Какие бывают виды трансформаторов – Трансформаторы. Описание, типы, классификация трансформаторов. Измерительные, силовые, импульсные трансформаторы.

Содержание

Виды трансформаторов и их применение

Содержание:
  1. Общее устройство и принцип работы
  2. Основные типы трансформаторов
  3. Условные обозначения трансформаторов
  4. Масляные трансформаторы
  5. Устройства с негорючим диэлектриком
  6. Сухие трансформаторы

В электротехнике постоянно требуется преобразование тока из одного состояния в другое. В этих процессах активно участвуют различные виды трансформаторов, представляющие собой электромагнитные статические устройства, без каких-либо подвижных частей. В основе их действия лежит электромагнитная индукция, посредством которой переменный ток одного напряжения преобразуется в переменный ток другого напряжения. При этом частота остается неизменной, а потери мощности совсем незначительные.

Общее устройство и принцип работы

Каждый трансформатор оборудуется двумя или более обмотками, индуктивно связанными между собой. Они могут быть проволочными или ленточными, покрытыми изоляционным слоем. Обмотки наматываются на сердечник, он же магнитопровод, выполненный из мягких ферромагнитных материалов. При наличии одной обмотки, такое устройство называется автотрансформатором.

Принцип действия трансформатора довольно простой и понятный. На первичную обмотку устройства подается переменное напряжение, что приводит к течению в ней переменного тока. Этот переменный ток, в свою очередь, вызывает создание в магнитопроводе переменного магнитного потока. Под его воздействием в первичной и вторичной обмотках происходит наведение переменной электродвижущей силы (ЭДС). Когда вторичная обмотка замыкается на нагрузку, по ней также начинает течь переменный ток. Этот ток во вторичной системе отличается собственными параметрами. У него индивидуальные показатели тока и напряжения, количество фаз, частота и форма кривой напряжения.

Энергетические системы, осуществляющие передачу и распределение электроэнергии, пользуются силовыми трансформаторами. С помощью этих устройств изменяются величины переменного тока и напряжения. Однако частота, количество фаз, кривая тока или напряжения, остаются в неизменном виде.

В конструкцию простейшего силового трансформатора входит магнитопровод, изготавливаемый из ферромагнитных материалов, преимущественно из листовой электротехнической стали. На стержнях магнитопровода – сердечника располагаются первичная и вторичная обмотки. Первичная обмотка соединяется с источником переменного тока, а вторичная подключается к потребителю.

В силовых трансформаторах при протекании через витки обмотки также создается переменный магнитный поток, возникающий в магнитопроводе. Под его влиянием в обеих обмотках индуктируется ЭДС. Выходное напряжение может быть выше или ниже первоначального, в зависимости от того, какой тип трансформатора используется – повышающий или понижающий. Значение ЭДС в каждой обмотке различается в соответствии с количеством витков. Таким образом, если создать определенное соотношение витков в обмотках, можно создать трансформатор с требуемым отношением входного и выходного напряжений.

Типы трансформаторов

В соответствии со своими параметрами и характеристиками, все трансформаторы разделяются на следующие виды:

  • По количеству фаз могут быть одно- или трехфазными.
  • В соответствии с числом обмоток, трансформаторы бывают двух- или трехобмоточными, а также двух- или трехобмоточными с расщепленной обмоткой.
  • По типу изоляции – сухие (С) и масляные (М) или с негорючим заполнением (Н).
  • По видам охлаждения – с естественным масляным охлаждением (М), с масляным охлаждением и воздушным дутьем (Д), принудительная циркуляция масляного охлаждения (Ц), сухие трансформаторы с воздушным охлаждением (С). Кроме того, существуют устройства без расширителей, для защиты которых используется азотная подушка.

Условные обозначения трансформаторов

Каждый трансформатор имеет собственные условные обозначения, расшифровывающие основные технические характеристики и параметры устройства.

Буквенные символы обозначают следующее:

  • А – конструкция автотрансформатора.
  • О – однофазная модификация.
  • Т – трехфазное устройство, с наличием или отсутствием расщепления обмоток.

В соответствии с системой охлаждения, трансформаторы маркируются следующим образом:

  • Сухого типа: «С» — с естественным воздушным охлаждением, открытого исполнения; «СЗ» — то же самое, защищенного исполнения; «СГ» — то же самое, герметичного исполнения; «СД» — воздушное охлаждение с дутьем.
  • Масляное охлаждение: «М» — естественное; «МЗ» — естественное, с защитной азотной подушкой без расширителя; «Д» — дутье и естественная циркуляция масла; «ДЦ» — дутье и принудительная циркуляция масла; «Ц» — масляно-водяное охлаждение и принудительная циркуляция масла.
  • С использованием негорючего жидкого диэлектрика: «Н» и «НД» — естественное охлаждение и с применением дутья.

Существует множество других буквенных и цифровых обозначений. Правильно расшифровать их помогут специальные справочники и таблицы.

Масляные трансформаторы

Данный тип трансформаторов считается наиболее экономичным. Они лучше всего подходят для наружной установки. Внутри помещений они могут устанавливаться на уровне первого этажа, в специальных камерах с двумя наружными дверьми.

Эксплуатация масляных трансформаторов отличается специфическими особенностями. Они должны обязательно оборудоваться маслоприемными устройствами в виде ям или приямков, способных к сбору примерно 20-30% общего количества масла, залитого в трансформатор. Глубина таких ям должна быть не менее 1 м. Следует помнить, что масляные установки запрещается размещать в подвалах и на вторых этажах зданий.

Устройства с негорючим диэлектриком

Мощность таких установок составляет до 2500 кВА. Трансформаторы этого типа применяются в тех случаях, когда технические условия не допускают использования других устройств. Чаще всего это связано с условиями окружающей среды и недопустимостью открытой установки масляных трансформаторов.

Применение устройств с негорючим диэлектриком имеет серьезные ограничения в связи с высокой токсичностью совтола, используемого для охлаждения. Данная жидкость, обладая противопожарными и взрывобезопасными свойствами, может нанести серьезный вред человеческому организму, привести к раздражению носовых и глазных слизистых оболочек.

Основное преимущество этих устройств заключается в возможности их ввода в эксплуатацию без проведения предварительной ревизии. В процессе дальнейшей работы они не требуют обслуживания и ремонта.

Сухие трансформаторы

Максимальная мощность этих устройств также находится в пределах 2500 кВА. Они применяются в тех местах, где условия среды делают масляные трансформаторы пожароопасными, а трансформаторы с негорючей жидкостью – токсичными. Установка сухих трансформаторов производится в административные, общественные и другие здания, где возможно значительное скопление людей.

