Как соединить конденсаторы полярные – Как определить полярность электролитического конденсатора 🚩 маркировка твердотельных конденсаторов 🚩 Естественные науки

Содержание

Последовательное соединение конденсаторов: практические решения

Последовательное соединение конденсаторов обычно используют в двух случаях: чтобы получить конденсатор с высоким допустимым напряжением или чтобы получить конденсатор с нужной емкостью.

Подбираем сопротивление конденсатора

При подборе емкости конденсатора, конечно, проще использовать параллельное соединение, так как емкости всех конденсаторов просто суммируются. Но если нужно получить значение емкости ниже чем у любых имеющихся конденсаторов, то последовательное соединение нас выручит. Удивительно но формула расчета емкостей конденсаторов при последовательном включении, очень похожа на формулу для расчета параллельного сопротивления резисторов.
Cs=C1*C2/(C1+C2). Да, неудобная формула, проще воспользоваться калькулятором.

Высоковольтный конденсатор

Если необходимо получить конденсатор с высоким напряжением, можно использовать два или более конденсаторов на низкое напряжение. Объединять лучше всего конденсаторы с максимально похожими характеристиками. Так как при последовательном включении конденсаторы заряжаются и разряжаются одним и тем же током, то из-за отличии в значениях емкости, конденсаторы могут заряжаться до разных значений напряжения и чем больше разница в емкостях, тем будет больше разбаланс напряжений.
Еще проблемы при таком включении создает разброс токов утечки. Чем больше ток утечки конденсатора, тем быстрее он будет разряжатся, при этом конденсаторе с меньшим током утечки напряжение будет расти и со временем, на первом конденсаторе напряжение станет равным нулю, а на втором полным напряжением. Получиться, что работает только один конденсатор.
Чтобы сбалансировать напряжение на конденсаторах, нужно параллельно каждому конденсатору в цепочке подключить резистор. Сопротивление резистора рассчитывается, таким образом чтобы через резистор тек ток раз в 10 больше чем разница между токами утечек последовательно включенных конденсаторов.

Из двух полярных конденсаторов один неполярный

Бывают ситуации, когда нужен неполярный конденсатор, а в наличии только полярные. Тогда можно взять два полярных конденсатора с емкостью в два раза выше, чем должен получиться требуемый конденсатор и объединить их встречно-последовательно, то есть между собой плюс с плюсом или минус с минусом. А оставшиеся два вывода запаять в схему.

hardelectronics.ru

Конденсаторы

Конденсатор

 

Рисунок 22. Конденсаторы различных типов и марок

 

Рисунок 23. Условное обозначение конденсатора

 

 

Само название «конденсатор» означает «накопитель».

 

Что он накапливает? Конденсатор накапливает электрический заряд и хранит в себе некоторое время время (до нескольких десятков часов). В этом отношении конденсатор можно сравнить с аккумулятором — тот также сперва собирает заряд, а потом отдает его по мере надобности.

Рисунок 24. Заряд и разряд конденсатора

 

В аккумуляторе накопление энергии происходит за счет сложных химических реакций, а в конденсаторе ничего подобного нет. В прямом смысле, лучший конденсатор — это токопроводящие пластины в вакууме. Но поскольку добиться идеальной пустоты (вакуума) сложно, самым простым конденсатором является устройство, состоящее из двух металлических пластин и воздушного промежутка между ними. Если пластины подключить к источнику питания, конденсатор накопит заряд. Затем, если вместо источника подсоединить, например, электрическую лампу, то она какое-то время будет светиться за счет запасенного в конденсаторе электричества. В настоящее время вместо воздуха в конденсаторах используют твердые диэлектрики (вещества, не проводящие электрический ток).

Рисунок 25. Устройство конденсатора

 

Отметим одно из важных свойств конденсатора — он не пропускает через себя постоянный ток. Переменный ток условно способен проходить через конденсатор.

 

Почему так происходит? Попробуем разобраться.

 

При включении разряженного конденсатора в электрическую цепь постоянного тока, он сразу же начнет заряжаться. При этом в цепи потечет ток, носители заряда будут скапливаться на пластинах конденсатора. По мере заряда частицам на обкладках становится «тесно», количество частиц, дополнительно попадающих на обкладки, уменьшается. Следовательно, ток в цепи также уменьшается. Как только «все места» на обкладках будут «заняты», ток прекратится.

 

Этот процесс можно сравнить с заполнением пустого автобуса на конечной остановке — как только открываются двери, внутрь врывается толпа пассажиров. Когда все сидячие и стоячие (и висячие) места заполнятся, внутрь не проникнет больше ни один пассажир, хотя на остановке их еще осталось достаточно много. Так же и в нашей цепи — несмотря на то, что цепь подключена к источнику, тока в ней после заряда конденсатора не будет.

 

Рисунок 26. Конденсатор и постоянный ток

 

В рассматриваемой цепи течет переменный ток, меняющий направление. В процессе заряда конденсатора в определенный момент направление тока меняется и начинается разряд конденсатора, а затем — его заряд, но уже противоположной полярности. Такие колебания будут происходить до тех пор, пока в цепи будет работать источник переменного тока. Таким образом, в каждый момент времени в цепи с переменным током и конденсатором постоянно наблюдается движение электронов, то есть течет ток.

