Как расшифровывается эдс в физике – Электродвижущая сила — Мегаэнциклопедия Кирилла и Мефодия — статья

Электродвижущая сила — WiKi

Электродвижущая сила (ЭДС) — скалярная физическая величина, характеризующая работу сторонних сил, то есть любых сил неэлектрического происхождения, действующих в квазистационарных цепях постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль всего контура[1][2].

По аналогии с напряжённостью электрического поля вводят понятие напряжённость сторонних сил E→ex{\displaystyle {\vec {E}}_{ex}}, под которой понимают векторную физическую величину, равную отношению сторонней силы, действующей на пробный электрический заряд к величине этого заряда. Тогда в замкнутом контуре L{\displaystyle L} ЭДС будет равна:

E=∮L⁡E→ex⋅dl→,{\displaystyle {\mathcal {E}}=\oint \limits _{L}{\vec {E}}_{ex}\cdot {\vec {dl}},}

где dl→{\displaystyle {\vec {dl}}} — элемент контура.

ЭДС так же, как и напряжение, в Международной системе единиц (СИ) измеряется в вольтах. Можно говорить об электродвижущей силе на любом участке цепи. Это удельная работа сторонних сил не во всем контуре, а только на данном участке. ЭДС гальванического элемента есть работа сторонних сил при перемещении единичного положительного заряда внутри элемента от одного полюса к другому. Работа сторонних сил не может быть выражена через разность потенциалов, так как сторонние силы непотенциальны и их работа зависит от формы траектории. Так, например, работа сторонних сил при перемещении заряда между клеммами источника тока вне самого́ источника равна нулю.

ЭДС и закон Ома

Электродвижущая сила источника связана с электрическим током, протекающим в цепи, соотношениями закона Ома. Закон Ома для неоднородного участка цепи имеет вид[1]:

φ1−φ2+E=IR,{\displaystyle \varphi _{1}-\varphi _{2}+{\mathcal {E}}=IR,} 

где φ1−φ2{\displaystyle \varphi _{1}-\varphi _{2}}  — разность между значениями потенциала в начале и в конце участка цепи, I{\displaystyle I}  — сила тока, текущего по участку, а R{\displaystyle R}  — сопротивление участка.

Если точки 1 и 2 совпадают (цепь замкнута), то φ1−φ2=0{\displaystyle \varphi _{1}-\varphi _{2}=0}  и предыдущая формула переходит в формулу закона Ома для замкнутой цепи[1]:

E=IR,{\displaystyle {\mathcal {E}}=IR,} 

где теперь R{\displaystyle R}  — полное сопротивление всей цепи.

В общем случае полное сопротивление цепи складывается из сопротивления внешнего по отношению к источнику тока участка цепи (Re{\displaystyle R_{e}} ) и внутреннего сопротивления самого́ источника тока (r{\displaystyle r} ). С учётом этого следует:

E=IRe+Ir.{\displaystyle {\mathcal {E}}=IR_{e}+Ir.} 

ЭДС источника тока

Если на участке цепи не действуют сторонние силы (однородный участок цепи) и, значит, источника тока на нём нет, то, как это следует из закона Ома для неоднородного участка цепи, выполняется:

φ1−φ2=IR.{\displaystyle \varphi _{1}-\varphi _{2}=IR.} 

Значит, если в качестве точки 1 выбрать анод источника, а в качестве точки 2 — его катод, то для разности между потенциалами анода φa{\displaystyle \varphi _{a}}  и катода φk{\displaystyle \varphi _{k}}  можно записать:

φa−φk=IRe,{\displaystyle \varphi _{a}-\varphi _{k}=IR_{e},} 

где как и ранее Re{\displaystyle R_{e}}  — сопротивление внешнего участка цепи.