Рассматривая основные виды трансформаторов, следует отметить, что устройства сухого типа с небольшой мощностью могут размещаться внутри помещений и других закрытых местах. Это связано с тем, что им не требуются маслосборники и охлаждающая жидкость. Серьезным недостатком сухих трансформаторов считается наличие повышенного шума во время работы. Этот фактор нужно обязательно принимать во внимание при выборе места установки данных устройств.

electric-220.ru

Трансформаторы, их виды и назначение

Что такое трансформатор
Принцип работы трансформатора
Виды трансформаторов
Режимы работы трансформатора
Уравнения идеального трансформатора
Магнитопровод трансформатора
Обмотка трансформатора
Применение трансформаторов
Схема трансформатора

Что такое трансформатор

Трансформатор представляет собой устройство, которое преобразовывает напряжение переменного тока (повышает или понижает). Состоит трансформатор из нескольких обмоток (двух или более), которые намотаны на общий ферромагнитный сердечник. Если трансформатор состоит только из одной обмотки, то он называется автотрансформатором. Современные трансформаторы тока бывают: стержневыми, броневыми или тороидальными. Все три типа трансформаторов имеют похожие характеристики, и надежность, но отличаются друг от друга способом изготовления.

В трансформаторах стержневого типа обмотка намотана на сердечник, а в трансформаторах стержневого типа обмотка включается в сердечник. В трансформаторе стержневого типа обмотки хорошо видны, а из сердечника видна только нижняя и верхняя часть. Сердечник броневого трансформатора скрывает в себе практически всю обмотку. Обмотки трансформатора стержневого типа расположены горизонтально, в то время как это расположение в броневом трансформаторе может быть как вертикальным, так и горизонтальным.

Независимо от типа трансформатора, в его состав входят такие три функциональные части: магнитная система трансформатора (магнитопровод), обмотки, а также система охлаждения.

В начало

Принцип работы трансформатора

В трансформаторе принято выделять первичную и вторичную обмотку. К первичной обмотке напряжение подводится, а от вторичной отводится. Действие трансформатора основано на законе Фарадея (законе электромагнитной индукции): изменяющийся во времени магнитной поток через площадку, ограниченную контуром, создает электродвижущую силу. Справедливо также обратное утверждение: изменяющийся электрический ток индуцирует изменяющееся магнитное поле.

В трансформаторе есть две обмотки: первичная и вторичная. Первичная обмотка получает запитку от внешнего источника, а с вторичной обмотки напряжение снимается. Переменный ток первичной обмотки создает в магнитопроводе переменное магнитное поле, которое, в свою очередь, создает ток во вторичной обмотке.

В начало

Режимы работы трансформатора

Существуют такие три режима работы трансформатора: холостой ход, режим короткого замыкания, рабочий режим. Трансформатор «на холостом ходу», когда выводы от вторичных обмоток никуда не подключены. Если сердечник трансформатора изготовлен из магнитомягкого материала, тогда ток холостого хода показывает, какие в трансформаторе происходят потери на перемагничивание сердечника и вихревые токи.

В режиме короткого замыкания выводы вторичной обмотки соединены между собой накоротко, а на первичную обмотку подают небольшое напряжение, с таким расчетом, чтобы ток короткого замыкания был равен номинальному току трансформатора. Величину потерь (мощность) можно посчитать, если напряжение во вторичной обмотке умножить на ток короткого замыкания. Такой режим трансформатора находит свое техническое применение в измерительных трансформаторах.

Если подключить нагрузку к вторичной обмотке, то в ней возникает ток, индуцирующий магнитный поток, направленный противоположно магнитному потоку в первичной обмотке. Теперь в первичной обмотке ЭДС источника питания и ЭДС индукции питания не равны, поэтому ток в первичной обмотке увеличивается до тех пор, пока магнитный поток не достигнет прежнего значения.

Для трансформатора в режиме активной нагрузки справедливо равенство:
U_2/U_1 =N_2/N_1 , где U2, U1 – мгновенные напряжения на концах вторичной и первичной обмоток, а N1, N2 – количество витков в первичной и вторичной обмотке. Если U2 > U1, трансформатор называется повышающим, в противном случае перед нами понижающий трансформатор. Любой трансформатор принято характеризовать числом k, где k – коэффициент трансформации.

В начало

Виды трансформаторов

В зависимости от своего применения и характеристик трансформаторы бывают нескольких видов. К примеру, в электрических сетях населенных пунктов, промышленных предприятий применяют трансформаторы силовые, основной задачей которых является понижение напряжения в сети до общепринятого – 220 В.

Если трансформатор предназначен для регулировки тока, он называется трансформатор тока, а если устройство регулирует напряжение – то это трансформатор напряжения. В обычных сетях применяются однофазные трансформаторы, в сетях на три провода (фаза, ноль, заземление) нужен трехфазный трансформатор.

Бытовой трансформатор, 220В предназначается для защиты бытовой техники от перепадов напряжения.

Сварочный трансформатор предназначен для разделения сварочной и силовой сети, для понижения напряжения в сети до нужной для сварки величины.

Масляный трансформатор предназначается для использования в сетях с напряжением выше 6 000 Вольт. Конструкция трансформатора включает в себя: магнитопровод, обмотки, бак, а также крышки с вводами. Магнитопровод состоит из 2 листов электротехнической стали, которые изолированы друг от друга, обмотки, как правило, делают из алюминиевого или медного провода. Регулировка напряжения производится с помощью ответвления, которое соединяется с переключателем.

Существует два вида переключения ответвлений: переключение под нагрузкой — РПН (регулирование под нагрузкой), а также без нагрузки, после того, как трансформатор отключен от внешней сети (ПБВ, или переключение без возбуждения). Большее распространение получил второй способ регулировки напряжения.

Говоря о видах трансформаторов, нельзя не рассказать об электронном трансформаторе. Электронный трансформатор представляет собой специализированный источник питания, который служит для преобразования напряжения 220В в 12 (24)В, при большой мощности. Электронный трансформатор намного меньше обычного, при тех же самых параметрах нагрузки.

В начало

Уравнения идеального трансформатора

Для того чтобы рассчитать основные характеристики трансформаторов, принято пользоваться простыми уравнениями, которые знает каждый современный школьник. Для этого используют понятие идеального трансформатора. Идеальным трансформатором называется такой трансформатор, в котором нет потерь энергии на нагрев обмоток и вихревые токи. В идеальном трансформаторе энергия первичной цепи превращается полностью в энергию магнитного поля, а затем – в энергию вторичной обмотки. Именно поэтому мы можем написать:
P1= I1*U1 = P2 = I2*U2,
где P1, P2 – мощности электрического тока в первичной и вторичной обмотке соответственно.

