К типа термопары – термопара k, термопара l,термопара тхк,термопара тха,термопара цена,термопара тип к,типы датчиков температуры

Содержание

Термопары. Типы термопар, рекомендации по выбору. Заметка

ПРОДУКЦИЯ

 

Внимание! Если Вы обнаружили ошибку на сайте, то выделите ее и нажмите Ctrl+Enter.

Вам понравилась эта статья?! Добавьте ее в свои закладки.

 

8 (800) 200-52-75
(495) 366-23-24
(495) 504-95-54
(495) 642-41-95

(800) 200-52-75
(495) 366-23-24
(495) 504-95-54

e-mail: [email protected]

Нихром

Продукция

Описание

Цены

Стандарты

Статьи

Фото






Фехраль

Продукция

Описание

Цены

Стандарты

Статьи

Фото





Нихром в изоляции

Продукция

Цены

Стандарты

Статьи

Фото






Титан

Продукция

Описание

Цены

Стандарты

Статьи

Фото






Вольфрам

Продукция

Описание

Цены

Стандарты

Статьи

Фото






Молибден

Продукция

Описание

Цены

Стандарты

Статьи

Фото






Кобальт

Продукция

Описание

Цены

Стандарты

Статьи

Фото






Термопарная проволока

Продукция

Описание

Цены

Стандарты

Статьи

Фото






Провода термопарные

Продукция

Цены

Стандарты

Статьи

Фото





Никель

Продукция

Описание

Цены

Стандарты

Статьи

Фото





Монель

Продукция

Описание

Цены

Стандарты

Статьи

Фото






Константан

Продукция

Описание

Цены

Стандарты

Статьи

Фото






Мельхиор

Продукция

Описание

Цены

Стандарты

Статьи

Фото





Твердые сплавы

Продукция

Описание

Цены

Стандарты

Статьи

Фото





Порошки металлов

Продукция

Цены

Стандарты

Статьи

Фото







Нержавеющая сталь

Продукция

Описание

Цены

Стандарты

Статьи

Фото







Жаропрочные сплавы

Продукция

Описание

Цены

Стандарты

Статьи

Фото





Ферросплавы

Продукция

Описание

Цены

Стандарты

Статьи

Фото






Олово

Продукция

Описание

Цены

Стандарты

Статьи

Фото







Заметка «Термопары. Типы термопар, рекомендации по выбору» содержит обзор существующих типов термопар, диапазоны измеряемых температур, условия эксплуатации. Рассматриваются различные материалы для их изготовления: никелевые и медно-никелевые сплавы — алюмель, хромель, копель, константан; медь, железо, вольфраморениевые сплавы — ВР5/ВР20; платина, платинородий.

1. Тип К (хромель-алюмель)

  • Используется для измерения температур в диапазоне от -200 °С до +1000 °С (рекомендуемый предел, зависящий от диаметра термоэлектродной проволоки).
  • В диапазоне температур от 200 до 500 °С может возникнуть эффект гистерезиса, когда показания при нагревании и охлаждении могут различаться. В некоторых случаях разница достигает 5 °С.
  • Работает в нейтральной атмосфере или атмосфере с избытком кислорода.
  • После термического старения показания снижаются.
  • Может произойти изменение термо-ЭДС при использовании в разряженной атмосфере, т.к. хром может выделяться из Ni-Cr вывода (так называемая миграция). При этом термопара показывает заниженную температуру.
  • Атмосфера серы вредна для термопары, т.к. воздействует на оба электрода.

2. Тип L (хромель-копель)

  • Используется для измерения температур в диапазоне от -200 °С до +800 °С (рекомендуемый предел, зависящий от диаметра термоэлектродной проволоки).

3. Тип Е (хромель-константан)

  • Используется для измерения температур в диапазоне от -40 °С до +900 °С.
  • Обладает высокой чувствительностью, что является плюсом.
  • Материалы электродов обладают термоэлектрической однородностью.

4. Тип Т (медь-константан)

  • Используется для измерения температур в диапазоне от -250 °С до +300 °С.
  • Может работать в атмосфере с небольшим избытком или недостатком кислорода.
  • Не рекомендуется использование термопар данного типа при температурах выше 400 °С.
  • Не чувствительна к повышенной влажности.
  • Оба вывода могут быть отожжены для удаления материалов, вызывающих термоэлекрическую неоднородность.

5. Тип J (железо-константан)

  • На железном выводе может образоваться ржавчина из-за конденсации влаги.
  • Хорошо работает в разряженной атмосфере.
  • Максимальная температура применения — 500 °С, т.к выше этой температуры происходит быстрое окисление выводов. Оба вывода быстро разрушаются в атмосфере серы.
  • Показания повышаются после термического старения.
  • Невысокая стоимость, т.к. в состав термопары входит железо.

6. Железо-копель

  • Используется для измерения температур в диапазоне от 0 до 760 °C.

7. Тип А (вольфраморениевый сплав ВР — вольфраморениевый сплав ВР)

  • Используется для измерения высоких температур от 0 до 2500 °C в инертной среде.

8. Тип N (нихросил-нисил)

  • Это относительно новый тип термопары, разработанный на основе термопары типа К. Термопара типа К может легко загрязняться примесями при высоких температурах. Сплавляя оба электрода с кремнием, можно тем самым загрязнить термопару заранее, и таким образом снизить риск дальнейшего загрязнения во время работы.
  • Рекомендуемая рабочая температура до 1200 °С (зависит от диаметра проволоки), возможна кратковременная работа при 1250 °С.
  • Высокая стабильность при температурах от 200 до 500 °С (значительно меньший гистерезис, чем для термопары типа К).
  • Считается самой точной термопарой из неблагородных металлов.

1. Тип В (платинородий-платинородиевая)

  • Максимальная температура, при которой может работать термопара, составляет 1500 °С (зависит от диаметра проволоки).
  • Кратковременное использование возможно до 1750 °С.
  • Присутствует эффект загрязнения водородом, кремнием, парами меди и железа при температурах выше 900 °С. Но данный эффект меньше, чем для термопар типа S и R.
  • При температуре выше 1000 °С термопара может загрязняться кремнием, который присутствует в некоторых видах защитных керамических материалов. Важно использовать керамические трубки, состоящие из высокочистого оксида алюминия.
  • Может работать в окислительной среде.
  • Не рекомендуется применение при температуре ниже 600 °С, где термо-ЭДС очень мала и нелинейна.

2. Тип S (платинородий-платиновая)

  • Максимальная температура, при которой может работать термопара, составляет 1350 °С.
  • Кратковременное использование возможно до 1600 °С.
  • Присутствует эффект загрязнения водородом, углеродом, парами меди и железа при температурах выше 900 °С. При содержании в платиновом электроде 0,1% железа, тером-ЭДС изменяется более, чем на 1 мВ (100°С) при 1200 °С и 1,5 мВ (160 °С) при 1600 °С. Такая же картина наблюдается при загрязнении медью. Вывод: термопары данного типа нельзя армировать стальной трубкой или следует изолировать электроды от трубки газонепроницаемой керамикой.
  • Может работать в окислительной атмосфере.
  • При температуре выше 1000 °С термопара может загрязняться кремнием, который присутствует в некоторых видах защитных керамических материалов. Важно использовать керамические трубки, состоящие из высокочистого оксида алюминия.
  • Не рекомендуется применение ниже 400 °С, т.к термо-ЭДС в этой области мала и крайне нелинейна.