Из этого соотношения и закона Ома для замкнутой цепи, записанного в виде E=IRe+Ir{\displaystyle {\mathcal {E}}=IR_{e}+Ir}  нетрудно получить

φa−φkE=ReRe+r{\displaystyle {\frac {\varphi _{a}-\varphi _{k}}{\mathcal {E}}}={\frac {R_{e}}{R_{e}+r}}}  и затем φa−φk=ReRe+rE.{\displaystyle \varphi _{a}-\varphi _{k}={\frac {R_{e}}{R_{e}+r}}{\mathcal {E}}.} 

Из полученного соотношения следуют два вывода:

  1. Во всех случаях, когда по цепи течёт ток, разность потенциалов между клеммами источника тока φa−φk{\displaystyle \varphi _{a}-\varphi _{k}}  меньше, чем ЭДС источника.
  2. В предельном случае, когда Re{\displaystyle R_{e}}  бесконечно (цепь разорвана), выполняется E=φa−φk.{\displaystyle {\mathcal {E}}=\varphi _{a}-\varphi _{k}.} 

Таким образом, ЭДС источника тока равна разности потенциалов между его клеммами в состоянии, когда источник отключён от цепи[1].

ЭДС индукции

Причиной возникновения электродвижущей силы в замкнутом контуре может стать изменение потока магнитного поля, пронизывающего поверхность, ограниченную данным контуром. Это явление называется электромагнитной индукцией. Величина ЭДС индукции в контуре определяется выражением

E=−dΦdt,{\displaystyle {\mathcal {E}}=-{\frac {d\Phi }{dt}},} 

где Φ{\displaystyle \Phi }  — поток магнитного поля через замкнутую поверхность, ограниченную контуром. Знак «−» перед выражением показывает, что индукционный ток, созданный ЭДС индукции, препятствует изменению магнитного потока в контуре (см. правило Ленца). В свою очередь причиной изменения магнитного потока может быть как изменение магнитного поля, так и движение контура в целом или его отдельных частей.

Неэлектрический характер ЭДС

  Внутри источника ЭДС ток течёт в направлении, противоположном нормальному. Это невозможно без дополнительной силы неэлектрической природы, преодолевающей силу электрического отталкивания

Как показано на рисунке, электрический ток, нормальное направление которого — от «плюса» к «минусу», внутри источника ЭДС (например, внутри гальванического элемента) течёт в противоположном направлении. Направление от «плюса» к «минусу» совпадает с направлением электрической силы, действующей на положительные заряды. Поэтому для того, чтобы заставить ток течь в противоположном направлении, необходима дополнительная сила неэлектрической природы (центробежная сила, сила Лоренца, силы химической природы) которая бы преодолевала электрическую силу.

Сторонние силы

Сторонними силами называются силы, вызывающие перемещение электрических зарядов внутри источника постоянного тока против направления действия сил электростатического поля. Например, в гальваническом элементе или аккумуляторе сторонние силы возникают в результате электрохимических процессов, происходящих на границе соприкосновения электрода с электролитом; в электрическом генераторе постоянного тока сторонней силой является сила Лоренца[3].

См. также

Примечания

ru-wiki.org

ЭДС

ЭДС расшифровывается как электродвижущая сила или физическое значение, которое характеризует работу посторонних сил в блоках неизменного либо переменного токов. При закрытом проводном контуре равняется действию работы данных сил при перемещении одиночного заряда с плюсовым значением, по всему контуру. Обозначая напряжение поля посторонних сил с помощью электродвижущей силы, получается что эдс неизвестна в закрытом контуре L равняется.

Допустимые силы электростатического поля постоянно не смогут держать одно напряжение в цепи, потому что работая по закрытому пути, данные силы равны нулю. А когда ток проходит через проводники, то данную работу сопровождает выделение энергии и нагревание проводников. Посторонние силы заставляют двигаться заряженные частицы в генераторе, гальванических элементах, аккумуляторах и всевозможных источниках. При чем возникновение посторонних сил различное. К примеру: В генераторе используются от вихревого электрического поля, которые возникают от изменения магнитного поля; У гальванических элементов и аккумуляторов используются химические силы.