В начало

Магнитопровод трансформатора

Магнитопровод представляет собой пластины из электротехнической стали, которые концентрируют в себе магнитное поле трансформатора. Полностью собранная система с деталями, скрепляющими трансформатор в единое целое – это остов трансформатора. Та часть магнитопровода, на которой крепятся обмотки, называется стержнем трансформатора. Часть магнитопровода, которая не несет на себе обмотку и замыкает магнитную цепь, называется ярмом.

В трансформаторе стержни могут располагаться по-разному, поэтому выделяют такие четыре типа магнитопроводов (магнитных систем): плоская магнитная система, пространственная магнитная система, симметричная магнитная система, несимметричная магнитная система.

В начало

Обмотка трансформатора

Теперь поговорим об обмотке трансформатора. Основная часть обмотки – виток, который однократно обхватывает магнитопровод и в котором индуцируется магнитное поле. Под обмоткой понимают сумму витков, ЭДС всей обмотки равна сумме ЭДС в каждом витке.

В силовых трансформаторах обмотка обычно состоит из проводников, имеющих квадратное сечение. Такой проводник по-другому еще называется жилой. Проводник квадратного сечения используется для того, чтобы более эффективно использовать пространство внутри сердечника. В качестве изоляции каждой жилы может использоваться либо бумага, либо эмалевый лак. Две жилы могут быть соединены между собой, и иметь одну изоляцию – такая конструкция называется кабелем.

Обмотки бывают следующих типов: основные, регулирующие и вспомогательные. Основной называется обмотка, к которой подводится или от которой отводится ток (первичная и вторичная обмотка). Обмотка с выводами для регулирования коэффициента трансформации напряжения называется регулирующей.

В начало

Применение трансформаторов

Из курса школьной физики известно, что потери мощности в проводах прямо пропорциональны квадрату силы тока. Поэтому для передачи тока на большие расстояния напряжение повышают, а перед подачей потребителю наоборот, понижают. В первом случае нужны повышающие трансформаторы, а во втором – понижающие. Это основное применение трансформаторов.

Трансформаторы применяются также в схемах питания бытовых приборов. Например, в телевизорах применяют трансформаторы, имеющие несколько обмоток (для питания схем, транзисторов, кинескопа, и т.д.).

В начало

Схема трансформатора

  1. Изоляция трансформатора на основе безматричной вакуумной пропитки и работает в среде с высокой влажностью воздуха и в химически агрессивной атмосфере.
  2. Минимальное выделение энергии горения (например, 43 кг для трансформатора 1600 кВА соответствуют 1,1% веса). Другие изоляционные материалы являются практически негорючими, самозатухающими и не содержат каких-либо токсичных добавок.
  3. Устойчивость трансформатора к загрязнениям благодаря конвекционным самоочищающимся дискам обмотки.
  4. Большая длина утечки по поверхности дисков обмотки, которые создают эффект изоляционных барьеров.
  5. Устойчивость трансформатора к температурной ударной нагрузке даже при крайне низких температурах (-50°С).
  6. Керамические блоки прокладки (без возможности возгорания) между дисками обмотки.
  7. Изоляция проводников стекло-шелк.
  8. Безопасность эксплуатации трансформатора благодаря специальной структуре обмотки Воздействие напряжения на изоляцию никогда не превышает напряжение изоляции (не более 10 В). Частичные разряды в изоляции физически невозможны.
  9. Охлаждение трансформатора обеспечивается вертикальными и горизонтальным каналам охлаждения, а минимальная толщина изоляции обеспечивают возможность работы трансформатора при больших кратковременных перегрузках в защитном корпусе IP 45 без принудительного охлаждения.
  10. Изоляционный цилиндр сделан и практически негорючего и самозатухающего материала, армированного стекловолокном.
  11. Обмотка низкого напряжения из стандартного провода или фольги; в качестве материала обмотки используется медь.
  12. Динамическая устойчивость трансформатора к коротким замыканиям обеспечивается керамическими изоляторами.

В начало

etcenter.ru

Силовые трансформаторы. Виды и устройство. Работа и применение

Трансформатором называется электрическое устройство, которое передает электроэнергию от одного контура на другой с помощью магнитной индукции. Трансформаторы стали наиболее применяемыми электрическими устройствами, применяющимися в быту и промышленности. Эти устройства используются для повышения или понижения напряжения, а также в схемах блоков питания для преобразования входящего переменного тока в постоянный ток на выходе.

Способность трансформаторов передавать электроэнергию применяется для передачи мощности между разными схемами несогласованных электрических цепей. Рассмотрим различные виды и типы силовых трансформаторов, их установку и технические свойства.

Устройство трансформатора

Конструкции трансформаторов имеют различное строение. В зависимости от этого ведется расчет номинального напряжения, либо между фазой и землей, либо между двумя фазами.

1 — Первичная обмотка 2 — Вторичная обмотка 3 — Сердечник магнитопровода 4 — Ярмо магнитопровода

Конструкция обычного стандартного трансформатора состоит из двух обмоток с общим ярмом, для создания электромагнитной связи между обмотками. Сердечник изготавливают из электротехнической стали. Катушка, на которую входит электрический ток, является первичной обмоткой. Катушка на выходе называется вторичной.

Существует такой вид трансформаторов, как тороидальный. У такого трансформатора катушки индуктивности являются пассивными компонентами, состоящими из магнитного сердечника в виде кольца. Сердечник имеет повышенную магнитную проницаемость, изготовлен из феррита. Вокруг кольца намотана катушка. Тороидальные фильтры и катушки применяются для трансформаторов высокой частоты. Они используются для испытаний мощности.

Переменный ток поступает на первичную обмотку трансформатора, образуется электромагнитное поле, которое развивается в магнитном потоке сердечника. По принципу электромагнитной индукции во вторичной обмотке образуется переменная ЭДС, которая образует напряжение на клеммах выхода трансформатора.

Силовые трансформаторы, имеющие две обмотки, не рассчитаны на постоянный ток. Однако, в момент подключения их к постоянному току, они образуют короткий импульс напряжения на выходе.

Вид уличного силового трансформатора

Конструкция силового трансформатора подобна обычному бытовому трансформатору.

Виды

Существует множество факторов, по которым можно классифицировать силовые трансформаторы. При общем рассмотрении этих устройств, можно сказать, что они преобразуют электрическую энергию одного размера напряжения в электроэнергию с большим или меньшим размером напряжения.

В зависимости от различных факторов силовые трансформаторы делятся на виды:

1. По выполняемой задаче. Понижающие трансформаторы. Применяются для получения низкого напряжения из высоковольтных линий питания. Повышающие, используются для увеличения значения напряжения.
2. По числу фаз. Трансформаторы 3-фазные, 1-фазные. Широко применяются в трехфазной сети питания. Оптимальным вариантом будет в трехфазной сети установить три однофазных трансформатора на каждую отдельную фазу.
3. По количеству обмоток. Двухобмоточные и трехобмоточные.
4. По месту монтажа. Наружные и внутренние.