 

Рисунок 27. Конденсатор и переменный ток

 

Это свойство конденсатора позволяет использовать его, например, для отделения постоянной составляющей электрического тока от переменной.

 

Основная характеристика конденсатора — емкость. Как и в случае с любой другой емкостью (например, канистрой), емкость конденсатора можно представить в виде его «вместимости», то есть: чем больше эта емкость, тем больше энергии сможет запасти в себе конденсатор.

 

Измеряется емкость в Фарадах, однако один Фарад — это очень большая емкость, поэтому чаще используют производные величины.

 

 Единицы емкости:

  • 1 мкФ (один микрофарад, uF) = 0,000 001 Ф (одна миллионная фарада)
  • 1 нФ (один нанофарад, nF) = 0,001 мкФ (одна тысячная микрофарада)
  • 1 пФ (один пикофарад, pF) = 0,000 001 мкФ (одна миллионная микрофарада)

В автомобильной аудиотехнике применяются специальные конденсаторы с емкостью в единицы (до 15) фарад, позволяющие компенсировать провалы напряжения питания на большой громкости.

 

Конденсаторы бывают полярными и неполярными. Полярные требуют соблюдения полярности подключения: чтобы вывод, отмеченный плюсом, был подключен именно к плюсу, а не к минусу. Что произойдет, если этого не соблюсти? Конденсатор выйдет из строя. Причем конденсатор «заявит» об этом громким хлопком и разбрызгиванием своего содержимого во все стороны. Поэтому старайтесь соблюдать маркировку на корпусе конденсатора и печатной плате (на всех платах в местах установки полярных конденсаторов нанесена полярность его подключения).

 

Рисунок 28. Полярный конденсатор

 

Неполярный конденсатор избавлен от этого недостатка, его можно включать в цепь, не задумываясь о соблюдении полярности.

 

Рисунок 29. Неполярные конденсаторы

 

Но отказаться от полярных конденсаторов полностью невозможно, так как все конденсаторы большой емкости — исключительно полярные.

 

Второй важный параметр конденсатора — рабочее напряжение. Поскольку между обкладками (пластинами) конденсатора находится тонкий слой диэлектрика, то превышение указанного напряжения может привести к электрическому пробою (короткому замыканию) внутри конденсатора и выходу его из строя.

 

 Неправильно выбранное рабочее напряжение конденсатора приводит к выходу его из строя или даже взрыву!

 

Рисунок 30. Взорвавшийся конденсатор

 

При выборе номинального напряжения конденсатора следует делать некоторый запас, то есть для цепи 12 В подойдет конденсатор, на котором написано, например, 16 В. Для этой же цепи можно взять конденсатор и на 25 В, но он, как правило, дороже и крупнее

 

На полярных конденсаторах большой емкости (>10 000 мкФ), непосредственно на корпусе указываются напряжение и полярность подключения, на неполярных — как правило, только емкость.

 

Конденсаторы в электронике используются как составная часть электрических фильтров, резонансных контуров и разделительных элементов в усилительных каскадах. Вместе с сопротивлением они используются как времязадающая цепь в генераторах и таймерах.

 

При монтаже автомобильных охранных систем конденсатор может использоваться, например, как замедлитель срабатывания или отпускания реле, чтобы реализовать небольшую задержку срабатывания. Или при подключении цепей контроля запуска двигателя для отсеивания постоянной составляющей тока от переменной.

 

Рисунок 31. Схема-подсказка «Конденсатор»

instalator.ru

Как определить полярность конденсатора — инструкция с видео

Этот неотъемлемый элемент практически всех эл/цепей выпускается в нескольких модификациях. Необходимость определения полярности конденсатора относится к конденсаторам электролитическим, которые являются, в силу конструктивных особенностей, чем-то средним между полупроводником и пассивным элементом схемы. Разберемся, как это можно сделать.

Способы определения полярности конденсатора

По маркировке

У большинства конденсаторов-электролитов  отечественных, а также ряда государств бывшего соцлагеря, обозначается лишь положительный вывод. Соответственно, второй – это минус. Но вот символика может быть разной. Она зависит от страны-изготовителя и года выпуска радиодетали. Последнее объясняется тем, что с течением времени изменяются нормативные документы, вступают в силу новые стандарты.

Все о цветовой маркировке конденсатора вы можете узнать здесь.

Примеры обозначения плюса конденсатора

  • Символ «+» на корпусе около одной из ножек. В некоторых сериях она проходит через его центр. Это относится к конденсаторам цилиндрической формы (бочкообразным), с «дном» из пластмассы. Например, К50-16.
  • У конденсаторов типа ЭТО полярность иногда не обозначается. Но определить ее визуально можно, если посмотреть на форму детали. Вывод «+» расположен со стороны, имеющий больший диаметр (на рисунке плюс вверху).

  • Если конденсатор (так называемая коаксиальная конструкция) предназначен для монтажа способом присоединения корпуса к «шасси» прибора (являющимся минусом любой схемы), то центральный контакт – плюс, без всякого сомнения.