Эдс источника тока зависит от напряжения в местах зажимов если цепь разомкнута. По закону Ома сила тока цепи с заданным сопротивлением также находит эдс. Единица измерения Вольт.


Эдс индукции это своего рода явление которое обусловлено изменением магнитного поля в замкнутом пространстве. Находится по формуле:

в которой: Ф — магнитное поле в закрытом пространстве S, закрытую контуром. При этом знак минус служит для неизменности магнитного поля благодаря индукции электродвижущей силы.

Электродвижущая сила это описание закрытого контура, невозможно точно показать её точку пребывания. Но практически всегда эдс считают приблизительно сосредоточенной в некоторых устройствах либо элементов цепи. При этом её называют описанием данного устройства, определяя как потенциальную разность в его разомкнутых полюсах.

Такие устройства разделяют на несколько видов зависящих от типа преобразования:

Химические — это аккумуляторы, ванны, гальванические батареи;
Электромагнитные — это электродвижущая сила электромагнитной индукции, которая бывает в трансформаторах, динамо-машинах, электромоторах, дросселях;
Фотоэлектрические

— это внешние или внутренние фотоэффекты;
Электростатические — это возникающее напряжение в механическом трении электрофорных машин или как пример грозовые облака.
Пьезоэлектрические — это сдавливание либо растяжение пьезэлектрических датчиков.
Так же существуют термоионные и термоэлектрические эдс.


Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:

reshit.ru

Электродвижущая сила — Википедия РУ

Электродвижущая сила (ЭДС) — скалярная физическая величина, характеризующая работу сторонних сил, то есть любых сил неэлектрического происхождения, действующих в квазистационарных цепях постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль всего контура

[1][2].

По аналогии с напряжённостью электрического поля вводят понятие напряжённость сторонних сил E→ex{\displaystyle {\vec {E}}_{ex}}, под которой понимают векторную физическую величину, равную отношению сторонней силы, действующей на пробный электрический заряд к величине этого заряда. Тогда в замкнутом контуре L{\displaystyle L} ЭДС будет равна:

E=∮L⁡E→ex⋅dl→,{\displaystyle {\mathcal {E}}=\oint \limits _{L}{\vec {E}}_{ex}\cdot {\vec {dl}},}

где dl→{\displaystyle {\vec {dl}}} — элемент контура.

ЭДС так же, как и напряжение, в Международной системе единиц (СИ) измеряется в вольтах. Можно говорить об электродвижущей силе на любом участке цепи. Это удельная работа сторонних сил не во всем контуре, а только на данном участке. ЭДС гальванического элемента есть работа сторонних сил при перемещении единичного положительного заряда внутри элемента от одного полюса к другому. Работа сторонних сил не может быть выражена через разность потенциалов, так как сторонние силы непотенциальны и их работа зависит от формы траектории. Так, например, работа сторонних сил при перемещении заряда между клеммами источника тока вне самого́ источника равна нулю.

ЭДС и закон Ома

Электродвижущая сила источника связана с электрическим током, протекающим в цепи, соотношениями закона Ома. Закон Ома для неоднородного участка цепи имеет вид[1]:

φ1−φ2+E=IR,{\displaystyle \varphi _{1}-\varphi _{2}+{\mathcal {E}}=IR,} 

где φ1−φ2{\displaystyle \varphi _{1}-\varphi _{2}}  — разность между значениями потенциала в начале и в конце участка цепи, I{\displaystyle I}  — сила тока, текущего по участку, а R{\displaystyle R}  — сопротивление участка.

Если точки 1 и 2 совпадают (цепь замкнута), то φ1−φ2=0{\displaystyle \varphi _{1}-\varphi _{2}=0}  и предыдущая формула переходит в формулу закона Ома для замкнутой цепи[1]:

E=IR,{\displaystyle {\mathcal {E}}=IR,} 

где теперь R{\displaystyle R}  — полное сопротивление всей цепи.