3. Тип R (платинородий-платиновая)

  • Обладает такими же свойствами, что и термопары типа S.

www.metotech.ru

принцип действия, схемы, таблица типов термопар и т.д.

Термопары — это наиболее распространенное устройство для измерения температуры. Термопары генерируют напряжение при нагревании и возникающий ток позволяет проводить измерения температуры. Отличается своей простотой, невысокой стоимостью, но внушительной долговечностью. Благодаря своим преимуществам, термопара используется повсеместно.

Стандартная термопара

Рекомендуем обратить внимание и на другие приборы для измерения температуры.

Принцип работы термопары

Термопара представляет собой два провода, изготовленных из различных металлов. Эти два провода скреплены или сварены вместе и образуют спай. Когда на этот спай оказывают воздействие изменения температуры, то термопара реагирует на них генерируя напряжение, пропорциональное по величине изменениям температуры.

Если термопара подсоединена к электрической цепи, то величина генерируемого напряжения будет отображаться на шкале измерительного прибора. Затем показания прибора могут быть преобразованы в температурные показания с помощью таблицы. На некоторых приборах шкала откалибрована непосредственно в градусах.

Термопара в электрической цепи

Спай термопары

В конструкции большинства термопар предусмотрен только один спай. Однако, когда термопара подсоединяется к электрической цепи, то в точках ее подсоединения может образовываться еще один спай.

Цепь термопары

Цепь, показанная на рисунке, состоит из трех проводов, помеченных как А, В и С. Провода скручены между собой и помечены как D и Е. Спай представляет собой дополнительный спай, который образуется, когда термопара подсоединяется к цепи. Этот спай называется свободным (холодным) спаем термопары. Спай Е — это рабочий (горячий) спай. В цепи находится измерительный прибор, который измеряет разницу величин напряжения на двух спаях.

Два спая соединены таким образом, что их напряжение противодействует друг другу. Таким образом, на обоих спаях генерируется одна и та же величина напряжения и показания прибора будут равны нулю. Так как существует прямо пропорциональная зависимость между температурой и величиной напряжения, генерируемой спаем термопары, то два спая будут генерировать одни и те же величины напряжения, когда температура на них будет одинаковой.

Воздействие нагрева одного спая термопары

Когда спай термопары нагревается, величина напряжения повышается прямо пропорционально. Поток электронов от нагретого спая протекает через другой спай, через измерительный прибор и возвращается обратно на горячий спай. Прибор показывает разницу напряжения между двумя спаями. Разность напряжения между двумя спаями. Разность напряжения, показываемая прибором, преобразуется в температурные показания либо с помощью таблицы, либо прямо отображается на шкале, которая откалибрована в градусах.

Холодный спай термопары

Холодный спай часто представляет собой точку, где свободные концы проводов термопары подсоединяются к измерительному прибору.

В силу того, что измерительный прибор в цепи термопары в действительности измеряет разность напряжения между двумя спаями, то напряжение холодного спая должно поддерживаться на неизменном уровне, насколько это возможно. Поддерживая напряжение на холодном спае на неизменном уровне мы тем самым гарантируем, что отклонение в показаниях измерительного прибора свидетельствует о изменении температуры на рабочем спае.

Если температура вокруг холодного спая меняется, то величина напряжения на холодном спае также изменится. В результате изменится напряжение на холодном спае. И как следствие разница в напряжении на двух спаях тоже изменится, что в конечном итоге приведет к неточным показаниям температуры.

Для того, чтобы сохранить температуру на холодном спае на неизменном уровне во многих термопарах используются компенсирующие резисторы. Резистор находится в том же месте, что и холодный спай, так что температура воздействует на спай и резистор одновременно.

Цепь термопары с компенсирующим резистором

Рабочий спай термопары (горячий)

Рабочий спай — это спай, который подвержен воздействию технологического процесса, чья температура измеряется. Ввиду того, что напряжение, генерируемое термопарой прямо пропорционально ее температуре, то при нагревании рабочего спая, он генерирует больше напряжения, а при охлаждении — меньше.

Рабочий спай и холодный спай

Типы термопары

Термопары конструируются с учетом диапазона измеряемых температур и могут изготавливаться из комбинаций различных металлов. Комбинация используемых металлов определяет диапазон температур, измеряемых термопарой. По этой причине была разработана маркировка с помощью букв для обозначения различных типов термопар. Каждому типу присвоено соответствующее буквенное обозначение, и это буквенное обозначение указывает на комбинацию используемых металлов в данной термопаре.

Типы термопар и диапазон их температур

Когда термопара подключается к электрической цепи, то она не будет работать нормально пока не будет соблюдена полярность при подключении. Плюсовые провода должны быть соединены вместе и подсоединены к плюсовому выводу цепи, а минусовые к минусовому. Если провода перепутать, то рабочий спай и холодный спай не будут в противофазе и показания температуры будут неточными.
Одним из способов определения полярности проводов термопары -это определение по цвету изоляции на проводах. Помните, что минусовой провод во всех термопарах — красный.

Цвет изоляции проводов термопар

Во многих случаях приходится использовать провода для удлинения протяженности цепи термопары. Цвет изоляции соединительных проводов также несет в себе информацию. Цвет внешней изоляции соединительных проводов — разный, в зависимости от производителя, однако цвет первичной изоляции проводов обычно соответствует кодировке, указанной в таблице выше.

Неисправности термопары

Если термопара выдает неточные показания температуры, и было проверено, что нет ослабленных соединений, то причина может крыться либо в регистрирующем приборе, либо в самой термопаре, первым обычно проверяется регистрирующий прибор, так как приборы чаще выходят из строя, чем термопары.

Более того, если прибор показывает хоть какие-нибудь показания, пусть даже неточные, то, скорей всего, дело не в термопаре. Если термопара неисправна, то обычно она не выдает вообще никакого напряжения, и прибор не будет выдавать никаких показаний. Если показаний на приборе нет совсем, то вероятно дело в термопаре.

Если Вы подозреваете, что термопара вышла из строя, то проверьте ее сигнал на выходе с помощью прибора, который называется милливольтный потенциометр, который используется для измерения малых величин напряжения.

Потенциометр

kipiavp.ru

что это такое, принцип действия термопары, подключение преобразователя

В повседневной жизни каждого человека встречались приборы и устройства, одним из определяющих факторов работы которых была температура. Начиная от температуры в системах отопления и заканчивая промышленными предприятиями, процесс выпуска продукции которых связан со строгим соблюдением температуры, процедура контроля данного параметра очень важна как для жизнедеятельности, так и для энергосбережения. Одним из устройств по контролю температуры является термопара, или термоэлектрический преобразователь. Термопара – что это такое?