Обозначение минуса

Это относится к конденсаторам импортного производства. Рядом с ножкой «–», на корпусе, имеется своеобразный штрих-код, представляющий собой прерывистую полосу или вертикальный ряд из черточек. Как вариант – длинная полоска вдоль осевой линии цилиндра, один конец которой указывает на минус. Она выделяется на общем фоне своим оттенком.

По геометрии

Если у конденсатора одна ножка длиннее другой, то это – плюс. В основном подобным образом также маркируются изделия импортные.

С помощью мультиметра

Такой способ определения полярности конденсатора практикуется, если его маркировка трудночитаема или полностью стерта. Для проверки необходимо собрать схему. Понадобится или мультиметр с внутренним сопротивлением порядка 100 кОм (режим – измерение I=, предел – микроамперы)

или источник постоянного тока + милливольтметр + нагрузка

О том, как проверить конденсатор мультиметром, читайте здесь.

Что сделать

  • Полностью разрядить конденсатор. Для этого достаточно его ножки замкнуть накоротко (жалом отвертки, пинцетом).
  • Подключить емкость в разрыв цепи.
  • После окончания процесса заряда зафиксировать значение тока (он будет постепенно уменьшаться).
  • Разрядить.
  • Снова включить в схему.
  • Считать показания прибора.


Если плюсовой щуп мультиметра был соединен с «+» конденсатора, то разница в показаниях должна быть незначительной. В случае если полярность перепутана (плюс на минус), то отличие результатов измерений будет существенной.

 Рекомендация.  Определение полярности прибором целесообразно делать в любом случае. Это позволит одновременно произвести и диагностику детали. Если электролит, имеющий большой номинал, заряжается сравнительно быстро от источника 9±3 В, то это свидетельство того, что он «подсох». То есть утратил часть своей емкости. Его лучше в схему не ставить, так как ее работа может быть некорректной, и придется заниматься дополнительными настройками.

electroadvice.ru

Параллельное соединение конденсаторов | Практическая электроника

Достаточно часто в электронных схемах применяют параллельное соединение конденсаторов в основном для получения большей общей емкости.
При параллельном соединении емкости складываются и результирующая емкость будет равна сумме емкостей объединенных конденсаторов.
Важно помнить, что максимальное напряжение которое выдержит эта сборка конденсаторов будет равно значению напряжения у самого низковольтного конденсатора.

Из того что было

Чаще всего параллелят конденсаторы на одинаковое напряжение, но от недостатка нужных компонентов под рукой можно изготовить и «икебану» подобрав разнородные конденсаторы на разные напряжения, емкость и род тока.
Главное помнить, что полярные конденсаторы можно использовать только на постоянном токе, причем нужно обязательно соблюдать полярность: чтобы на положительной обкладке конденсатора всегда был «+», а на отрицательной «-» . А вот неполярные конденсаторы можно применять как в цепях с переменным током, так и в цепях с постоянным.

Параллельно соединяем конденсаторы для борьбы с помехами

Чаще всего конденсатор используется для сглаживания и фильтрации напряжения в электронных схемах. Помехи с которыми должен бороться конденсатор могут иметь разные частоты.
Конденсаторы с маленькими значениями емкости (это обычно керамические и пленочные конденсаторы) лучше подавляют высокочастотные помехи, а конденсаторы с большими значениям емкости (танталовые, электролитические) низкочастотные помехи.
Казалось, бы ставь максимальную емкость и она отфильтрует коротенькие импульсы и достаточно длинные. Вот только в силу конструктивных особенностей конденсаторы с большими значениями емкости, имеют длинные выводы, длинные обкладки конденсаторов, все это создает распределенные индуктивности, которые в свою очередь мешают конденсатору фильтровать высокочастотные помехи.
Таким образом если нужно сгладить и отфильтровать сигнал, то нужно для сглаживания применять конденсатор с большим значением емкости, а для фильтрации помех — в параллель первому ставить второй высокочастотный.

hardelectronics.ru

Как соединить конденсаторы? Последовательное и параллельное соединение

 

Вопрос о том, как соединить конденсаторы может возникнуть у любого человека, интересующегося электроникой и пайкой. Чаще всего, необходимость в этом возникает в случаях отсутствия под рукой устройства подходящего номинала при сборке или ремонте какого-либо прибора.

К примеру, человеку нужно отремонтировать устройство, заменив в нем электролитический конденсатор ёмкостью 1000 микрофарад или больше, на руках подходящие по номиналу детали отсутствуют, но есть несколько изделий с меньшими параметрами. В этом случае есть три варианта выхода из сложившейся ситуации:

  1. Поставить вместо конденсатора на 1000 микрофарад устройство с меньшим номиналом.
  2. Поехать в ближайший магазин или радио-рынок для покупки подходящего варианта.
  3. Соединить несколько элементов вместе для получения необходимой ёмкости.