В общем случае полное сопротивление цепи складывается из сопротивления внешнего по отношению к источнику тока участка цепи (Re{\displaystyle R_{e}} ) и внутреннего сопротивления самого́ источника тока (r{\displaystyle r} ). С учётом этого следует:

E=IRe+Ir.{\displaystyle {\mathcal {E}}=IR_{e}+Ir.} 

ЭДС источника тока

Если на участке цепи не действуют сторонние силы (однородный участок цепи) и, значит, источника тока на нём нет, то, как это следует из закона Ома для неоднородного участка цепи, выполняется:

φ1−φ2=IR.{\displaystyle \varphi _{1}-\varphi _{2}=IR.} 

Значит, если в качестве точки 1 выбрать анод источника, а в качестве точки 2 — его катод, то для разности между потенциалами анода φa{\displaystyle \varphi _{a}}  и катода φk{\displaystyle \varphi _{k}}  можно записать:

φa−φk=IRe,{\displaystyle \varphi _{a}-\varphi _{k}=IR_{e},} 

где как и ранее Re{\displaystyle R_{e}}  — сопротивление внешнего участка цепи.

Из этого соотношения и закона Ома для замкнутой цепи, записанного в виде E=IRe+Ir{\displaystyle {\mathcal {E}}=IR_{e}+Ir}  нетрудно получить

φa−φkE=ReRe+r{\displaystyle {\frac {\varphi _{a}-\varphi _{k}}{\mathcal {E}}}={\frac {R_{e}}{R_{e}+r}}}  и затем φa−φk=ReRe+rE.{\displaystyle \varphi _{a}-\varphi _{k}={\frac {R_{e}}{R_{e}+r}}{\mathcal {E}}.} 

Из полученного соотношения следуют два вывода:

  1. Во всех случаях, когда по цепи течёт ток, разность потенциалов между клеммами источника тока φa−φk{\displaystyle \varphi _{a}-\varphi _{k}}  меньше, чем ЭДС источника.
  2. В предельном случае, когда Re{\displaystyle R_{e}}  бесконечно (цепь разорвана), выполняется E=φa−φk.{\displaystyle {\mathcal {E}}=\varphi _{a}-\varphi _{k}.} 

Таким образом, ЭДС источника тока равна разности потенциалов между его клеммами в состоянии, когда источник отключён от цепи[1].

ЭДС индукции

Причиной возникновения электродвижущей силы в замкнутом контуре может стать изменение потока магнитного поля, пронизывающего поверхность, ограниченную данным контуром. Это явление называется электромагнитной индукцией. Величина ЭДС индукции в контуре определяется выражением

E=−dΦdt,{\displaystyle {\mathcal {E}}=-{\frac {d\Phi }{dt}},} 

где Φ{\displaystyle \Phi }  — поток магнитного поля через замкнутую поверхность, ограниченную контуром. Знак «−» перед выражением показывает, что индукционный ток, созданный ЭДС индукции, препятствует изменению магнитного потока в контуре (см. правило Ленца). В свою очередь причиной изменения магнитного потока может быть как изменение магнитного поля, так и движение контура в целом или его отдельных частей.

Неэлектрический характер ЭДС

  Внутри источника ЭДС ток течёт в направлении, противоположном нормальному. Это невозможно без дополнительной силы неэлектрической природы, преодолевающей силу электрического отталкивания

Как показано на рисунке, электрический ток, нормальное направление которого — от «плюса» к «минусу», внутри источника ЭДС (например, внутри гальванического элемента) течёт в противоположном направлении. Направление от «плюса» к «минусу» совпадает с направлением электрической силы, действующей на положительные заряды. Поэтому для того, чтобы заставить ток течь в противоположном направлении, необходима дополнительная сила неэлектрической природы (центробежная сила, сила Лоренца, силы химической природы) которая бы преодолевала электрическую силу.

