Кпд формула для расчета – Коэффициент полезного действия — Википедия

РАСЧЁТ КПД ПРЕОБРАЗОВАТЕЛЯ

      


   Речь в данной статье пойдёт о всем знакомого, но многим не понятного термина коэффициент полезного действия (КПД). Что же это такое? Давайте разберёмся. Коэффициент полезного действия, далее по тексту (КПД) — характеристика эффективности системы какого-либо устройства, в отношении преобразования или передачи энергии. Определяется отношением полезной использованной энергии к суммарному количеству энергии, полученному системой. Обозначается обычно ? (« эта»). ? = Wпол/Wcyм. КПД является безразмерной величиной и часто измеряется в процентах. Математически определение КПД может быть записано в виде: n=(A:Q ) х100 %, где А — полезная работа, а Q — затраченная работа. В силу закона сохранения энергии КПД всегда меньше единицы или равен ей, то есть невозможно получить полезной работы больше, чем затрачено энергии! Просматривая разные сайты, часто удивляюсь, как радиолюбители сообщают, вернее, хвалят свои конструкции, за высокий КПД, не имея понятия, что это такое! Для наглядности на примере рассмотрим упрощенную схему преобразователя, и узнаем, как найти КПД устройства. Упрощенная схема изображена на рис.1

   Допустим за основу взяли повышающий DC/DC преобразователь напряжения (далее ПН), из однополярного, в повышенное однополярное. В разрыв цепи питания включаем амперметр РА1,и параллельно входу питания ПН вольтметр РА2, показания которых нужны для расчёта потребляемой (Р1) мощности устройства и нагрузки вместе от источника питания. К выходу ПН в разрыв питания нагрузки тоже включаем амперметр РАЗ и вольтметр РА4, требующиеся для расчёта потребляемой нагрузкой (Р2) мощности от ПН. Итак, всё готово для расчёта КПД, тогда приступим. Включаем своё устройство, производим замеры показаний приборов и рассчитываем мощности Р1 и Р2. Отсюда Р1=I1 x U1, и P2=I2 x U2. Теперь рассчитываем КПД по формуле: КПД(%)= Р2 : Р1 х100. Вот теперь вы узнали примерно реальный КПД своего устройства. По подобной формуле можно рассчитать ПН и с двух полярным выходом по формуле: КПД(%)= (Р2+Р3) : Р1 х100, а также понижающий преобразователь. Следует отметить, что в значение (Р1) входит также и ток потребления, например: ШИМ-контроллёра, и (или) драйвера управления полевыми транзисторами, и прочими элементами конструкции.

   Для справки: производители автоусилителей зачастую указывают выходную мощность усилителя намного больше, чем в реальности! Но, узнать примерную реальную мощность автоусилителя, можно по простой формуле. Допустим на автоусилителе в цепи питания +12v, стоит предохранитель на 50 А. Высчитываем, Р=12V х 50A, итого получаем мощность потребления 600 Вт. Даже в качественных и дорогих моделях КПД всего устройства вряд ли превышает 95%. Ведь часть КПД рассеивается в виде тепла на мощных транзисторах, обмотках трансформатора, выпрямителях. Так вот вернёмся к расчёту, получаем 600 Вт: 100% х92=570Вт. Следовательно, не какие там 1000 Вт или даже 800 Вт, как пишут производители, этот автоусилитель не выдаст! Надеюсь, эта статья поможет Вам разобраться в такой относительной величине, как КПД! Всем удачи в разработках и повторении конструкций. С Вами был invertor.

   Форум по теории

   Обсудить статью РАСЧЁТ КПД ПРЕОБРАЗОВАТЕЛЯ

ЧАСЫ НА СВЕТОДИОДАХ

     Предлагаем интересный вариант передели настольных часов на светодиодные, с микроконтроллерным управлением. Приведено фото и описание конструкции.

radioskot.ru

Расчет КПД

Машинный агрегатСовокупность механизмов двигателя, передаточных механизмов и механизмов рабочей машины.

Рассмотрим отдельно установившееся движение. Для каждого полного цикла этого движения приращение кинетической энергии равно нулю:

∑(mv2)/2-∑(mv02)/2=0 (1)

Механическим коэффициентом полезного действия (к.п.д.) называется отношение абсолютной величины работы сил производственных сопротивлений к работе всех движущих сил за цикл установившегося движения. В соответствии с этим можно написать формулу:

К. П.Д. определяется по формуле: η=Ап. с/Ад (2)

Где: Апс — работа производственных сил;

Ад — работа движущих сил.