 

Термопара газового котла

Назначение

Термоэлектрический преобразователь, или термопара, является приспособлением, используемым для контроля температуры на промышленных предприятиях, в процессе научных исследований, при эксплуатации автоматики и в медицинских учреждениях.

Физическая величина, численно определяющая размер энергии тела, получаемой за счет движения молекул веществ, в зависимости от теплоты, называется температурой. Поскольку непосредственно температуру вещества измерить невозможно, то ее величину определяют, благодаря трансформации иных физических параметров вещества. В качестве таких физических параметров могут выступать давление, электрическое сопротивление, объем, интенсивность излучения, температурная электродвижущая сила, коэффициент расширения вещества и ряд других.

Существует два способа контроля температуры:

  • При непосредственном контакте с объектом с помощью термопар;
  • При отсутствии непосредственного контакта с объектом – пирометрия либо термометрия излучения используется при необходимости измерения очень больших температур.

Принцип действия термопары

Особенностью работы термопары является наличие термоэлектрического эффекта, или эффекта Зеебека, названного в честь ученого, открывшего данное явление в 19 веке. Сущностью такого эффекта является наличие контактной разности потенциалов между разнородными проводниками. Соответственно, принцип работы термопары заключается в следующем.

При скрутке двух концов разнородных проводников или сплавов таким способом, чтобы они представляли собой закольцованную электрическую цепь, и если далее поддерживать противоположные окончания проводов при разной температуре, то в данной цепи сформируется термоэлектродвижущая сила, величина которой будет пропорциональна разности температур между скрутками проводников. Соответственно, цепь, состоящая из двух разнородных проводников либо сплавов, является термопарой, или термоэлементом.

Эффект термоэлектричества

Величина тока работающих термопар зависит от:

  1. Материала проводников;
  2. Разности температур на противоположных спайках.

Проводник термоэлектрического преобразователя, по которому электрический ток направлен от горячей спайки к холодной, является положительным, при обратном направлении электрического тока термоэлектрод является отрицательным. Маркировка термопары осуществляется в следующем порядке:

  1. Принадлежность самого устройства;
  2. Материал положительного проводника;
  3. Материал отрицательного проводника.

Разновидности и конструктивные особенности

Виды термопар

Термопары ввиду своих структурных особенностей подразделяются на такие виды:

  1. По специфике применения:
  • Наружное;
  • Погружаемое.
  1. По особенностям предохраняющего кожуха:
  • без кожуха;
  • со стальным кожухом – устройство эксплуатируется для контроля температур до 600оС;
  • со стальным кожухом из специфического сплава – устройство необходимо для измерения температур до 1100оС;
  • с кожухом из фарфора – устройство применяется для контроля температур до 1300оС;
  • со стальным кожухом из тугоплавких сплавов – устройство эксплуатируется при температурах более 2000оС.
  1. По методу фиксации термопреобразователей:
  • С неподвижным чувствительным элементом;
  • С подвижным чувствительным элементом;
  • С подвижным креплением.
  1. По герметичности клемм:
  • С простой верхушкой;
  • С водонепроницаемой верхушкой;
  • Без колпачка, со специфической герметизацией выводных клемм.
  1. По изолированности:
  • Изолированные от влияния активных или неагрессивных сред;
  • Не изолированные.
  1. По герметизации от большого давления:
  • Не герметичные;
  • Герметичные.
  1. По стойкости к механическому влиянию:
  • Устойчивые к вибрации;
  • Ударостойкие;
  • Простые.
  1. По количеству контролируемых зон:
  • Рассчитанные на одну зону;
  • Рассчитанные на несколько зон.
  1. По скорости реакции на изменение температуры:
  • С высокой инерционностью. Скорость реагирования составляет до 210 секунд;
  • С посредственной собственной инерцией. Скорость реакции составляет до 60 секунд;
  • С малой инерционностью. Скорость реакции составляет до 40 секунд;
  • С ненормированной скоростью реакции.
  1. По длине функционирующей части:
  • Длиной от 120 мм до 1580 мм. Находят свое применение в однозонных термопарах;
  • Длиной до 20000 мм. Используются в многозонных термопарах.

К конструктивным особенностям термопар относятся:

  1. Рабочий спай двух проводников в основном образовывается путем электродуговой сварки предварительно скрученных термоэлектродов. Одним из способов соединения является пайка, однако подключение термопары вольфрам-рениевой или вольфрам-молибденовой обходится обычным скручиванием без дополнительной сварки;
  2. Проводники соединяются только в активной части. Остальная часть проводов строго изолируется;
  3. Изоляционным материалом может быть любой источник, вплоть до воздуха, однако температура измеряемой среды должна быть ниже 120оС. При температурах вещества до 1300оС применяются фарфоровые изоляторы. Поскольку при t> 2000оС фарфор теряет свои физические свойства и размягчается, то применяются трубки из окиси алюминия, магния, бериллия, тория, циркония;
  4. Для предотвращения механического влияния на термопару ее помещают в предохранительную трубку-кожух с герметизированным концом. Этот кожух должен обеспечивать изоляцию от внешней среды, предотвращать механические натяжения и обеспечивать хорошую теплопроводность. Выдерживание предельной температуры термопары в течение длительного времени и стойкость к активной среде контролируемого вещества являются основополагающими требованиями к трубке-кожуху.

Типы термопар и их характеристики

Термопара хромель-алюмель (ТХА)

Термопара хромель-алюмель ТП6

Термоэлектрический преобразователь хромель-алюмель предназначен для эксплуатации в агрессивных и благородных средах, а также допускается использовать в сухом водороде и вакууме, однако на короткое время. Отличительной особенностью ТХА является максимальная устойчивость к облучению внутри ядерного реактора. К недостаткам устройства относятся сравнительно высокая восприимчивость к механическим воздействиям и непостоянство температурной электродвижущей силы. Такие типы термопар применимы для измерения температуры вещества от -200оС до 1100оС и эксплуатируются  в основном в сталеварных печах, энергосиловой аппаратуре, отопительных приборах и научной работе.

В качестве положительного электрода выступает проводник никелевого сплава хромель НХ9,5, а роль отрицательного электрода занимает проволока никелевого сплава алюмель НМцАК2-2-1.

Термопара хромель-копель (ТХК)

Термопара хромель-копель ТХК 1199

Основными областями по применению термопар хромель-копель являются промышленные, производственные предприятия и сфера научных исследований. Наряду с остальными термопарами, устройство работает в основном для длительных измерений температуры до 600оС, хотя граничные пределы по температуре составляют от -253оС до 1100оС. Имеется максимальная восприимчивость из всех выпускаемых термопар, также присутствует паразитная большая восприимчивость к механическому воздействию на термодатчик. В качестве проводника для позитивного щупа используется никелевый сплав хромель НХ9,5, проволокой же для негативного щупа является медно-никелевый сплав копель МНМц43-0,5.