От установки радиоэлемента меньшего номинала лучше отказаться, так как подобные эксперименты не всегда заканчиваются успешно. Можно съездить на рынок или в магазин, но это требует немало времени. Потому в сложившейся ситуации чаще соединяют несколько конденсаторов и получают необходимую емкость.

Параллельное соединение конденсаторов

Параллельная схема подключения конденсаторов предполагает соединение в две группы всех обкладок приборов. В одну группу соединяются первые выводы, а в другую группу – вторые выводы. На рисунке ниже представлен пример.

Конденсаторы, соединенные параллельно между собой, подключаются к одному источнику напряжения, поэтому на них существует две точки напряжения или разности потенциалов. Следует учитывать, что на всех выводах подключенных параллельно конденсаторов напряжение будет иметь одинаковую величину.

Параллельная схема образует из элементов единую ёмкость, величина которой равняется сумме ёмкостей всех подключенных в группу конденсаторов. При этом через конденсаторы в процессе работы устройства будет протекать ток разной величины. Параметры проходящего через изделия тока зависят от индивидуальной ёмкости устройства. Чем выше ёмкость, тем больший по величине ток пройдет через него. Формула, характеризующее параллельное соединение, имеет следующий вид:

Параллельная схема чаще всего используется в быту, она позволяет собрать необходимую ёмкость из любого числа отдельных, различных по номиналу элементов.

Последовательное соединение конденсаторов

Схема последовательного подключения представляет собой цепочку, в которой первая обкладка конденсатора соединяется со второй обкладкой предыдущего устройства, а вторая обкладка – с первой обкладкой следующего прибора. Первый вывод первого конденсатора и второй вывод последней детали в цепи соединяются с источником электрического тока, благодаря чему между ними осуществляется перераспределение электрических зарядов. Все промежуточные обкладки имеют одинаковые по величине заряды, чередующиеся по знаку.

На рисунке ниже представлен пример последовательного подключения.

Через соединенные в группу конденсаторы протекает ток одинаковой величины. Общая мощность ограничивается площадью обкладок устройства с наименьшим номиналом, так как после зарядки наименьшего по ёмкости устройства, вся цепь перестанет пропускать ток.

Несмотря на явные недостатки, данный способ обеспечивает увеличение изоляции между отдельными обкладками до суммы расстояний между выводами на всех последовательно соединенных конденсаторах. То есть, при последовательном соединении двух элементов с рабочим напряжением 200 В, изоляция между их выводами сможет выдерживать напряжение до 1000 В. Ёмкость по формуле:

Данный способ позволяет получить эквивалент меньшего по ёмкости конденсатора в группе, способной работать при высоких напряжениях. Всего этого можно достичь путем покупки одного единственного элемента подходящего номинала, потому на практике последовательные соединения практически не встречаются.

Эта формула актуальна для расчета общей ёмкости цепи последовательно соединенных двух конденсаторов. Для определения общей ёмкости цепи с большим числом приборов необходимо воспользоваться формулой:

Смешанная схема

Пример смешанной схемы подключения представлен ниже.

Чтобы определить общую ёмкость нескольких устройств, всю схему необходимо разделить на имеющиеся группы последовательного и параллельного соединения и рассчитать параметры ёмкости для каждой из них.

На практике данный способ встречаются на различных платах, с которыми приходиться работать радиолюбителям.

podvi.ru

Последовательное подключение конденсаторов — Всё о электрике в доме

Схемы соединения конденсаторов: параллельное, последовательное

Конденсаторы, как и резисторы, можно соединять последовательно и параллельно. Рассмотрим соединение конденсаторов: для чего применяются каждая из схем, и их итоговые характеристики.

Параллельное соединение конденсаторов

Параллельное соединение конденсаторов

Эта схема – самая распространенная. В ней обкладки конденсаторов соединяются между собой, образуя эквивалентную емкость, равную сумме соединяемых емкостей.

При параллельном соединении электролитических конденсаторов необходимо, чтобы между собой соединялись выводы одной полярности.

Особенность такого соединения – одинаковое напряжение на всех соединяемых конденсаторах. Номинальное напряжение группы параллельно соединенных конденсаторов равно рабочему напряжению конденсатора группы, у которого оно минимально.

Токи через конденсаторы группы протекают разные: через конденсатор с большей емкостью потечет больший ток.

На практике параллельное соединение применяется для получения емкости нужной величины, когда она выходит за границы диапазона, выпускаемого промышленностью, или не укладываются в стандартный ряд емкостей. В системах регулирования коэффициента мощности (cos ϕ) изменение емкости происходит за счет автоматического подключения или отключения конденсаторов в параллель.

Последовательное соединение конденсаторов

Последовательное соединение конденсаторов

При последовательном соединении обкладки конденсатором соединяются друг к другу, образуя цепочку. Крайние обкладки подключаются к источнику, а ток по всем конденсаторам группы потечет одинаковый.

Эквивалентная емкость последовательно соединенных конденсаторов ограничена самой маленькой емкостью в группе. Объясняется это тем, что как только она полностью зарядится, ток прекратится. Подсчитать общую емкость двух последовательно соединенных конденсаторов можно по формуле

Но применение последовательного соединения для получения нестандартных номиналов емкостей не так распространено, как параллельного.