Сторонние силы

Сторонними силами называются силы, вызывающие перемещение электрических зарядов внутри источника постоянного тока против направления действия сил электростатического поля. Например, в гальваническом элементе или аккумуляторе сторонние силы возникают в результате электрохимических процессов, происходящих на границе соприкосновения электрода с электролитом; в электрическом генераторе постоянного тока сторонней силой является сила Лоренца[3].

См. также

Примечания

http-wikipediya.ru

электродвижущая сила — это… Что такое электродвижущая сила?

(эдс), величина, характеризующая источник энергии неэлектростатической природы в электрической цепи, необходимый для поддержания в ней электрического тока. Эдс численно равна работе по перемещению единичного положительного заряда вдоль замкнутой цепи. Полная эдс в цепи постоянного тока равна разности потенциалов на концах разомкнутой цепи. Эдс индукции создаётся вихревым электрическим полем, порождаемым переменным магнитным полем. В СИ измеряется в вольтах.

ЭЛЕКТРОДВИ́ЖУЩАЯ СИ́ЛА (эдс; e) — величина, характеризующая источник энергии неэлектростатической природы в электрической цепи, необходимый для поддержания в ней электрического тока (см. ЭЛЕКТРИЧЕСКИЙ ТОК). Потенциальные силы электростатического (или стационарного) поля не могут поддерживать постоянный ток в цепи. Для поддержания в цепи непрерывного тока необходим источник тока (см. ИСТОЧНИКИ ТОКА), или генератор (см. ГЕНЕРАТОР) электрического тока, обеспечивающий действие сторонних сил (см. СТОРОННИЕ СИЛЫ). Сторонние силы имеют неэлектростатическое происхождение и действуют внутри источников тока, (генераторов, гальванических элементов, аккумуляторов и т. д.), создавая разность потенциалов между концами остальной части цепи и приводя в движение заряженные частицы внутри источников тока.
Так как при перемещении электрического заряда по замкнутой цепи работа, совершаемая электростатическими силами, равна нулю, то заряд перемещается лишь под действием сторонних сил. Поэтому электродвижущая сила источника тока будет численно равна работе сторонних сил А в источниках постоянного или переменного тока по перемещению единичного положительного заряда Q вдоль замкнутой цепи. ЭДС, действующая в цепи, определяется как циркуляция вектора напряженности сторонних сил.
Происхождение сторонних сил может быть различным. В качестве меры электродвижущей силы, действующей в генераторе, принимают разность потенциалов, создаваемую на зажимах разомкнутого генератора. Один и тот же источник тока, в зависимости от силы отбираемого тока, может обладать различным напряжением на электродах. Источники тока — аккумуляторы, термоэлементы, электрические генераторы – одновременно замыкают электрическую цепь. Ток течет по внешней части цепи — проводнику и по внутренней — источнику тока. Источник тока имеет два полюса: положительный (с более высоким потенциалом) и отрицательный (с более низким потенциалом). Сторонние силы, природа которых может быть различной (химической, механической, тепловой), разделяют заряды в источнике тока. Полная ЭДС в цепи постоянного тока (максимальное из этих напряжений, существующее при разомкнутой цепи), равна разности потенциалов на концах разомкнутой цепи и показывает ЭДС источника.
ЭДС определяет силу тока в цепи при заданном ее сопротивлении (Ома закон (см. ОМА ЗАКОН)). Измеряется ЭДС, как и напряжение, в вольтах (см. ВОЛЬТ). Для поддержания непрерывного электрического тока используются генераторы, являющиеся источником электродвижущей силы. В генераторах сторонние силы — это силы со стороны вихревого электрического поля, возникающего при изменении магнитного поля со временем, или Лоренца сила (см. ЛОРЕНЦА СИЛА), действующая со стороны магнитного поля на электроны в движущемся проводнике; в гальванических элементах (см. ГАЛЬВАНИЧЕСКИЙ ЭЛЕМЕНТ) и аккумуляторах — это химические силы.

dic.academic.ru

Что такое электродвижущая сила

В данной работе мы поговорим о том, что же такое электродвижущая сила источника тока и какова ее взаимосвязь с другими параметрами электрической цепи. Сразу отметим, несмотря на то, что в повседневной жизни мы все успешно используем электрические приборы, многие законы были выведены опытным путем и приняты за аксиому. Это одна из причин излишнего усложнения определений. К сожалению, даже электродвижущая сила, эта основа электротехники, освещается так, что человеку, незнакомому с электричеством, понять что-либо довольно сложно. Объясним этот вопрос с помощью понятных каждому терминов и примеров.