Термопара железо-константан (ТЖК)

Термопара железо-константан

Термоэлемент ЖК нашел применение в научных испытаниях и производственных предприятиях в агрессивных, благородных, восстановительных веществах и вакууме при -203оС<t<1100оС. Кроме высокой восприимчивости, к достоинствам ТЖК относится низкая себестоимость. Большая восприимчивость к механическому воздействию на электроды и маленькая коррозийная устойчивость металлического щупа являются негативными сторонами ТЖК. Сырьем для позитивного электрода термопары является малоуглеродистая сталь, отрицательный электрод состоит из медно-никелевого сплава константан МНМц40-1,5.

Термопара вольфрам-рений (ТВР)

Термопара вольфрам-рений

В производстве керамики, тугоплавких металлов, твердых сплавов, разливке стали, контроле температуры газовых потоков, низкотемпературной плазмы применяется термопара вольфрам-рений. Эти типы термопар считаются наилучшими термопарами в промышленности с рабочей t>1800оС. Веществами, с которыми эксплуатируется термопара, являются  сухой водород, азот, гелий, аргон и вакуум при температуре 1300оС<t<3000оС.

К достоинствам прибора ВР относятся:

  • Наилучшая механическая устойчивость при высоких температурах;
  • Стабильная работа при знакочередующихся нагрузках;
  • Устойчивость к многократным и стремительным теплосменам.
  • Простота в производстве и не восприимчивость к загрязнениям.

Отрицательными свойствами являются недостаточная воспроизводимость температурной электродвижущей силы, нестабильность работы при облучении.

Материалами позитивного и негативного проводников, соответственно, являются:

  1. ВР5 и ВР20;
  2. ВАР5 и ВР20;
  3. ВР10 и ВР20.

Термопара вольфрам-молибден (ТВМ)

Будучи очень дешевыми термопарами, эти типы термопар массово эксплуатируются для

измерения температуры в благородных средах, водороде, вакууме, при 1400оС<t<1800оС. К дополнительным преимуществам относятся большая механическая устойчивость и отсутствие суровых правил к химической чистоте от момента производства до установки и работы. Недостатками являются хрупкость элемента при больших температурах, низкое значение электродвижущей силы и восприимчивости, смена полюсов при t>1400оС.

Позитивные и негативные электроды изготавливаются из вольфрамовой и молибденовой проволоки, которые являются металлами технической чистоты.

Термопара платинородий-платина (ТПП)

Термопара платинородий-платина

Функциональность ТПП характеризуется максимальной достоверностью и устойчивостью, потому широко применяется в научных опытах и технике. Также за счет своих физических особенностей ТПП стала эталоном температурной шкалы МПТШ-68. Комфортный температурный диапазон – до 1600оС. Слабой стороной ТПП является повышенная восприимчивость к загрязнениям, очень высокая цена, нестабильная работа при облучении. В качестве материалов щупов выступают сплавы платинородия ПР10 или ПР13 для позитивного щупа и платина для негативного щупа.

Термопара платинородий-платинородий (ТПР)

Эти типы термопар, прежде всего, эксплуатируются при производстве цемента, стали и стекла, огнеупоров, ввиду возможности длительное время контролировать температуру более 1400оС. Помимо возможности применения в вакуумной среде, к дополнительным преимуществам ТПР относятся сравнительно большая устойчивость при очень больших температурах, лучшая механическая прочность, практически отсутствие хрупкости и минимальная восприимчивость к загрязнению. Проводник электропозитивного щупа изготовлен из платинородия ПР30, негативный щуп выполнен на платинородия ПР6.

Изложенный материал объясняет, что такое термопара, их разнообразие, специфические особенности и сферы использования. Становится понятен физический смысл и порядок определения температуры в той или иной среде.

Видео

Оцените статью:

elquanta.ru

Термопары. Виды и состав. Устройство и принцип действия

Преобразователь температуры в электрический ток называется термопарой. Такой термоэлемент используется в преобразовательных и измерительных устройствах, а также во многих системах автоматики. Если рассматривать термопары по международным стандартам, то это два проводника из разных материалов.

Устройство

На одном конце эти проводники соединены между собой для создания термоэлектрического эффекта, позволяющего измерять температуру.

Внешне такое устройство выглядит в виде двух тонких проволочек сваренных на одном конце между собой, образуя маленький шарик. Многие китайские мультиметры имеют в комплекте такие термопреобразователи, что дает возможность измерять температуру разных нагретых элементов устройств. Эти два проводника обычно помещены в стекловолоконную прозрачную трубку. С одной стороны находится аккуратный сварной шарик, а с другой специальные разъемы для подключения к измерительному прибору.

Промышленное оборудование имеет более сложную конструкцию, по сравнению с китайскими термопарами. Рабочий элемент термодатчика заключают в металлический корпус в виде зонда, внутри которого он изолирован керамическими изоляторами, способными выдержать высокую температуру и воздействие агрессивной среды. На производстве таким термодатчиком измеряют температуру в технологических процессах.

Термопары являются наиболее популярным старым термоэлементом, который применяется в различных приборах для измерения температуры. Он обладает высокой надежностью, низкой инертностью, универсален и имеет низкую стоимость. Диапазон измерения различными видами термопар очень широк, и находится в пределах -250 +2500 градусов. Конструктивные особенности термодатчика не позволяют обеспечить высокую точность измерений, и погрешность может составлять до 2 градусов.

В бытовых условиях термопары используются в паяльниках, газовых духовках и других бытовых устройствах.

Принцип действия

Работа рассматриваемого термодатчика заключается в использовании эффекта ученого физика Зеебека, который обнаружил, что при спайке двух разнородных проводов в них образуется термо ЭДС, величина которого возрастает с увеличением нагрева места спайки. Позже это явление назвали термоэлектрическим эффектом Зеебека.

Напряжение, вырабатываемое термопарой, зависит от степени нагревания и вида применяемых металлов. Величина напряжения небольшая, и находится в интервале 1-70 микровольт на один градус.

При подключении такого температурного датчика к измерительному устройству, возникает дополнительный термоэлектрический переход. Поэтому образуется два перехода в разных режимах температуры. Входящий электрический сигнал на измерительном приборе будет зависеть от разности температур двух переходов.

Для измерения абсолютной температуры используют способ, называемый компенсацией холодного спая. Суть этого способа заключается в помещении второго перехода, не находящегося в зоне измерения, в среду образцовой температуры. Раньше для этого применяли обычный способ – размещали второй переход в тающий лед. Сегодня для этого используют вспомогательный температурный датчик, находящийся рядом со вторым переходом. По данным дополнительного термодатчика измерительное устройство корректирует итоги измерения. Это упрощает схему измерения, так как измерительный элемент и термопару совместно с дополнительным компенсатором можно соединить в одно устройство.

Разновидности

Температурные датчики на основе термопары разделяются по типу применяемых металлов.