При последовательном соединении напряжение источника питания распределяется между конденсаторами группы. Это позволяет получить батарею конденсаторов, рассчитанную на большее напряжение. чем номинальное напряжение входящих в нее компонентов. Так из дешевых и небольших по размерам конденсаторов изготавливаются блоки, выдерживающие высокие напряжения.

Еще одна область применения последовательного соединения конденсаторов связана с перераспределением напряжений между ними. Если емкости одинаковы, напряжение делится пополам, если нет – на конденсаторе большей емкости напряжение получается большим. Устройство, работающее на этом принципе, называют емкостным делителем напряжения .

Смешанное соединение конденсаторов

Пример смешанного соединения конденсаторов

Такие схемы существуют, но в устройствах специального назначения, требующие высокой точности получения величины емкости, а также для их точной настройки.

Оцените качество статьи. Нам важно ваше мнение:

Как соединить конденсаторы?

Вопрос о том, как соединить конденсаторы может возникнуть у любого человека, интересующегося электроникой и пайкой. Чаще всего, необходимость в этом возникает в случаях отсутствия под рукой устройства подходящего номинала при сборке или ремонте какого-либо прибора.

К примеру, человеку нужно отремонтировать устройство, заменив в нем электролитический конденсатор ёмкостью 1000 микрофарад или больше, на руках подходящие по номиналу детали отсутствуют, но есть несколько изделий с меньшими параметрами. В этом случае есть три варианта выхода из сложившейся ситуации:

  1. Поставить вместо конденсатора на 1000 микрофарад устройство с меньшим номиналом.
  2. Поехать в ближайший магазин или радио-рынок для покупки подходящего варианта.
  3. Соединить несколько элементов вместе для получения необходимой ёмкости.

От установки радиоэлемента меньшего номинала лучше отказаться, так как подобные эксперименты не всегда заканчиваются успешно. Можно съездить на рынок или в магазин, но это требует немало времени. Потому в сложившейся ситуации чаще соединяют несколько конденсаторов и получают необходимую емкость.

Параллельное соединение конденсаторов

Параллельная схема подключения конденсаторов предполагает соединение в две группы всех обкладок приборов. В одну группу соединяются первые выводы, а в другую группу – вторые выводы. На рисунке ниже представлен пример.

Конденсаторы, соединенные параллельно между собой, подключаются к одному источнику напряжения, поэтому на них существует две точки напряжения или разности потенциалов. Следует учитывать, что на всех выводах подключенных параллельно конденсаторов напряжение будет иметь одинаковую величину.

Параллельная схема образует из элементов единую ёмкость, величина которой равняется сумме ёмкостей всех подключенных в группу конденсаторов. При этом через конденсаторы в процессе работы устройства будет протекать ток разной величины. Параметры проходящего через изделия тока зависят от индивидуальной ёмкости устройства. Чем выше ёмкость, тем больший по величине ток пройдет через него. Формула, характеризующее параллельное соединение, имеет следующий вид:

Параллельная схема чаще всего используется в быту, она позволяет собрать необходимую ёмкость из любого числа отдельных, различных по номиналу элементов.

Последовательное соединение конденсаторов

Схема последовательного подключения представляет собой цепочку, в которой первая обкладка конденсатора соединяется со второй обкладкой предыдущего устройства, а вторая обкладка – с первой обкладкой следующего прибора. Первый вывод первого конденсатора и второй вывод последней детали в цепи соединяются с источником электрического тока, благодаря чему между ними осуществляется перераспределение электрических зарядов. Все промежуточные обкладки имеют одинаковые по величине заряды, чередующиеся по знаку.

На рисунке ниже представлен пример последовательного подключения.

Через соединенные в группу конденсаторы протекает ток одинаковой величины. Общая мощность ограничивается площадью обкладок устройства с наименьшим номиналом, так как после зарядки наименьшего по ёмкости устройства, вся цепь перестанет пропускать ток.

Несмотря на явные недостатки, данный способ обеспечивает увеличение изоляции между отдельными обкладками до суммы расстояний между выводами на всех последовательно соединенных конденсаторах. То есть, при последовательном соединении двух элементов с рабочим напряжением 200 В, изоляция между их выводами сможет выдерживать напряжение до 1000 В. Ёмкость по формуле:

Данный способ позволяет получить эквивалент меньшего по ёмкости конденсатора в группе, способной работать при высоких напряжениях. Всего этого можно достичь путем покупки одного единственного элемента подходящего номинала, потому на практике последовательные соединения практически не встречаются.

Эта формула актуальна для расчета общей ёмкости цепи последовательно соединенных двух конденсаторов. Для определения общей ёмкости цепи с большим числом приборов необходимо воспользоваться формулой:

Смешанная схема

Пример смешанной схемы подключения представлен ниже.

Чтобы определить общую ёмкость нескольких устройств, всю схему необходимо разделить на имеющиеся группы последовательного и параллельного соединения и рассчитать параметры ёмкости для каждой из них.

На практике данный способ встречаются на различных платах, с которыми приходиться работать радиолюбителям.