Существует много других разных факторов, по которым можно разделять силовые трансформаторы. Например, по способу охлаждения или соединения обмоток, и т.д. При установке оборудования важную роль играют условия климата, что также разделяет трансформаторы на классы.

Трансформаторное оборудование бывает универсальным, и специального назначения мощностью до 4000 кВт напряжением 35000 вольт. Конкретную модель выбирают по возлагаемой на трансформатор задаче.

Принцип действия

Трансформатором называется электромагнитное статическое устройство, у которых имеется 2 или больше обмоток, связанных индуктивно. Они предназначены для изменения одного переменного тока в другой. Вторичный ток может различаться любыми свойствами: значением напряжения, количеством фаз, формой графика тока, частотой. Широкое использование в электроустановках, а также в распределительных системах получили силовые трансформаторы.

С помощью таких устройств преобразуют размер напряжения и тока. При этом количество фаз, форма графика тока, частота не изменяются. Элементарный силовой трансформатор имеет магнитопровод из ферромагнитного материала, две обмотки на стержнях. Первая обмотка подключена к линии питания переменного тока. Ее называют первичной. Ко второй обмотке подсоединена нагрузка потребителя. Ее назвали вторичной. Магнитопровод вместе с катушками обмоток располагается в баке, наполненном трансформаторным маслом.

Принцип работы заключается в электромагнитной индукции. При включении питания на первичную обмотку в виде переменного тока в магнитопроводе образуется переменный магнитный поток. Он замыкается на магнитопроводе и образует сцепление с двумя обмотками, в результате чего в обмотках индуцируется ЭДС. Если к вторичной обмотке подключить какую-либо нагрузку, то под действием ЭДС в цепи этой обмотки образуется ток и напряжение.

В повышающих силовых трансформаторах напряжение на вторичной обмотке всегда выше, чем напряжение в первичной обмотке. В понижающих трансформаторах напряжения первичной и вторичной обмоток распределяются в обратном порядке, то есть, на первичной напряжение выше, а на вторичной ниже. ЭДС обеих обмоток отличаются по количеству обмоток.

Поэтому, используя обмотки с необходимым соотношением количества витков, можно получить конструкцию трансформатора для получения любого напряжения. Силовые трансформаторы имеют свойство обратимости. Это значит, что трансформатор можно применить как повышающий прибор, или понижающий. Но, чаще всего, трансформатор предназначен для определенной задачи, то есть, либо он должен повышать напряжение, либо снижать.

Сфера использования

Энергетика в современное время не обходится без устройств, преобразующих электроэнергию в сетях и магистралях, а также принимающих и распределяющих ее. Когда появились силовые трансформаторы, то произошло снижение расхода использования цветных металлов, а также уменьшились потери энергии.

Для эффективной работы оборудования нужно рассчитать потери в силовом трансформаторе. Для этого необходимо обратиться к специалистам. Мощные трансформаторы нашли применение на линиях высокого напряжения и станциях распределения энергии. Без них не обходится ни одна отрасль промышленности, где необходимо преобразование энергии. Вот некоторые области применения силовых трансформаторов:

  • В сварочном оборудовании.
  • Для электротермических устройств.
  • В схемах электроизмерительных устройств и приборов.
Свойства и расчет трансформатора

Чаще всего основные свойства устройства указаны в инструкции в его комплекте. Для силовых трансформаторов такими основными свойствами являются:

  • Номинальное значение напряжения и мощности.
  • Наибольший ток обмоток.
  • Габаритные размеры.
  • Вес устройства.

Мощность трансформатора по номиналу определяется изготовителем, и выражается в кВА (киловольт-амперы). Номинальное значение напряжения указывается первичное, для соответствующей обмотки, и вторичное, на клеммах выхода. Размеры этих значений могут не совпадать на 5% в ту или иную сторону. Чтобы ее вычислить, нужно сделать простой расчет.

Номинальный ток и мощность устройства должны удовлетворять стандартам. На сегодняшний день производятся модели сухих трансформаторов, которые имеют такие данные мощности от 160 до 630 кВА. Обычно мощность трансформатора обозначена в его паспорте. По ее значению определяют номинальный размер тока. Для расчета применяют формулу:

I = S х √3U, где S и U – это мощность по номиналу, и напряжение.

Для каждой обмотки в формулу входят свои значения величин. Чтобы рассчитать мощность силового трансформатора при работе с потребляющей энергию нагрузкой, необходимо проводить довольно сложные расчеты, которые могут сделать специалисты. Такие расчеты необходимы во избежание негативных моментов, которые могут возникнуть при функционировании трансформатора.

Номинальное напряжение – это линейная величина напряжения холостого хода на обмотках. Они вычисляются, исходя из мощности трансформатора.

Установка и эксплуатация

Многие варианты исполнения силовых трансформаторов имеют большую массу. Поэтому на место монтажа их доставляют на специальных транспортных платформах. Их привозят в собранном готовом к подключению виде.

Силовые трансформаторы устанавливаются на специальном фундаменте, либо в определенном для этого помещении. При массе трансформатора до 2 тонн установка производится на фундамент. Корпус трансформатора в обязательном порядке заземляют.

Перед монтажом трансформатор подвергают лабораторным испытаниям, в ходе которых измеряется коэффициент трансформации, проверяется качество всех соединений, проверяется изоляция повышенным напряжением, производится контроль качества масла.

Перед установкой трансформатор необходимо тщательно осмотреть. Нужно обратить особое внимание на наличие утечек масла, проконтролировать состояние изоляторов, соединений контактов.

После ввода в эксплуатацию нужно периодически производить измерение температуры нагрева специальными стеклянными термометрами. Температура должна быть не более 95 градусов.

Во избежание аварий при эксплуатации силового трансформатора нужно периодически производить замеры нагрузки. Это дает информацию о перекосах фаз, искажающих напряжение питания. Осмотр силового трансформатора производится два раза в год. Периоды осмотра могут изменяться в зависимости от состояния устройства.

Похожие темы:

 

electrosam.ru

виды трансформаторов и назначение :: SYL.ru

Среди современных устройств электротехники одним из самых распространенных является трансформатор. Этот агрегат широко используется как в бытовых приборах, так и силовой электронике. Его действие заключается в преобразовании тока. Причем изменять его величину трансформатор может как в большую, так и меньшую сторону.

