирующий на выходе постоянный параметр. Практика часто предъявляет иные требования. Хотя чаще ток требуется постоянный.
  2. На схемах источник тока обозначают по-другому, нежели источник ЭДС. Круг с двумя галками. Иногда рядом стоит латинская литера I. Сие помогает решать согласно уравнениям Кирхгофа задачи нахождения условий элементов электрической цепи.
  3. Форма закона генерируемого тока определяется нуждами потребителя. Большинство бытовых приборов питается напряжением. Постоянство тока, особая форма не нужны, даже приносят вред. Мясорубка при заклинивании вала костью требует больше энергии. На это настроена регулирующая и защитная электроника.
  4. Мощность, отдаваемая идеальным источником, растет пропорционально активному сопротивлению нагрузки. В реальности видим некий лимит, выше которого параметры начнут отличаться от заданных.

Проще говоря, исторически с точки зрения практики удобнее постоянным поддерживать напряжение, не ток. Термин, рассматриваемый разделом, вызывает много затруднений у людей посторонних, далеких электронике, вполне сведущих в технике. Итак, источник тока – отвечает за поддержание нужной формы тока. Чаще требуется постоянный.

Величина тока послужит целям регулирования. Искрение коллекторного двигателя сопровождается возрастанием нагрузки. Растет потребляемый ток, цепи контроля повышают напряжение на обмотках с целью преодолеть возникший «кризис». Приводит к необходимости контроля величины тока. В мясорубках задачу решает цепь обратной связи, формирующая угол отсечки ключом входного напряжения.

Пытаясь сохранить постоянной разность потенциалов, приборы варьируют потребление тока. В результате запрашиваемая от подстанции мощность меняется, эффект приводит к проседанию вольтажа. Визуально наблюдаем медленным миганием лампочек накала (энергосберегающие несут в цоколе драйвер для поддержания постоянства напряжения). Аналогичным образом устройства показали бы проседание тока при неизменном напряжении.

vashtehnik.ru