Соединение конденсаторов

Как правильно соединять конденсаторы?

У многих начинающих любителей электроники в процессе сборки самодельного устройства возникает вопрос: “Как правильно соединять конденсаторы?”

Казалось бы, зачем это надо, ведь если на принципиальной схеме указано, что в данном месте схемы должен быть установлен конденсатор на 47 микрофарад, значит, берём и ставим. Но, согласитесь, что в мастерской даже заядлого электронщика может не оказаться конденсатора с необходимым номиналом!

Похожая ситуация может возникнуть и при ремонте какого-либо прибора. Например, необходим электролитический конденсатор ёмкостью 1000 микрофарад, а под рукой лишь два-три на 470 микрофарад. Ставить 470 микрофарад, вместо положенных 1000? Нет, это допустимо не всегда. Так как же быть? Ехать на радиорынок за несколько десятков километров и покупать недостающую деталь?

Как выйти из сложившейся ситуации? Можно соединить несколько конденсаторов и в результате получить необходимую нам ёмкость. В электронике существует два способа соединения конденсаторов: параллельное и последовательное .

В реальности это выглядит так:

Принципиальная схема параллельного соединения

Принципиальная схема последовательного соединения

Также можно комбинировать параллельное и последовательное соединение. Но на практике вам вряд ли это пригодиться.

Как рассчитать общую ёмкость соединённых конденсаторов?

Помогут нам в этом несколько простых формул. Не сомневайтесь, если вы будете заниматься электроникой, то эти простые формулы рано или поздно вас выручат.

Общая ёмкость параллельно соединённых конденсаторов:

С1 – ёмкость первого;

С2 – ёмкость второго;

С3 – ёмкость третьего;

СN – ёмкость N -ого конденсатора;

Cобщ – суммарная ёмкость составного конденсатора.

Как видим, при параллельном соединении ёмкости нужно всего-навсего сложить!

Внимание! Все расчёты необходимо производить в одних единицах. Если выполняем расчёты в микрофарадах, то нужно указывать ёмкость C1 . C2 в микрофарадах. Результат также получим в микрофарадах. Это правило стоит соблюдать, иначе ошибки не избежать!

Чтобы не допустить ошибку при переводе микрофарад в пикофарады, а нанофарад в микрофарады, необходимо знать сокращённую запись численных величин. Также в этом вам поможет таблица. В ней указаны приставки, используемые для краткой записи и множители, с помощью которых можно производить пересчёт. Подробнее об этом читайте здесь .

Ёмкость двух последовательно соединённых конденсаторов можно рассчитать по другой формуле. Она будет чуть сложнее:

Внимание! Данная формула справедлива только для двух конденсаторов! Если их больше, то потребуется другая формула. Она более запутанная, да и на деле не всегда пригождается .

Или то же самое, но более понятно:

Если вы проведёте несколько расчётов, то увидите, что при последовательном соединении результирующая ёмкость будет всегда меньше наименьшей, включённой в данную цепочку. Что это значить? А это значит, что если соединить последовательно конденсаторы ёмкостью 5, 100 и 35 пикофарад, то общая ёмкость будет меньше 5.

В том случае, если для последовательного соединения применены конденсаторы одинаковой ёмкости, эта громоздкая формула волшебным образом упрощается и принимает вид:

Здесь, вместо буквы M ставиться количество конденсаторов, а C1 – его ёмкость.

Стоит также запомнить простое правило:

При последовательном соединении двух конденсаторов с одинаковой ёмкостью результирующая ёмкость будет в два раза меньше ёмкости каждого из них.

Таким образом, если вы последовательно соедините два конденсатора, ёмкость каждого из которых 10 нанофарад, то в результате она составит 5 нанофарад.

Не будем пускать слов по ветру, а проверим конденсатор. замерив ёмкость, и на практике подтвердим правильность показанных здесь формул.

Возьмём два плёночных конденсатора. Один на 15 нанофарад (0,015 мкф.),а другой на 10 нанофарад (0,01 мкф.) Соединим их последовательно. Теперь возьмём мультиметр Victor VC9805+ и замерим суммарную ёмкость двух конденсаторов. Вот что мы получим (см. фото).


Замер ёмкости при последовательном соединении

Ёмкость составного конденсатора составила 6 нанофарад (0,006 мкф.)

А теперь проделаем то же самое, но для параллельного соединения. Проверим результат с помощью того же тестера (см. фото).


Измерение ёмкости при параллельном соединении

Как видим, при параллельном соединении ёмкость двух конденсаторов сложилась и составляет 25 нанофарад (0,025 мкф.).

Что ещё необходимо знать, чтобы правильно соединять конденсаторы?

Во-первых, не стоит забывать, что есть ещё один немаловажный параметр, как номинальное напряжение.

При последовательном соединении конденсаторов напряжение между ними распределяется обратно пропорционально их ёмкостям. Поэтому, есть смысл при последовательном соединении применять конденсаторы с номинальным напряжением равным тому, которое имеет конденсатор, взамен которого мы ставим составной.

Если же используются конденсаторы с одинаковой ёмкостью, то напряжение между ними разделится поровну.