Определенным устройством обладает трансформатор. Виды трансформаторов разнообразны. Они имеют некоторые конструкционные и функциональные отличия. Чтобы понять, что собой представляет подобное оборудование, а также особенности его эксплуатации, каждый вид следует рассмотреть подробно.

Устройство

Существующие сегодня виды трансформаторов тока обладают определенными общими характеристиками. Прибор имеет в своей системе одну, две и больше обмоток. Они расположены на один сердечник. Представленные сегодня в продаже трансформаторы отличаются способом изготовления. Их надежность зависит от производителя. Рабочие характеристики таких видов оборудования также схожи.

Трансформатор не предназначен для преобразования постоянного тока. В противном случае это приведет к перегреву проводника. Трансформаторы способны работать исключительно с переменным, импульсным и пульсирующим током.

Все разновидности представленного оборудования имеют в своем составе три обязательных компонента. К ним относится магнитопровод, охлаждающая система и обмотка. Первый компонент еще называют сердечником.

Принцип работы

Рассматривая назначение и виды трансформаторов, следует сказать несколько слов об их функциональных качествах. В таком оборудовании присутствует первичная и вторичная обмотка. К первой катушке подводится первоначальное напряжение. Его требуется повысить или понизить.

Вторичные обмотки могут состоять из одной или нескольких катушек. С них передается трансформированное напряжение. В основу работы такого прибора положен закон Фарадея. Магнитный поток, который изменяется во времени через ограниченную контуром площадку, формирует электродвижущие силы. Помимо этого, ток, который изменяется во времени, может индуцировать непостоянное магнитное поле.

На схемах трансформатор изображают как две (или более) катушки. Между первой и вторичными обмотками проходит вертикальная линия. Она изображает сердечник (магнитопровод). При выполнении возложенных на него функций трансформатор обладает малыми потерями энергии. Это сделало представленное оборудование востребованным.

Рабочие режимы

Существующие виды работы трансформатора можно выделить в 3 группы. К ним относится холостой ход, короткое замыкание и рабочий режим. В первом случае выводы вторичной обмотки никуда не подключаются. В этом режиме, если сердечник изготовлен из мягкого магнитного материала, ток покажет потери.

При коротком замыкании выводы катушек вторичной обмотки соединяются между собой. При этом на первичную обмотку будет подаваться незначительное напряжение. Этот режим присутствует в измерительных разновидностях трансформаторов.

При активной нагрузке возникают напряжения на концах всех типов обмотки. Если на вторичной обмотке это значение выше, трансформатор называется повышающим. И наоборот. Степень трансформации определяется при помощи заданного коэффициента.

Классификация

Существует несколько подходов к классификации представленного оборудования. Это позволяет понять его устройство и функции. Существующие виды трансформаторов тока могут классифицироваться по назначению. В этом случае выделяются приборы напряжения, измерительные, лабораторные, защитные, промежуточные типы.

По способу установки также выделяют несколько групп. От этого зависят условия, в которых может эксплуатироваться техника. Трансформаторы могут быть внутренние и наружные, стационарные, шинные или опорные, а также переносные.

Ступеней в системе может быть одна или несколько. По признаку номинального напряжения различают высоковольтные и низковольтные приборы. Если учитывать тип изоляции, можно также выделить несколько групп трансформаторов. Этот показатель зависит от технологии производства. Бывают приборы с компаундной, сухой и масляно-бумажной изоляцией.

Согласно со сферой применения, выделяют силовые, бытовые, сварочные, масляные, автотрансформаторы и т. д.

Силовой трансформатор

Существующие виды силовых трансформаторов относятся к низкочастотным приборам. Их применяют в силовых сетях предприятий, городов, поселков и т. д. Такое оборудование понижает напряжение в сети до требуемого значения 220 В.

Силовые трансформаторы могут иметь от двух и более обмоток. Они устанавливаются на броневом сердечнике. Чаще всего подобный конструкционный элемент изготавливают из электротехнической стали. Такой трансформатор помещается в бак со специальным маслом. Если мощность оборудования высокая, в ней применяется активное охлаждение.

Для электростанций применяются силовые трехфазные трансформаторы. Их мощность составляет до 4 тыс. кВт. Такие разновидности приборов позволяют добиться уменьшения на 15 % энергопотерь по сравнению с тремя однофазными трансформаторами.

Сетевые разновидности

В 80-е года прошлого века самым распространенным был сетевой трансформатор. Виды трансформаторов этого типа дорабатывались. Сегодня их изготавливают на Ш-подобном сердечнике, а также стержневых или тороидальных магнитопроводах. На них и устанавливаются обмотки.

При помощи подобного устройства напряжение, которое поступает из бытовой сети, понижается до требуемого значения (например, 12, 24 В). Самыми компактными считаются трансформаторы с тороидальным сердечником. Его магнитопровод полностью покрывается обмотками. При этом удается избежать появления пустого ярма.

Автотрансформатор

Существующие виды обмоток трансформатора очень разнообразны. Они могут быть регулирующими, основными, вспомогательными. Наиболее оригинальное строение имеет обмотка автотрансформатора. Это низкочастотный прибор. Его вторичная обмотка является составной частью первичной. Они связаны, как и в других видах трансформаторов, магнитно. Однако подобная обмотка сообщается также и электрически.

От одной катушки отходит несколько выводов, позволяя получить напряжение разного значения. Преимуществом такой конструкции является ее низкая стоимость. Провода для монтажа обмотки потребуется меньше. Также получается сэкономить на количестве материала сердечника. Вес автотрансформатора будет меньше, чем у других типов оборудования.

Однако в этом типе приборов отсутствует гальваническая развязка. Это недостаток автотрансформаторов. Такое оборудование применяется в автоматической технике управления, а также на высоковольтных коммуникациях. Сегодня большой популярностью пользуются трехфазные автотрансформаторы. Их соединенная обмотка образует треугольник или звезду.

Трансформатор тока и напряжения

Сегодня также выделяются определенные виды трансформаторов напряжения и тока. Все зависит о того, как функционирует прибор. Если он понижает ток, это, соответственно, трансформатор тока. Для регулировки напряжения также разработана определенная категория приборов.

Первичная обмотка трансформатора тока подключается к электричеству, а вторичная – к измерительным или защитным приборам. Чаще всего применяется первый тип устройств. Катушку с первичной обмоткой подключают в цепь последовательно. В ней измеряется переменный ток.

Сердечник такого оборудования изготавливают из шихтованной электротехнической стали. Ее производят холоднокатаным способом. Первичная обмотка чаще всего представляет собой шину. При работе подобного оборудования важно учитывать коэффициент трансформации.

Для промышленности могут выпускаться подобные приборы с несколькими группами вторичных обмоток. Одну из них соединяют с измерительными приборами (например, счетчикам), а вторую – к защитному оборудованию.