Термопары из неблагородных металлов
Железо-константановые
  • Достоинством стала низкая стоимость.
  • Нельзя применять при температуре менее ноля градусов, так как на металлическом выводе влага создает коррозию.
  • После термического старения показатели измерений возрастают.
  • Наибольшая допустимая температура использования +500 градусов, при более высокой температуре выводы очень быстро окисляются и разрушаются.
  • Железо-константановый вид является наиболее подходящим для вакуумной среды.
Хромель-константановые
  • Способны работать при пониженных температурах.
  • Материалы электродов обладают термоэлектрической однородностью.
  • Их достоинство – повышенная чувствительность.
Медно-константановые термопары
  • Оба электрода отожжены для создания термоэлектрической однородности.
  • Не восприимчивы к высокой влажности.
  • Нецелесообразно применять при температурах, превышающих 400 градусов.
  • Допускается применение в среде с недостатком или избытком кислорода.
  • Допускается применение при температуре ниже 0 градусов.
Хромель-алюмелевые термопары

  • Серная среда вредно влияет на оба электрода термодатчика.
  • Нецелесообразно применять в среде вакуума, так как из электрода Ni-Cr может выделяться хром. Это явление называют миграцией. При этом термодатчик изменяет ЭДС и выдает температуру ниже истинной.
  • Снижение показаний после термического старения.
  • Применяется в насыщенной кислородом атмосфере или в нейтральной среде.
  • В интервале 200-500 градусов появляется эффект гистерезиса. Это означает, что при охлаждении и нагревании показания отличаются. Разница может достигать 5 градусов.
  • Широко применяются в разных сферах в интервале от -100 до +1000 градусов. Этот диапазон зависит от диаметра электродов.
Нихросил-нисиловые
  • Наиболее высокая точность работы из всех термопар, изготовленных из неблагородных металлов.
  • Повышенная стабильность функционирования при температурах 200-500 градусов. Гистерезис у таких термодатчиков значительно меньше, чем у хромель-алюмелевых датчиков.
  • Допускается работа в течение короткого времени при температуре 1250 градусов.
  • Рекомендуемая температура эксплуатации не превышает 1200 градусов, и зависит от диаметра электродов.
  • Этот тип термопары разработан недавно, на основе хромель-алюмелевых термодатчиков, которые могут быстро загрязняться различными примесями при повышенных температурах. Если спаять два электрода с кремнием, то можно заранее искусственно загрязнить датчик. Это позволит уменьшить риск будущего загрязнения при работе.
Термодатчики из благородных металлов
Платинородий-платиновые

  • Наибольшая рекомендуемая температура эксплуатации 1350 градусов.
  • Допускается кратковременное использование при 1600 градусах.
  • Нецелесообразно использовать при температуре менее 400 градусов, так как ЭДС будет нелинейной и незначительной.
  • При температуре более 1000 градусов термопара склонна к загрязнению кремнием, содержащимся в керамических изоляторах. Поэтому рекомендуется применять керамические трубки из чистого оксида алюминия.
  • Способны работать в окислительной внешней среде.
  • Если температура работы более 900 градусов, то такие термодатчики загрязняются железом, медью, углеродом и водородом, поэтому их запрещается армировать стальными трубками, либо необходимо изолировать электроды керамикой с газонепроницаемыми свойствами.
Платинородий-платинородиевые
  • Оптимальная наибольшая рабочая температура 1500 градусов.
  • Нецелесообразно использование при температуре менее 600 градусов, где ЭДС нелинейная и незначительная.
  • Допускается кратковременное использование при 1750 градусах.
  • Может применяться в окислительной внешней среде.
  • При температуре 1000 и более градусов термопара загрязняется кремнием, поэтому рекомендуется применять керамические трубки из чистого оксида алюминия.
  • Загрязнение железом, медью и кремнием ниже, по сравнению с предыдущими видами.

Преимущества

  1. Прочность и надежность конструкции.
  2. Простой процесс изготовления.
  3. Спай датчика можно заземлять или соединять с объектом измерения.
  4. Широкий интервал эксплуатационных температур, что позволяет считать термоэлектрические датчики наиболее высокотемпературными из контактных видов.

Недостатки

  • Материал электродов реагирует на химические вещества, и при плохой герметичности корпуса датчика, его работа зависит от атмосферы и агрессивных сред.
  • Градуировочная характеристика изменяется из-за коррозии и появления термоэлектрической неоднородности.
  • Требуется проверять температуру холодных спаев. В новых устройствах измерительных приборов на базе термодатчиков применяется измерение холодных спаев полупроводниковым сенсором или термистором.
  • На большой длине удлинительных и термопарных проводников может появляться эффект «антенны» для имеющихся электромагнитных полей.
  • ЭДС зависит от температуры по нелинейному графику, что затрудняет проектирование вторичных преобразователей сигнала.
  • Если серьезные требования предъявляются к времени термической инерции термодатчика, и требуется заземлять спай, то необходимо изолировать преобразователь сигнала, чтобы не было утечки тока в землю.
Рекомендации по эксплуатации

Точность и целостность системы измерений на основе термопарного датчика может быть увеличена, если соблюдать определенные условия:

  • Не допускать вибраций и механических натяжений термопарных проводников.
  • При применении миниатюрной термопары из тонкой проволоки. Необходимо применять ее только в контролируемом месте, а за этим местом следует применять удлинительные проводники.
  • Рекомендуется применять проволоку большого диаметра, не изменяющую температуру измеряемого объекта.
  • Использовать термодатчик только в интервале рабочих температур.
  • Избегать резких перепадов температуры по длине термодатчика.
  • При работе с длинными термодатчиками и удлинительными проводниками, необходимо соединить экран вольтметра с экраном провода.
  • Для вспомогательного контроля и температурной диагностики используют специальные температурные датчики с 4-мя термоэлектродами, позволяющими выполнять вспомогательные температурные измерения, сопротивления, напряжения, помех для проверки надежности и целостности термопар.
  • Проводить электронную запись событий и постоянно контролировать величину сопротивления термоэлектродов.
  • Применять удлиняющие проводники в рабочем интервале и при наименьших перепадах температур.
  • Применять качественный защитный чехол для защиты термопарных проводников от вредных условий.
Похожие темы:

 

electrosam.ru

Термопара. Принцип действия | joyta.ru

Термопара широко используется в различных устройствах измерения температуры и системах сбора данных. Термопара является наиболее популярным типом датчика температуры, поскольку он надежный, универсальный, обладает низкой инертностью, относительно недорогой и позволяет измерять температуру в широком диапазоне.

Использование различных термопар, позволяет измерять температуру в очень широком диапазоне: от -250C и до 2500C. Правда из-за своей конструктивной особенности, термопара не может обеспечить повышенную точность измеренной температуры. Погрешность измерения, как правило, находится в пределах 0,5…2С.

Зачастую, термопары используются для контроля температурного режима в производственных процессах. В быту термопара применяется во многих устройствах, например, в некоторых типах паяльников, в духовках газовых плит и так далее. Так же следует отметить, что большинство мультиметров имеют функцию измерения температуры. Для этого в комплекте с мультиметром идет термопара, которая подключается к соответствующему разъему:

Принцип действия термопары

Принцип действия термопары основан на эффекте, который обнаружил в 1821 году немецкий — эстонский физик Томас Иоганн Зеебек. Он заметил, что при соединении двух проводников из разнородных металлов в них возникает напряжение (термоЭДС), величина которого зависит от степени нагрева места соединения. Позднее это явление стали называть термоэлектрическим эффектом или эффект Зеебека.