Для электролитических конденсаторов.

При соединении электролитических конденсаторов (электролитов) строго соблюдайте полярность! При параллельном соединении всегда подключайте минусовой вывод одного конденсатора к минусовому выводу другого,а плюсовой вывод с плюсовым.

Параллельное соединение электролитов

Схема параллельного соединения

В последовательном соединении электролитов ситуация обратная. Необходимо подключать плюсовой вывод к минусовому. Получается что-то вроде последовательного соединения батареек .

Последовательное соединение электролитов

Схема последовательного соединения

Также не забывайте про номинальное напряжение. При параллельном соединении каждый из задействованных конденсаторов должен иметь то номинальное напряжение, как если бы мы ставили в схему один конденсатор. То есть если в схему нужно установить конденсатор с номинальным напряжением на 35 вольт и ёмкостью, например, 200 микрофарад, то взамен его можно параллельно соединить два конденсатора на 100 микрофарад и 35 вольт. Если хоть один из них будет иметь меньшее номинальное напряжение (например, 25 вольт), то он вскоре выйдет из строя.

Желательно, чтобы для составного конденсатора подбирались конденсаторы одного типа (плёночные, керамические, слюдяные, металлобумажные). Лучше всего будет, если они взяты из одной партии, так как в таком случае разброс параметров у них будет небольшой.

Конечно, возможно и смешанное (комбинированное) соединение, но в практике оно не применяется (я не видел ). Расчёт ёмкости при смешанном соединении обычно достаётся тем, кто решает задачи по физике или сдаёт экзамены 🙂

Тем же, кто не на шутку увлёкся электроникой непременно надо знать, как правильно соединять резисторы и рассчитывать их общее сопротивление!

Источники: http://electric-tolk.ru/sposoby-soedineniya-kondensatorov/, http://podvi.ru/elektrokompanenty/kak-soedinit-kondensatory.html, http://go-radio.ru/connection-of-capacitors.html

electricremont.ru

Михаил Николаенко — Самоучитель по радиоэлектронике

1.2.2. Электролитический конденсатор

Конденсаторы могут применяться в цепях как постоянного, так и переменного тока. Для цепей постоянного тока используют в основном электролитические конденсаторы. При монтаже конденсатора его плюсовой вывод присоединяют к положительному полюсу цепи с учетом соответствия напряжений участков цепи, а минусовой вывод (обычно корпус конденсатора) присоединяется к металлическому корпусу устройства. Следует учесть, что могут быть и неполярные электролитические конденсаторы.

Если полярный конденсатор включить в сеть переменного напряжения, то через него пойдет переменный ток, нагревая конденсатор, и он может выйти из строя. В крайнем случае при отсутствии нужного конденсатора на переменное напряжение вместо него можно применить полярный конденсатор при условии, что его напряжение много больше напряжения сети. Например, полярный конденсатор с напряжением 250 В может работать в сети переменного напряжения 50 В при частоте 50 Гц.

1.2.3. Качество диэлектрика

Качество диэлектрика характеризует сопротивление изоляции или ток утечки. В некоторых цепях существуют высокие требования к сопротивлению изоляции, например к конденсаторам связи между соседними каскадами. Наиболее высокое сопротивление изоляции имеют фторопластовые, стирольные и полипропиленовые конденсаторы, несколько ниже оно у слюдяных, керамических и поликарбонатных.

Для электролитических конденсаторов задается ток утечки, значение которого пропорционально емкости и напряжению. Наименьший ток утечки имеют танталовые конденсаторы (от единиц до десятков микроампер), а у алюминиевых конденсаторов он на один-два порядка больше.

1.2.4. Неполярный конденсатор

Довольно трудно найти неполярные конденсаторы (с изоляцией из слюды, бумаги или пленки) большой емкости с низким рабочим напряжением (менее 25 В). Однако иногда нужны именно такие компоненты, в частности при построении импульсных генераторов на логических вентилях с очень большим периодом (например, при разработке таймера для часов). Получение большой постоянной времени RC-цепи за счет увеличения сопротивления имеет определенный предел для каждого типа схем.

Для формирования конденсатора большой емкости можно соединить два полярных (электролитических) конденсатора, чтобы получить один неполярный (рис. 1.6). При этом надо выбрать два компонента одинакового номинала и включить их последовательно, соединив между собой отрицательные электроды. Результирующая емкость будет равна половине емкости каждого конденсатора.

Рис. 1.6.Получение одного неполярного конденсатора из двух полярных

1.2.5. Ионистор

В последние годы появился новый класс приборов, функционально близких к конденсаторам очень большой емкости, по существу, занимающих положение между конденсаторами и источниками питания. Это ионисторы, конденсаторы с двойным электрическим слоем.

Номинальное напряжение ионистора зависит от вида используемого в нем электролита и является для него максимально допустимым. Для получения более высокого рабочего напряжения ионисторы соединяют последовательно. Но делать это самостоятельно не рекомендуется — параметры ионисторов в такой связке должны быть очень близкими.

В принципе, ионистор — неполярный прибор. Вывод + (плюс) указывают для обозначения полярности остаточного напряжения после его зарядки на заводе-изготовителе.