Направленное движение заряженных частиц в проводнике носит название «электрический ток». Как известно, все предметы нашего материального мира состоят из атомов. Для упрощения понимания можно считать, что каждый атом представлен в виде уменьшенной в миллионы раз модели солнечной системы: в центре расположено ядро, а на разном удалении от него по круговым орбитам вращаются электроны.

Посредством какого-либо внешнего воздействия в проводнике, образующем замкнутый контур, создается электродвижущая сила и возникает электрический ток. Воздействие «выбивает» валентные электроны с их орбит в атомах, поэтому образуются свободные электроны и положительно заряженные ионы.

Электродвижущая сила необходима для того, чтобы «заставить» заряды постоянно двигаться по проводнику и элементам цепи в определенном направлении. Без нее ток практически мгновенно угасает. Разобраться в том, что же такое электродвижущая сила, позволит сравнение электричества с водой. Прямой участок трубы – это проводник. Двумя своими сторонами она выходит в водоемы. До тех пор, пока уровни воды в водоемах равны и отсутствует уклон, жидкость, находящаяся в трубе, неподвижна.

Очевидно, заставить ее двигаться можно тремя способами: создать перепад высот (уклоном или количеством жидкости в водоемах) или принудительно прокачивать. Важный момент: если говорить о перепаде высот (разности потенциалов), то подразумевается напряжение. Для ЭДС же движение «принудительно», так как сторонние силы, оказывающие воздействие, непотенциальны.

Любой источник электрического тока обладает ЭДС – той самой силой, которая поддерживает движение заряженных частиц (в приведенной аналогии заставляет воду двигаться). Измеряется в вольтах. Название говорит само за себя: ЭДС характеризует работу приложенных к участку цепи сторонних сил, выполняющих перемещение каждого единичного заряда от одного полюса к другому (между клеммами). Она численно равна отношению работы приложенных сторонних сил к величине перемещаемого заряда.

Косвенно необходимость в источнике ЭДС можно вывести из закона сохранения энергии и свойств проводника с током. В замкнутой цепи работа поля по перемещению зарядов равна нулю. Однако проводник нагревается (причем тем сильнее, чем больший ток по нему проходит в единицу времени). Вывод: в цепи должна присутствовать доля сторонней энергии. Указанные сторонние силы – это магнитное поле в генераторах, постоянно возбуждающее электроны; энергия химических реакций в батареях.

Электродвижущая сила индукции была впервые обнаружена экспериментальным путем в 1831 году физиком Фарадеем. Он установил, что в проводнике, пронизываемом линиями напряженности изменяющегося магнитного поля, возникает электрический ток. Воздействие поля сообщает внешним электронам в атомах недостающую им энергию, в результате чего они отрываются и начинают двигаться (появляется ток). Конечно, непосредственного движения частиц не существует (как тут не вспомнить об относительности аксиом электротехники). Скорее, имеет место обмен частицами между ближайшими атомами.

Развиваемая электродвижущая сила – это внутренняя характеристика любого источника питания.

fb.ru

ЭДС — PhysBook

Нулевой уровень

Ученики 7-9 класса в задачах иногда встречают понятие ЭДС. И сразу же вопрос: «Что это такое?»

Если вы берете в руки любой источник тока: батарейку (гальванический элемент), блок питания и т.п., – на нем видите, например, надпись «4,5 В». Вы называете это напряжение источника. Но на самом деле это ЭДС – электродвижущая сила. Обозначается ℰ, измеряется в вольтах (В).