Фактическое напряжение, генерируемое термопарой зависит от температуры нагрева и от типа используемых металлов. Напряжение это не велико и, как правило, составляет от 1 до 70 мкВ на 1 градус Цельсия.

При подключении термопары к измерительному прибору получается еще один термоэлектрический переход. Таким образом, фактически получается два перехода находящихся в разных температурных режимах, поэтому входной сигнал на измерителе будет пропорционален разности температур между этими двумя переходами.

Для того, чтобы измерить абсолютную температуру, применяют метод известный как «компенсация холодного спая». Его суть заключается в том, что второй переход (который вне зоны измеряемой температуры) помещают при постоянной (образцовой) температуре. Ранее для этого использовали стандартный метод – помещая данный переход в ледяную воду.

На сегодняшний день применяют дополнительный датчик температуры расположенный в непосредственной близости от второго перехода, и по показаниям дополнительного температурного датчика измерительный прибор вносит коррекцию в результат измерения. Это значительно упрощает общую схему измерения, поскольку термопару и измерительный элемент, с элементом температурной компенсацией, можно объединить в единое целое.

Конструктивное исполнение

Термопары изготавливаются в различных формах. Они бывают бескорпусными, то есть спай двух металлов не закрыт защитным кожухом. Это обеспечивает очень быстрое время измерения и низкую инертность:

Так же термопары могут быть доступны и в качестве зонда. Этот тип широко используется как в измерительных приборах бытового назначения, так и в производстве, где необходимо защитить термопару от агрессивной среды технологического процесса.

 

Типы термопар

Термопары различаются между собой в основном по типу используемых металлов. Существует несколько стандартов:

 

.

www.joyta.ru

Термопара: принцип действия, устройство

Существует множество разнообразных устройств и механизмов, позволяющих измерять температуру. Некоторые из них применяются в повседневной жизни, какие-то — для различных физических исследований, в производственных процессах и других отраслях.

Одним из таких устройств является термопара. Принцип действия и схему данного устройства мы рассмотрим в последующих разделах.

Физическая основа работы термопары

Принцип работы термопары основан на обычных физических процессах. Впервые эффект, на основе которого работает данное устройство, был исследован немецким ученым Томасом Зеебеком.

Суть явления, на котором держится принцип действия термопары, в следующем. В замкнутом электрическом контуре, состоящем из двух проводников различного вида, при воздействии определенной температуры окружающей среды возникает электричество.

Получаемый электрический поток и температура окружающей среды, воздействующая на проводники, находятся в линейной зависимости. То есть чем выше температура, тем больший электрический ток вырабатывается термопарой. На этом и основан принцип действия термопары и термометра сопротивления.

При этом один контакт термопары находится в точке, где необходимо измерять температуру, он именуется «горячим». Второй контакт, другими словами — «холодный», — в противоположном направлении. Применение для измерения термопар допускается лишь в том случае, когда температура воздуха в помещении меньше, чем в месте измерения.

Такова краткая схема работы термопары, принцип действия. Виды термопар мы рассмотрим в следующем разделе.

Виды термопар

В каждой отрасли промышленности, где необходимы измерения температуры, в основном применяется термопара. Устройство и принцип работы различных видов данного агрегата приведены ниже.

Хромель-алюминиевые термопары

Данные схемы термопар применяются в большинстве случаев для производства различных датчиков и щупов, позволяющих контролировать температуру в промышленном производстве.

Их отличительными особенностями можно назвать довольно низкую цену и огромный диапазон измеряемой температуры. Они позволяют зафиксировать температуру от -200 до +13000 градусов Цельсия.

Нецелесообразно применять термопары с подобными сплавами в цехах и на объектах с высоким содержанием серы в воздухе, так как этот химический элемент негативно влияет как на хром, так и на алюминий, вызывая нарушения в функционировании устройства.

Хромель-копелевые термопары

Принцип действия термопары, контактная группа которой состоит из этих сплавов, такой же. Но эти устройства работают в основном в жидкости либо газообразной среде, обладающей нейтральными, неагрессивными свойствами. Верхний температурный показатель не превышает +8000 градусов Цельсия.

Применяется подобная термопара, принцип действия которой позволяет использовать ее для установления степени нагрева каких-либо поверхностей, например, для определения температуры мартеновских печей либо иных подобных конструкций.

Железо-константановые термопары

Данное сочетание контактов в термопаре не настолько распространено, как первая из рассматриваемых разновидностей. Принцип работы термопары такой же, однако подобная комбинация хорошо показала себя в разреженной атмосфере. Максимальный уровень замеряемой температуры не должен превышать +12500 градусов Цельсия.

Однако, если температура начинает подниматься выше +7000 градусов, существует опасность нарушения точности измерений в связи с изменением физико-химических свойств железа. Имеют место даже случаи коррозии железного контакта термопары при наличии в окружающем воздухе водных паров.

Платинородий-платиновые термопары

Наиболее дорогая в изготовлении термопара. Принцип действия такой же, однако отличается она от своих собратьев очень стабильными и достоверными показаниями температуры. Имеет пониженную чувствительность.

Основная область применения данных устройств — измерение высоких температур.

Вольфрам-рениевые термопары

Также применяются для измерения сверхвысоких температур. Максимальный предел, который можно зафиксировать с помощью данной схемы, достигает 25 тысяч градусов по шкале Цельсия.

Их применение требует соблюдения некоторых условий. Так, в процессе измерения температуры нужно полностью устранить окружающую атмосферу, которая оказывает негативное воздействие на контакты в результате процесса окисления.

Для этого вольфрам-рениевые термопары обычно помещают в защитные кожухи, заполненные инертным газом, защищающим их элементы.

Выше была рассмотрена каждая существующая термопара, устройство, принцип работы ее в зависимости от применяемых сплавов. Теперь рассмотрим некоторые конструктивные особенности.

Конструкции термопар

Существует две основные разновидности конструкций термопар.

  • С применением изоляционного слоя. Данная конструкция термопары предусматривает изолирование рабочего слоя устройства от электрического тока. Подобная схема позволяет использовать термопару в технологическом процессе без изоляции входа от земли.

  • Без применения изоляционного слоя. Такие термопары могут подключаться лишь к измерительным схемам, входы которых не имеют контакта с землей. Если данное условие не соблюдается, в устройстве возникнет две независимых замкнутых схемы, в результате чего показания, полученные с помощью термопары, не будут соответствовать действительности.

Бегущая термопара и ее применение

Существует отдельная разновидность данного устройства, именуемая «бегущей». Принцип действия бегущей термопары мы сейчас рассмотрим более подробно.

Эта конструкция применяется в основном для определения температуры стальной заготовки при ее обработке на токарных, фрезерных и иных подобных станках.

Следует отметить, что в данном случае возможно использование и обычной термопары, однако, если процесс изготовления требует высокой точности температурного режима, бегущую термопару трудно переоценить.