Импульсный трансформатор

Рассматривая, какие виды трансформаторов применяются сегодня, нельзя не сказать несколько слов об импульсных разновидностях представленных приборов. Они практически полностью вытеснили низкочастотные тяжелые трансформаторы. Их сердечник выполняется не из шихтовой стали, а из феррита. Форма магнитопровода может быть самой разной, например, чашка, кольцо, Ш-подобный тип.

Трансформаторы импульсного типа могут функционировать на высоких частотах (500 кГц и более). Благодаря такой особенности габариты подобных изделий значительно уменьшились. Требуется использовать меньше провода для обмотки.

Импульсные трансформаторы и дроссели с ферритовым стержнем сегодня применяются всюду. Их можно встретить в энергосберегающих лампочках, зарядных устройствах, мощных инверторах и т. д. Сфера их применения очень широка.

В некоторых трансформаторах импульсного типа применяется обратная схема питания. В этом случае прибор по своей сути является дросселем сдвоенного типа. При этом процессы приема и передачи электроэнергии протекают не одновременно.

Импульсный трансформатор тока

Чтобы иметь возможность измерять направление и величину тока, для импульсных схем часто применяется особый трансформатор. Виды трансформаторов этой группы имеют ферритовый сердечник. Чаще всего он имеет единственную кольцевую обмотку. Через ее центр продевается провод. В нем и исследуется ток. Обмотку при этом нагружают на резистор.

Измерение производится по несложной схеме. Если нагрузка выполняется на резистор известного номинала, то напряжение при замере на нем будет пропорциональным показателю тока обмотки.

В продаже присутствуют трансформаторы этого типа с различными показателями коэффициента трансформации. Если нужно узнать только направленность тока, прибор нагружается только двумя стабилизаторами, встроенными в схему.

Система защиты

Трансформаторы представляют собой надежное оборудование. Однако из-за различных повреждений может произойти аварийная ситуация. Поэтому применяются различные виды защит трансформатора.

Подобные системы отключают оборудование от сети при наличии повреждений. В зависимости от типа конструкции защита может отсоединить питание только от поврежденной части прибора. При обнаружении поломки система может подавать сигнал. При этом используют различные типы защиты автотрансформаторов.

Дифференциальная защита необходима при нарушениях целостности обмоток, ошиновки и вводов оборудования. Если же повреждения обнаруживаются со стороны источника питания, происходит токовое отсекание. Это защита мгновенного действия.

Газовая защита применяется при повреждениях внутри бака. При этом может выделяться газ. Также она срабатывает при понижении уровня масла.

Максимальная токовая или направленная защита позволяет уберечь оборудование от сверхтоков. Также в некоторых конструкциях может предусматриваться защита от замыкания на корпус и от перегрузки. Последняя система действует на сигнал, оповещая персонал.

Рассмотрев особенности конструкции и принцип работы, можно понять, что собой представляет трансформатор. Виды трансформаторов, существующие сегодня, отличаются по ряду признаков. Это влияет на их функциональность.

www.syl.ru

Трансформаторы, виды трансформаторов и их описание

Электрические трансформаторы, как таковые, разрабатывались, и в большинстве своем применяются, для изменения напряжения в цепях переменного тока. Классический трансформатор состоит из двух обмоток, электрически друг с другом никак не связанных. Обе обмотки должны быть намотаны на один магнитопровод.
Передача энергии, между обмотками (катушками) происходит при помощи магнитного поля. Согласно закону Ленца для электромагнитной индукции, при пересечении проводника магнитными силовыми линиями, в нем возникает электродвижущая сила заставляющая заряды перемещаться внутри проводника. (Давайте вспомним простой опыт из курса физики, который наглядно  демонстрирует это закон).

На этом законе основана работа всех трансформаторов. Если через одну из обмоток трансформатора пропустить постоянный ток, то во вторичной обмотке не возникнет электродвижущая сила и, следовательно, ток (не считая момента включения). А все потому, что магнитные силовые линии, вызванные в магнитопроводе  током первичной обмотки, не будут пресекать витки вторичной катушки. Нет пересечения – нет тока. По этой причине постоянный ток не трансформируется. Вообще, слово «трансформатор» очень точно характеризует процессы происходящие внутри этого электроприбора. Первоначально электрический ток трансформируется в магнитное поле, а затем это поле преобразуется (трансформируется) опять в электрический ток. Только ток этот должен быть переменным, то возрастающим, то убывающим, или, на крайний случай, пульсирующим.

Для предотвращения потерь энергии в силовых трансформаторах используется система охлаждения. На них сверху устанавливается расширительный бачок и заливается масло.

Бывают трансформаторы, у которых первичная и вторичная обмотки являются, как бы частью одной и той же катушки индуктивности. Такие устройства называются автотрансформаторами.

Итак, трансформаторы обычно классифицируются по следующим признакам:

По назначению они бывают:По способу установки:
–      силовые–      стационарные
–      измерительные–      переносные
–      защитные–      наружные
–      лабораторные–      внутренние
–      трансформаторы тока–      шинные
–      трансформаторы напряжения–      опорные.
–      промежуточные.
По числу ступеней различают:По используемому напряжению:
–      одноступенчатые–      высоковольтные
–      каскадные (многоступенчатые).–      низковольтные.
По типу изоляции:По количеству фаз
–      с сухой изоляцией–      однофазные
–      с бумажно-масляной изоляцией–      трехфазные.
–      с компаундной изоляцией.

Для нас, потребителей, наиболее важными из перечисленных, являются силовые высоковольтные стационарные трехфазные трансформаторы, с компаундной изоляцией. Они устанавливаются внутри тяговых подстанций. Именно от их работы зависит, будет ли в нашем доме электричество или нет. Подходящее к тяговой подстанции напряжение, обычно в 10000 вольт, преобразуется в 220 и подается потребителям, то есть нам с вами.

Знать какие бывают трансформаторы и зачем они нужны жизненно необходимо не только электрикам, но и простым гражданам, хотя бы для того, что бы предотвратить техногенные катастрофы. Так, в случае возникновения дыма из высоковольтного трансформатора, или просто громкой его работы (при обычной работе ни не гудят), необходимо срочно позвонить в службу энергосбыта, это, возможно, предотвратит аварию и отключения большого количества потребителей от электроснабжения. Недаром говорили древние: «Знающий человек предупрежден, а предупрежден, значит вооружен».


 

volt-index.ru

Какие бывают трансформаторы

Такая тема как трансформаторы, — это тема довольно таки очень серьезная, если решение технических вопросов по трансформаторам касается:

  • предприятий;
  • учреждений;
  • организаций.