Если электрическим сопротивлением источника можно пренебречь (т.е. в условии задачи ничего не говорится про это сопротивление или написано, что источник идеальный), то ЭДС и напряжение источника равны.

Таким образом,

ЭДС – это одна из характеристик источника тока.

Обычно для решения задач в 7-9 классах этого достаточно.

Уровень А

В старших классах понятие ЭДС требует более подробного рассмотрения.

Сторонние силы

Рассмотрим два примера.

1. Шарик массой m закреплен в некоторой точке А над столом (рис. 1, а).

2. Шарик с зарядом q1 (и малой массой) закреплен в некоторой точке А на небольшом расстоянии от второго закрепленного заряда q2 (рис. 1, б).

  • а

  • б

Рис. 1

Что произойдет с шариками, если их освободить?

1. Шарик массой m начнет падать, и если его не ловить, упадет на стол. Шарик заставляет двигаться сила тяжести. В этом случае говорят, что сила тяжести (или гравитационное поле) совершает работу.

2. Шарик с зарядом q1 начнет двигаться к заряду q2, и если его не ловить, столкнется с ним. Шарик заставляет двигаться сила притяжения ко второму шарику (кулоновская сила). В этом случае говорят, что кулоновская сила (или электрическое поле) совершает работу.

А можно ли вернуть шарики в точку А?

Можно, но для этого нужно приложить дополнительную силу.

В первом примере мы можем бросить шарик вверх. Мы затратим собственную энергию, чтобы заставить шарик двигаться в нужном направлении.

Второй пример рассмотрим более подробно. Шарик можно заставить двигаться влево еще одним зарядом q3, большим по значению, чем заряд q2. Но это будет так же кулоновская сила. Можно так же применить механическую силу, можно сообщить шарику дополнительную энергию (например, световую, химическую и т.д.), чтобы он смог преодолеть притяжения заряда q2.

Силы, действующие на заряд, за исключением кулоновских, называются сторонними. Внутри любого источника тока заряды движутся под действием сторонних сил.

Во всех случаях, если сила заставляет тело двигаться в нужном направлении, то она совершает работу. Значит и сторонние силы совершают работу по перемещению заряда, которую называют сторонней.

ЭДС

Отношение работы сторонних сил по перемещению заряда к величине этого заряда и есть ЭДС (электродвижущая сила).

Обозначим работу сторонних сил — A, переносимый заряд — q, тогда из определения следует, что ЭДС

Исходя из этой формулы, можно дать и другое определение:

ЭДС – это физическая скалярная величина, численно равная работе сторонних сил по перемещению единичного положительно заряда.

Таким образом, ЭДС характеризует действие сторонних сил и не является силой в обычном понимании этого слова. Здесь опять используется не очень удачная, но исторически установившаяся терминология.

Из этой формулы видно, что ЭДС измеряется в Вольтах (В).

.

www.physbook.ru

45.2 Электродвижущая сила (ЭДС) и внутреннее сопротивление источника.

45.2 Электродвижущая сила (ЭДС) и внутреннее сопротивление источника.

 Мы пришли к выводу, что для поддержания постоянного тока в замкнутой цепи, в нее необходимо включить источник тока. Подчеркнем, что задача источника заключается не в том, чтобы поставлять заряды в электрическую цепь (в проводниках этих зарядов достаточно), а в том, чтобы заставлять их двигаться, совершать работу по перемещению зарядов против сил электрического поля. Основной характеристики источника является электродвижущая сила1 (ЭДС) − работа, совершаемая сторонними силами по перемещению единичного положительного заряда


 Единицей измерения ЭДС в системе единиц СИ является Вольт. ЭДС источника равна 1 вольт, если он совершает работу 1 Джоуль при перемещении заряда 1 Кулон

 Для обозначения источников тока на электрических схемах используется специальное обозначение (рис. 397).