При применении данного метода в заготовку заранее запаивают ее контактные элементы. Затем, в процессе обработки болванки, данные контакты постоянно подвергаются воздействию резца или иного рабочего инструмента станка, в результате чего спай (который является главным элементом при снятии температурных показателей) как бы «бежит» по контактам.

Этот эффект повсеместно применяется в металлообрабатывающей промышленности.

Технологические особенности конструкций термопар

При изготовлении рабочей схемы термопары производится спайка двух металлических контактов, которые, как известно, изготовлены из разных материалов. Место соединения носит название «спай».

Следует отметить, что делать данное соединение с помощью спайки необязательно. Достаточно просто скрутить вместе два контакта. Но такой способ производства не будет обладать достаточным уровнем надежности, а также может давать погрешности при снятии температурных показателей.

Если необходимо измерение высоких температур, спайка металлов заменяется на их сварку. Это связано с тем, что в большинстве случаев припой, применяемый при соединении, имеет низкую температуру плавления и разрушается при превышении ее уровня.

Схемы, при изготовлении которых была применена сварка, выдерживают более широкий диапазон температуры. Но и этот способ соединения имеет свои недостатки. Внутренняя структура металла при воздействии высокой температуры в процессе сваривания может измениться, что повлияет на качество получаемых данных.

Кроме того, следует контролировать состояние контактов термопары в процессе ее эксплуатации. Так, возможно изменение характеристик металлов в схеме вследствие воздействия агрессивной окружающей среды. Может произойти окисление либо взаимная диффузия материалов. В подобной ситуации следует заменить рабочую схему термопары.

Разновидности спаев термопар

Современная индустрия производит несколько конструкций, которые применяются при изготовлении термопар:

  • с открытым спаем;

  • с изолированным спаем;

  • с заземленным спаем.

Особенностью термопар с открытым спаем является плохая сопротивляемость внешнему воздействию.

Следующие два типа конструкции могут применяться при измерении температур в агрессивных средах, оказывающих разрушительное влияние на контактную пару.

Кроме того, в настоящее время промышленность осваивает схемы производства термопар по полупроводниковым технологиям.

Погрешность измерений

Правильность температурных показателей, получаемых с помощью термопары, зависит от материала контактной группы, а также внешних факторов. К последним можно отнести давление, радиационный фон либо иные причины, способные повлиять на физико-химические показатели металлов, из которых изготовлены контакты.

Погрешность измерений состоит из следующих составных частей:

  • случайная погрешность, вызванная особенностями изготовления термопары;

  • погрешность, вызванная нарушением температурного режима «холодного» контакта;

  • погрешность, причиной которой послужили внешние помехи;

  • погрешность контрольной аппаратуры.

Преимущества использования термопар

К преимуществам использования подобных устройств для контроля температуры, независимо от области применения, можно отнести:

  • большой промежуток показателей, которые способны быть зафиксированы с помощью термопары;

  • спайку термопары, которая непосредственно участвует в снятии показаний, можно расположить в непосредственном контакте с точкой измерения;

  • несложный процесс изготовления термопар, их прочность и долговечность эксплуатации.

Недостатки измерения температуры с помощью термопары

К недостаткам применения термопары следует отнести:

  • Необходимость в постоянном контроле температуры «холодного» контакта термопары. Это отличительная особенность конструкции измерительных приборов, в основе которых лежит термопара. Принцип действия данной схемы сужает область ее применения. Они могут быть использованы только в том случае, если температура окружающего воздуха ниже температуры в точке измерения.

  • Нарушение внутренней структуры металлов, применяемых при изготовлении термопары. Дело в том, что в результате воздействия внешней окружающей среды контакты теряют свою однородность, что вызывает погрешности в получаемых температурных показателях.

  • В процессе измерения контактная группа термопары обычно подвержена негативному влиянию окружающей среды, что вызывает нарушения в процессе работы. Это опять же требует герметизации контактов, что вызывает дополнительные затраты на обслуживание подобных датчиков.

  • Существует опасность воздействия электромагнитных волн на термопару, конструкция которой предусматривает длинную контактную группу. Это также может сказаться на результатах измерений.

  • В некоторых случаях встречается нарушение линейной зависимости между электрическим током, возникающим в термопаре, и температурой в месте измерения. Подобная ситуация требует калибровки контрольной аппаратуры.

Заключение

Несмотря на имеющиеся недостатки, метод измерения температуры с помощью термопар, который был впервые изобретен и опробован еще в 19 веке, нашел свое широкое применение во всех отраслях современной промышленности.

Кроме того, существуют такие области применения, где использование термопар является единственным способом получения температурных данных. А ознакомившись с данным материалом, вы достаточно полно разобрались в основных принципах их работы.

fb.ru

Термопара – устройство и принцип работы простым языком


Практически каждое отопительное оборудование требует применения дополнительных элементов, предостерегающих систему от перегрева. Одним из таких контролеров считается термопара. Принцип ее работы заключается в регулярном измерении температурного режима для поддержания заданного значения.


Общие характеристики


Согласно Номинальных статических характеристик преобразования ГОСТ Р8.585-2001 термопара – устройство, состоящее из 2-х разнородных контактирующих друг с другом проводников, предназначенное для измерения температуры. При изменении температурного режима на одном участке создается напряжение, вследствие чего происходит конвертация температуры в электроток.



Термопары


Конструкция элемента устроена из двух разнотипных проводников, которые соединяются друг с другом в одном узле. Существует три типа соединений:


  • спайка;

  • ручная скрутка;

  • сварка.


Зачастую в виде проводящих электроэнергию элементов применяется металлический проводник, однако встречаются случаи, когда вместо него используют полупроводниковые устройства. 


Параметры устройства определяет материал, из которого изготовлены проводники. Понятно, что любой металл образует сопротивление, значит будет производить электроток. Но для корректной работы термопары используются определенные сплавы, которые выдают прогнозируемые вводные и точно с минимальной погрешностью определяют зависимость между температурой и сопротивлением. Для определенного диапазона должен использовать определенный материл.


Говоря простым языком, термопара, в зависимости от материалов, из которых состоят проводники, позволяет определять температурный режим в разнообразных диапазонах значений. В целом, термопара определяет температуру ориентировочно от -250°С до +2 000°С.


ВИДЕО: Измерение температуры с помощью термопары



Принцип действия термопары


Вне зависимости от имени производителя, работа всех термопар основывается на термоэлектрической схеме, разработанной в 1821 году известным физиком Т.И. Зеебеком. Принцип действия термопары заключается в поочередном соединении двух разновидных переходника в одно замкнутое кольцо. Первый узел предназначен для нагрева, в результате чего, по кольцу образовывается электрический движущий заряд, который называется – термо-ЭДС. Под влиянием ЭДС-силы, по цепочке протекает электрически ток.



Схематическая работа устройства


Сама область нагрева называется узлом нагревательного предназначения, второй конец обозначается как холодный спай.