Допустим, человек получил техническое образование и его работа непосредственно связана с электрикой.   После сдачи экзаменов по ТБ, специалист приступает к выполнению своих  обязанностей и совершает свои действия с устранением неполадок в понижающем трансформаторе.   Выполнение таких профессиональных обязанностей требуют от нас:

  • соблюдения техники безопасности;
  • знаний

и опыта в работе.   Если специалист не в полном объеме обладает своими профессиональными качествами и в его действиях совершается ошибка, то такая ошибка может стать последней и может являться  причиной несчастного случая.

Принцип действия однофазного трансформатора

Где мы можем наблюдать в быту применение однофазных трансформаторов? — Да практически везде, а именно, допустим в:

  •  аудиотехнике;
  • видеотехнике;
  • измерительных приборах

и далее.

 

   Нужны ли нам знания о трансформаторах? — Конечно же, они нам необходимы такие знания.   Как допустим мы можем устранить неисправность в подзарядном устройстве для аккумуляторов авто,  не обладая знаниями в электротехнике? — Такой вариант невозможен.   То-есть, выполняя ремонт какого-либо электроприбора, электрическая схема которого может иметь дополнительно — однофазный трансформатор, мы как-бы вынуждены применить свои знания для устранения неисправности.

Итак, трансформатор как нам известно — это статический электромагнитный аппарат, который может иметь две или более индуктивно связанные обмотки.   Обмотку, подключенную к внешнему источнику энергии — мы называем первичной обмоткой.   Ко вторичной обмотке подключается нагрузка, которая создает замкнутую цепь.   Если вторичная обмотка располагает большим количеством витков, то такая обмотка будет считаться высшего напряжения (ВН) и наоборот.   Чтобы увеличить магнитную связь между обмотками, обмотки располагают \наматывают\ на сердечник из ферромагнитного материала, состоящего из набора тонкой листовой электротехнической стали.

Разберемся конкретно, почему именно называют трансформатор — статическим электромагнитным аппаратом? — такое название происходит от принципа действия, работы трансформатора.   Принцип работы трансформатора нам всем хорошо известен и состоит  в том, что если к первичной обмотке подвести переменное напряжение, то вследствии протекания  тока в первичной обмотке — ток создает магнитный поток в сердечнике.   Возникший, магнитный поток в сердечнике создает в свою очередь электродвижущую силу самоиндукции в первичной обмотке и электродвижущую силу для вторичной обмотки.

Сам магнитный поток трансформатора состоит из основного магнитного потока, который циркулирует, замыкается в сердечнике трансформатора, а также,  потоков рассеяния первичной и вторичной обмоток.   Что же из себя представляет поток рассеяния для первичной и вторичной обмоток трансформатора?   Поток рассеяния из себя представляет — магнитные силовые линии, как и для электромагнита.

  рис. 1

По рисунку №1 можно проследить и понять сам принцип работы однофазного трансформатора.   Читаем схематическое изображение:

К первичной обмотке трансформатора подведено переменное напряжение U1 со своим значением переменного тока I1.   Ток I1,  протекая в первичной обмотке 1 создает в сердечнике трансформатора 3  основной магнитный поток Ф0.   Вторичная обмотка замкнута на сопротивление, где для данной цепи протекает ток I2.   При этом создается кроме основного магнитного потока — потоки рассеяния Ф1 и  Ф2 \магнитные силовые линии\.  

 

 рис. 2

В данном рисунке \рис. 2\ дается более наглядное представление о подключении однофазного трансформатора к внешнему источнику переменного напряжения.   Нагрузкой для вторичной обмотки может являться  обыкновенная электрическая лампочка, — допустим, на 36 вольт 100 Вт с обычным патроном на Е-27 \с соответствующим напряжением для вторичной обмотки\.

Принцип действия трехфазного трансформатора

 

 

 рис. 3

На рисунке представлена схема соединений обмоток для трехфазного трансформатора \рис. 3\.   Начала обмоток обозначены в схеме прописными буквами — А, В, С и концы обмоток низкого напряжения с обозначением букв — a, b, c.   Конструкция трехфазного трансформатора, как видно по рисунку,  состоит из трех отдельных магнитопроводов.   Из прочитанной технической литературы можно сделать вывод, что данный тип трансформаторов имеет редкое свое применение.   Обычно, обмотки низкого и высокого напряжений  трехфазных трансформаторов —  выполняются на общем магнитопроводе.

В схемах трехфазных трансформаторов,  приняты стандартные обозначения прописными  буквами:

  • А, В, С — начала обмоток высокого напряжения;
  • X, Y, Z — концы обмоток высокого напряжения

— для первичных обмоток.

Строчными буквами — а, в, с  и  x, y, z  обозначаются начала и концы вторичных обмоток.

Принцип действия трехфазного трансформатора тот же, что и у однофазного, и основан на принципе возникновения электродвижущей силы \э.д.с\  в  его обмотках.

Схемы соединений обмоток — трехфазного трансформатора

 Соединения обмоток трехфазных трансформаторов могут быть выполнены в следующем исполнении:

  • звезда;
  • звезда с выведенной нулевой точкой;
  • треугольник;
  • зигзаг;
  • зигзаг с выведенной нулевой точкой.

Трехфазные трансформаторы обычно изготавливают в стержневом исполнении, то-есть, на каждом стержне размещают обмотки низшего и высшего напряжения — для одной фазы.

Читаем схемы трехфазных трансформаторов:

рис. 4

В схеме трехфазного трансформатора \рис. 4\ обмотки высокого и низкого напряжения  имеют соединения — звезда\звезда.

Для следующей схемы \рис. 5\, первичные обмотки высокого напряжения соединены между собой по схеме — звезда.   Вторичные обмотки низкого напряжения соединены между собой по схеме — треугольник.

рис. 5

Так же, встречаются следующие соединения обмоток:

  • звезда\звезда с выведенной нулевой точкой;

  • звезда с выведенной нулевой точкой\треугольник;

  • треугольник\звезда с выведенной нулевой точкой.

В зависимости от назначения, трехфазные трансформаторы имеют различную конструкцию и так же как и однофазные трансформаторы, состоят из двух основных частей — магнитопровода и обмоток.

 По своей конструкции, трехфазные трансформаторы бывают:

  • с масляным;
  • с воздушным

естественным охлаждением.

Данная тема дает как бы поверхностное представление о трансформаторах, — но у нас  все  впереди.

Следите за рубрикой данного сайта.

 

 

 

zapiski-elektrika.ru

Трансформаторы — устройство, принцип работы и область применения, основные типы и характеристики

ВИДЫ И ТИПЫ
— ХАРАКТЕРИСТИКИ
— ПРИМЕНЕНИЕ

Трансформаторы — это устройства предназначенные для преобразования электроэнергии. Их основная задача — изменение значения переменного напряжения. Трансформаторы используются как в виде самостоятельных приборов, так и в качестве составных элементов других электротехнических устройств.