Долговечность ионистора зависит от условий эксплуатации. Так, при работе под напряжением Uном при температуре окружающей среды +70 «С гарантированная долговечность составит 500 ч. При работе под напряжением 0,8Uномона увеличивается до 5000 ч. Если же напряжение на ионисторе не превышает 0,6Uном, а температура окружающей среды менее +40 °C, то ионистор будет исправно работать 40000 ч и более.

Важнейший параметр ионистора — ток утечки. Это особенно важно при использовании его в качестве резервного источника питания. Весьма перспективен ионистор в качестве накопителя энергии при работе совместно с солнечными батареями. Здесь особенно ценна его некритичность к режиму заряда, практически неограниченное число циклов заряд-разряд. Ионистор не требует ухода в течение всего срока службы.

1.3. Намоточные компоненты

1.3.1. Воздушный дроссель

Дроссели (катушки индуктивности) не пользуются большой популярностью среди любителей. Их применяют довольно редко, и если они используются в публикуемых схемах, то в списках компонентов приводятся хорошо известные и доступные типы. При разработке импульсных источников питания иногда нужно изготовить нестандартный дроссель. Такая же потребность может возникнуть при изготовлении фильтра низких частот для подавления высокочастотных гармоник, например в схемах с широтно-импульсной модуляцией.

На при… гаже чертежах (рис. 1.7) представлены воздушные (то есть не имеющие ферромагнитного стержня) дроссели, которые достаточно просто изготовить самостоятельно.

Рис. 1.7.Изготовление дросселя с однослойной (а) и многослойной (б) намоткой

Для расчета индуктивности однослойных и многослойных катушек в зависимости от их размеров и числа витков используются несложные формулы, которые легко найти в учебниках или справочниках. Экспериментальную проверку индуктивности дросселя можно выполнить с помощью небольшой схемы измерения резонансной частоты колебательного контура, состоящего из конденсатора и изготовленного дросселя. Для этого потребуются генератор соответствующего диапазона частот и осциллограф.

Наконец, при выборе сечения провода для обмотки следует учитывать значение тока, который будет проходить через катушку.

1.3.2. Соединение обмоток трансформатора

Силовые трансформаторы радиоэлектронных устройств имеют, как правило, две одинаковые вторичные обмотки. В зависимости от предполагаемого применения их можно соединять либо последовательно — для удвоения напряжения, либо параллельно — для удвоения тока. Небольшие трансформаторы, закрепляемые непосредственно на печатной плате, обычно имеют стандартное расположение выводов. Соединение обмоток выполняется по схеме, приведенной на рис. 1.8.

Рис. 1.8.Последовательное (а) и параллельное (б) соединение вторичных обмоток трансформатора

Для некоторых моделей (например, с тороидальным сердечником) при отсутствии документации необходимо с помощью осциллографа исследовать напряжения на обмотках во избежание соединения их в противофазе. Иначе возникает риск перегрева и выхода из строя трансформатора и находящихся рядом деталей (не говоря уже об отсутствии напряжения на выходе).

1.3.3. Монтаж тороидальных трансформаторов

Тороидальные трансформаторы обычно используются в устройствах высокой мощности, поскольку занимают значительно меньше места, чем классические модели с Ш-образным сердечником. Во время их монтажа необходимо точно следовать указаниям производителя и применять для крепления только рекомендуемые кольца (из металла или неопрена). Если два тороидальных трансформатора располагаются в одном корпусе, нельзя использовать для них общий крепежный болт, проходящий по центру. В соответствии с законами магнетизма трансформаторы обязательно будут взаимодействовать, что приведет к нарушению работы устройства в целом.

1.3.4. Крепление трансформатора

Когда трансформатор (даже небольшого размера) монтируется на печатной плате, следует в дополнение к припаиванию выводов предусмотреть его механическое крепление. Если мощность трансформатора превышает 10 ВА, его весом уже нельзя пренебречь. Классические модели трансформаторов с наборным сердечником начиная с определенных размеров снабжены специальными монтажными скобами. Необходимо крепко стянуть набор с помощью болтов и надежно закрепить трансформатор на плате.

При проектировании размещения элементов нужно оставить достаточно места для выводов и крепежных отверстий.

Залитые трансформаторы часто имеют крепежные лапки или сквозные отверстия для крепления. Иногда они снабжены пластмассовыми вставками с отверстиями, которые предназначены для крепления с помощью винтов.

1.3.5. Особенности залитых трансформаторов

Залитые трансформаторы соответствуют более высоким стандартам по изоляции, чем обычные модели. Но у них есть свои недостатки: худшие условия теплоотвода и высокая цена. Некоторые из них снабжены встроенной термозащитой. Следует помнить о том, что такая защита необратима, то есть если она срабатывает, трансформатор просто выходит из строя.

1.3.6. Маркировка отечественных трансформаторов

При выборе необходимого трансформатора радиолюбители иногда сталкиваются с проблемой маркировки магнитопроводов. Некоторые особенности обозначений типоразмеров приведены ниже.

profilib.org