Чтобы измерить значение микро или милливольт электрической движущей силы, следует разъединить кольцо и соединить его при помощи микровольтметра. Количество милливольт полностью зависит от интенсивности нагрева соединений и температурного режима холодного узла. Принцип работы простым языком базируется на разности значений температуры двух соединительных спаев, между холодным и горячим обозначением.


Получается, что если область спая двух разных проводов нагреть, то в зоне несоединенных концов образуется разносторонний потенциал, измеряемый специальным инструментом. Преобразователи, разработанные по инновационным технологиям, возникшую разность электрической силы переводят в цифровые символы, обозначающие температурный режим нагрева соединенных узлами частей.


Конструкция устройства


Устройство производится разных форм и размеров. Подразделяется по конструктивному производству на два основных типа:


  • термопары, не имеющие корпуса;

  • с кожухом, служащим в качестве защиты.


В первом случае устройство в месте соединения не имеет закрытого корпуса, выполняющего защитную функцию от разнообразных воздействий внешней окружающей среды. Данный вид обеспечивает быстрое определение инертности и температурного режима, не затрачивая на процесс много времени.



Термопара для котельного оборудования


Второй тип производится подобно зонду, который выполнен из металлической трубы с хорошей внутренней изоляцией, способной противостоять высоким температурным показателям. Изнутри термопар оснащен термоэлектрической системой. Конструкция с защитным корпусом не поддается воздействиям агрессивной среды.


Разновидности термопары


Принцип работы термопара достаточно прост и понятен, однако, прежде чем создать устройство своими руками, следует знать, чем отличаются такие модификации как ТХА,TKX, ТПП, ТСП, ТПР и ТВР, а также, по каким критериям и группам они распределяются.


  • Группа Е – состоит из комбинированного материала — хромель-константан. Соединительный спай обладает повышенной производительностью – более 69 мкВ/оС, подходящей для криогенного применения. Помимо всего, система не имеет магнитные свойства, а температурный режим варьируется от – 50°С до + 740°С.

  • Группа J – термоэлектроны производятся из положительного железа и отрицательного типа константаны. Разбег функционирования данной серии термопара меньше, чем в прошлой группе -40°С — + 750°С, однако показатель чувствительности более высокий – 50 мкВ/°С.

  • Группа К – самый распространенный тип устройств, состоящий из комбинации материалов – алюминий и хромель. Производительность системы равняется 40 мкВ/°С, функционирование происходит в пределах температурных показателей от – 200°С до 1 350°С. Следует помнить, что даже при низком уровне окисления в диапазоне температуры 800-1050°С, элемент из хромеля отсоединяется и приобретает намагниченное состояние, что называется «зеленая гниль». Данный фактор отрицательно сказывается на функционировании регулятора.

  • Группа М – применяется в комплектациях печей вакуумного вида. Рабочие силы варьируются от -260 до + 1400°С с максимальной погрешностью в 2 градуса.



Принцип работы термопары


  • Группа N – устройство выпускается для использования в устройствах обладающих температурными обозначениями – 270 и 1300°С, что является гарантией хорошей работоспособности и устойчивости перед окислительными процессами. Чувствительность не превышает 40 мкВ/°С.

  • Группы В, S, R отличаются стабильной работой с более пониженным ЭДС – 10мкВ/°С. Из-за плохой чувствительности, используется исключительно для определения повышенных температур.

  • Группы В, С, S – первый символ обозначает модификацию, подходящую для измерения температуры до 1 800оС, S – 1 600°С, С – до 1 500.

  • Рениево-вольфрамовые термопары применяются для измерения высоких температур 25 000°С и менее. Также устройство предназначено для устранения окислительной атмосферы, разрушающей материал.



Термопары хромель-алюмель


Монтаж


Принципиальной разницы между установкой российского или европейского оборудования нет – схема везде одинакова. Мы опишем самый простой способ.


  1. Откручиваете гайку внутри резьбового соединения к газопроводу.

  2. На самой термопаре откручиваете компенсационный винт.

  3. В отверстие монтажного кронштейна вставляете термопару.

  4. Протрите место соединения ветошью резьбовое соединение и гайку.

  5. Закрутите соединение до упора, но не затягивайте слишком сильно. Если есть необходимость, можно использовать прокладку.


Контролер газовой плиты должен быть соединен максимально плотно, но чтобы его можно было снять по мере надобности.



Термопара для печи


Обратите внимание на то, чтобы обе трубы были направлены строго вниз.


Теперь разбираемся, как работает. Концевой выключатель всегда расположен на несколько сантиметров ниже пленума под автоматом контроля безопасности плиты. Когда пленум нагревается до предела, выключатель дает сигнал на отключение горелки и сразу же срабатывает вентилятор. В этот момент происходит резкое снижение температуры.


На некоторых устройствах вентилятор не останавливается. Причиной этого может быть выключенный контроль вентилятора (посмотрите на рычаг, он должен быть на отметке «вкл») либо выход из строя термостата. Как вариант, может быть установлен ручной режим вместо автоматического.


После установки устройства необходимо проверить правильность работы. И если настройка происходит в лабораторных условиях, то калибровать термопару можно и собственноручно.


Для этого снимаете крышку блока управления и смотрите на циферблат. Со стороны вентилятора есть 2 датчика, которые изначально настроены на 25°F. Вам нужно выставить верхний на 115°F, нижний – не меньше 90°F.


Если во время градуировки или калибровки отчетливо слышен запах газа, необходимо проверить уплотнители или вызвать службы газа на предмет выявления утечки.


Преимущества и недостатки применения измерителя


Температурный датчик, невзирая на простоту в устройстве, обладает как преимуществами, так и недостатками.


Плюсы:


  • Широкий диапазон температурных режимов, делающих устройство самым устойчивым контактным датчиком перед высокими показателями.

  • В результате нарушения целостности спая можно полностью заменить узел или создать прямой контакт непосредственно через измеряемые системы.

  • Простота устройства, прочность и большой эксплуатационный срок.



Термопара «Арбат»


Минусы:


  • При установке температурного датчика необходимо регулярно контролировать изменения напряжения холодных спаев. Для облегчения задачи требуется приобрести дополнительный термистор. Также можно заменить устаревший прибор полупроводниковым сенсором, способным автоматически вносить изменения в ТЭДС.

  • Подверженность к поражению коррозией, в результате чего происходит термоэлектрическая недостаточность и нарушение градуировочных характеристик.

  • Электроды состоят из материалов, которые не считаются химически инертным, поэтому при нарушении герметичности корпуса система становится подверженной агрессивным процессам окружающей среды.

  • Длинные термопарные провода образовывают электромагнитное поле.

  • Возникают сложности в процессе создания вторичного преобразователя сигналов из-за несущественного взаимодействия ТЭДС и температурных режимов.

  • Для стабильной работы с термической инерцией, обязательным условием термопара считается обеспечение качественной электроизоляцией, заземление функционирующих спаев, предостерегающих от возникновения утечки в землю.


ВИДЕО: Сравнение термосопротивления и термопары. Основы измерения температуры от Emerson


www.portaltepla.ru