рис. 397
 Электростатическое поле совершает положительную работу по перемещению положительного заряда в направлении уменьшения потенциала поля. Источник тока проводит разделение электрических зарядов − на одном полюсе накапливаются положительные заряды, на другом отрицательный. Напряженность электрического поля в источнике направлена от положительного полюса к отрицательному, поэтому работа электрического поля по перемещению положительного заряда будет положительной при его движения от «плюса» к «минусу». Работа сторонних сил, наоборот, положительна в том случае, если положительные заряды перемещаются от отрицательного полюса к положительному, то есть от «минуса» к «плюсу».
В этом принципиальное отличие понятий разности потенциалов и ЭДС, о котором всегда необходимо помнить.
Таким образом, электродвижущую силу источника можно считать алгебраической величиной, знак которой («плюс» или «минус») зависит от направления тока. В схеме, показанной на рис. 398,

рис. 398
вне источника (во внешней цепи) ток течет2 от «плюса» источника к «минусу», в внутри источника от «минуса» к «плюсу». В этом случае, как сторонние силы источника, так и электростатические силы во внешней цепи совершают положительную работу.
 Если на некотором участке электрической цепи помимо электростатических действуют и сторонние силы, то над перемещением зарядов «работают» как электростатические, так и сторонние силы. Суммарная работа электростатических и сторонних сил по перемещению единичного положительного заряда называется электрическим напряжением на участке цепи

 В том случае, когда сторонние силы отсутствуют, электрическое напряжение совпадает с разностью потенциалов электрического поля.
 Поясним определение напряжения и знака ЭДС на простом примере. Пусть на участке цепи, по которому протекает электрический ток, имеются источник сторонних сил и резистор (рис. 399).

рис. 399
 Для определенности будем считать, что φo > φ1, то есть электрический ток направлен от точки 0 к точке 1. При подключении источника, как показано на рис. 399 а, Сторонние силы источника совершают положительную работу, поэтому соотношение (2) в этом случае может быть записано в виде

 При обратном включении источника (рис. 399 б) внутри него заряды движутся против сторонних сил, поэтому работа последних отрицательна. Фактически силы внешнего электрического поля преодолевают сторонние силы. Следовательно, в этом случае рассматриваемое соотношение (2) имеет вид

 Для протекания электрического тока по участку цепи, обладающему электрическим сопротивлением, необходимо совершать работу, по преодолению сил сопротивления. Для единичного положительного заряда эта работа, согласно закону Ома, равна произведению IR = U которое, естественно совпадает с напряжением на данном участке.
 Заряженные частицы (как электроны, так и ионы) внутри источника движутся в некоторой окружающей среде, поэтому со стороны среду на них также действуют тормозящие силы, которые также необходимо преодолевать. Заряженные частицы преодолевают силы сопротивления благодаря действию сторонних сил (если ток в источнике направлен от «плюса» к «минусу») либо благодаря электростатическим силам (если ток направлен от «минуса» к «плюсу»). Очевидно, что работа по преодолению этих сил не зависит от направления движения, так как силы сопротивления всегда направлены в сторону, противоположную скорости движения частиц. Так как силы сопротивления пропорциональны средней скорости движения частиц, то работа по их преодолению пропорциональна скорости движения, следовательно, силе тока силе. Таким образом, мы можем ввести еще характеристику источника − его внутренне сопротивление r, аналогично обычному электрическому сопротивлению. Работа по преодолению сил сопротивления при перемещении единичного положительного заряда между полюсами источника равна A/q = Ir. Еще раз подчеркнем, эта работа не зависит от направления тока в источнике.
1Название этой физической величины неудачно − так электродвижущая сила является работой, а не силой в обычном механическом понимании. Но этот термин настолько устоялся, что изменять его не «в наших силах». К слову, сила тока то же не является механической силой! Не говоря уж о таких понятиях «сила духа», «сила воли», «божественная сила» и т.д.
2Напомним, за направление движения электрического тока принято направление движения положительных зарядов.

fizportal.ru