Достаточно часто трансформаторы используются при передаче электроэнергии на дальние расстояния. Непосредственно на электрогенерирующих предприятиях они позволяют существенно повысить напряжение, которое вырабатывается источником переменного тока.

Повышая напряжение до 1150 кВт, трансформаторы обеспечивают более экономную передачу электроэнергии: значительно снижаются потери электричества в проводах и появляется возможность уменьшить площадь сечения кабелей, используемых в линиях электропередач.

Принцип работы трансформатора основан на эффекте электромагнитной индукции. Классическая конструкция состоит из металлического магнитопровода и электрически не связанных обмоток выполненных из изолированного провода. Та обмотка, на которую подается электроэнергия, называется первичной. Вторая — подсоединённая к устройствам, потребляющим ток, называется вторичной.

После того как трансформатор подсоединяют к источнику переменного тока в его первичная обмотка формирует переменный магнитный поток. По магнитопроводу он передается на витки вторичной обмотки, индуцируя в них переменную ЭДС (электродвижущую силу). При наличии устройства потребления в цепи вторичной обмотки возникает электрический ток.

Соотношение между входным и выходным напряжением трансформатора прямо пропорционально отношению количества витков соответствующих обмоток.

Эта величина называется коэффициентом трансформации: Ктр=W1/W2=U1/U2, где:

  • W1, W2 — количество витков первичной и вторичной обмоток соответственно;
  • U1,U2 — входное и выходное напряжения соответственно.

Обмотки могут быть расположены либо в виде отдельных катушек либо одна поверх другой. У маломощных устройств обмотки выполняются из провода с хлопчатобумажной или эмалевой изоляцией. Микро трансформатор имеет обмотки из алюминиевой фольги толщиной не более 20—30 мкм. В качестве изолирующего материала выступает оксидная пленка, полученная естественным окислением фольги.

ВИДЫ И ТИПЫ ТРАНСФОРМАТОРОВ

Трансформаторы — это достаточно широко распространенные устройства, поэтому существует множество их разновидностей. По конструктивному исполнению и назначению они делятся на:

Автотрансформаторы.

Они имеют одну обмотку с несколькими отводами. За счет переключения между этими отводами можно получить разные показатели напряжения. К недостаткам следует отнести отсутствие гальванической развязки между входом и выходом.
Импульсные трансформаторы.

Предназначены для преобразования импульсного сигнала незначительной продолжительности (около десятка микросекунд). При этом форма импульса искажается минимально. Обычно используется в цепях обработки видеосигнала.
Разделительный трансформатор.

Конструкция этого устройства предусматривает полное отсутствие электрической связи между первичной и вторичными обмотками, то есть обеспечивает гальваническую развязку между входными и выходными цепями. Используется для повышения электробезопасности и, как правило, имеет коэффициент трансформации равный единице.
Пик—трансформатор.

Используется для управления полупроводниковыми электрическими устройствами типа тиристоров. Преобразует синусоидальное напряжение переменного тока в пикообразные импульсы.

Стоит выделить способ классификации трансформаторов по способу их охлаждения.

Различают сухие устройства с естественным воздушным охлаждением в открытом, защищенном и герметичном исполнении корпуса и с принудительным воздушным охлаждением.

Устройства с жидкостным охлаждением могут использовать различные типы теплообменной жидкости. Чаще всего это масло, однако встречаются модели где в качестве теплообменного вещества используется вода или жидкий диэлектрик.

Кроме того производят трансформаторы с комбинированным охлаждением жидкостно-воздушным. При этом каждый из способов охлаждения может быть как естественным, так и с принудительной циркуляцией.

В начало

ХАРАКТЕРИСТИКИ ТРАНСФОРМАТОРОВ

К основным техническим характеристиками трансформаторов можно отнести:

  • уровень напряжения: высоковольтный, низковольтный, высоко потенциальный;
  • способ преобразования: повышающий, понижающий;
  • количество фаз: одно- или трехфазный;
  • число обмоток: двух- и многообмоточный;
  • форму магнитопровода: стержневой, тороидальный, броневой.

Один из основных параметров — это номинальная мощность устройства, выраженная в вольт-амперах. Точные граничные показатели могут несколько различаться в зависимости от количества фаз и других характеристик. Однако, как правило, маломощными считаются устройства, преобразовывающие до нескольких десятков вольт-ампер.

Приборами средней мощности считаются устройства от нескольких десятков до нескольких сотен, а трансформаторы большой мощности работают с показателями от нескольких сотен до нескольких тысяч вольт-ампер.

Рабочая частота – различают устройства с пониженной частотой (менее стандартной 50 Гц), промышленной частоты – ровно 50 Гц, повышенной промышленной частоты (от 400 до 2000 Гц) и повышенной частоты (до 1000 Гц).

В начало

ОБЛАСТЬ ПРИМЕНЕНИЯ

Трансформаторы получили широкое распространение, как в промышленности, так и в быту. Одной из основных областей их промышленного применения является передача электроэнергии на дальние расстояния и ее перераспределение.

Не менее известны сварочные (электротермические) трансформаторы. Как видно из названия, данный тип устройств применяется в электросварке и для подачи питания на электротермические установки. Также достаточно широкой областью применения трансформаторов является обеспечение электропитания различного оборудования.

В зависимости от назначения трансформаторы делят на:

Силовые.

Являются наиболее распространенным типом промышленного трансформатора. Применяются для повышения и понижения напряжения. Используется в линиях электропередач. По пути от электрогенерирующих мощностей до потребителя электроэнергия может несколько раз проходить через повышающие силовые трансформаторы, в зависимости от удалённости конкретного потребителя.

Перед подачей непосредственно на приборы потребления (станки, бытовые и осветительные приборы) электроэнергия претерпевает обратные преобразования, проходя через силовые понижающие трансформаторы.

Тока.

Выносные измерительные трансформаторы тока используются для обеспечения работоспособности цепей учета электроэнергии защиты энергетических линий и силовых автотрансформаторов. Они имеют различные размеры и эксплуатационные показатели. Могут размещаться в корпусах небольших приборов или являться отдельными, габаритными устройствами.

В зависимости от выполняемых функций различают следующие виды:

  • измерительные — подающее ток на приборы измерения и контроля;
  • защитные — подключаемые к защитным цепям;
  • промежуточные — используется для повторного преобразования.

Напряжения.

Они применяются для преобразования напряжения до нужных величин. Кроме того, такие устройства используются в цепях гальванической развязки и электро- радио- измерениях.

В начало

© 2012-2018 г. Все права защищены.

Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

eltechbook.ru