Отношение работы АТ непроизводственных сопротивлений к работе движущих сил принято обозначать через Ψ и называть коэффициентом механических потерь. В соответствии с этим формулу можно записать так:

η = АТ /АД= 1 – Ψ (3)

Чем меньше в механизме работ непроизводственных сопротивлений, тем меньше его коэффициент потерь и тем совершеннее механизм в энергетическом отношении.

Из уравнения следует: т. к. ни в одном механизме работа АТ не производственных сил сопротивлений, сил трения (трения коченея, трение скольжение, сухое, полусухое, жидкостное, полужидкостное), практически не может, равняться нулю, то кпд не может равняться нулю.

Из формулы (2) следует, что кпд может быть равен нулю если

АТ = АД

Значит, кпд равен нулю, если работа движущих сил равна работе всех сил непроизводственных сопротивлений, которые имеются в механизме. В этом случае движение является возможным, но без совершения какой либо работы. Такое движение механизма называют движением в холостую.

КПД не может быть меньше нуля, т. к. для этого необходимо, чтобы отношение работ АТ / АД было больше единицы:

АТ / АД >1 или АТ > АД

Из этих неравенств следует, что если механизм, удовлетворяющий указанному условию, находится в покое, то действительного движения не произойти не может, Это явление носит название Самоторможения механизма. Если же механизм находится в движении. То под действием сил непроизводственных сопротивлений он постепенно будет замедлять вой ход, пока не остановится (затормозится). Следовательно, получении при теоретических расчётах отрицательного значения кпд служит признаком самоторможения механизма или невозможности движения в заданном направлении.

Таким образом, кпд механизма может изменяться в пределах:

0 ≤η< 1 (4)

Из формулы (2) следует, что кпд Ψ изменяется в пределах: 0 ≤η< 1

Взаимосвязь машин в машинном агрегате.

Каждая машина представляет собой комплекс соединенных определенным образом механизмов, а некоторые сложные могут быть расчленены на более простые, то имея возможность вычислить К. П.Д. простых механизмов или же имея в своем распоряжении определенные значения К. П.Д. простых механизмов, можно найти полный К. П.Д. машины, составленный из простых элементов в любой их комбинации.

Все возможные случаи передачи движения и силы можно разделить на случаи: последовательного, параллельного и смешанного соединения.

При расчете К. П.Д. соединений будем брать агрегат, состоящий из четырёх механизмов которого: N1=N2=N3=N4, η1=η2=η3=η4=0.9

Движущую силу (АД) принимаем = 1,0

Рассмотрим К.П.Д. последовательного соединения.

Первый механизм приводится в движение движущими силами, которые совершают работу Ад. Так как полезная работа каждого предыдущего механизма, затрачивается на производственные сопротивления, является работой движущих сил для каждого последующего, то К. П.Д. η первого механизма равен:

η=А1/Ад

Второго — η =А2/А1

Третьего – η=А3/ А2

Четвертого – η=А4/ А3

Общий коэффициент полезного действия η1n=Аn/Ад

Значение этого коэффициента полезного действия может быть получена, если перемножить все отдельные коэффициенты полезно действия η1, η2,η3,η4. Имеем

η=η1*η2*η3*η4=(А1/АД)*(А2/А1)*(А3 /А2)*(А4/А3)=Аn/Ад (5)

Таким образом, общий механический коэффициент полезного действия последовательного соединения механизмов равняется произведению механических коэффициентов полезного действия отдельных механизмов, составляющих одну общую систему.

η=0,9*0,9*0,9*0,9=0,6561=Ап. с.

Рассмотрим К.П.Д. параллельного соединения.

При параллельном соединении механизмов может, быть может быть два случая: от одного источника двигательной силы мощность передаётся нескольким потребителям, несколько источников параллельно питают одного потребителя. Но мы рассмотрим первый вариант.

При таком соединении: Ап. с.=А1+А2+А3+А4

Если К. П.Д. у каждого механизма одинаковый то и мощность будет распределяться на каждый механизм одинаково: ∑КI=1 то ⇒ К1=К2=К3=К4=0,25.

Тогда: η=∑Кi*ηi (6)

η =4(0.25*0.90)=0.90

Таким образом, общий К. П.Д. параллельного соединения как сумма произведений каждого отдельного участка цепи агрегата.

Рассмотрим К.П.Д смешанного соединения.

В этом случае есть и последовательное и параллельное соединение механизмов.

В этом случае мощность Ад передаётся на два механизма (1,3), а от них на остальные (2,4)

Т. к. η1*η2=А2 и η3*η4=А4, а К1=К2=0,5

Сумма А2 и А4 равна Ап. с. то из формулы (1) можно найти К. П.Д. системы

η=К1*η1*η2+К2*η3*η4 (7)

η=0,5*0,9*0,9+0,5*0,9*0,9=0,405+0,405=0,81

Таким образом, общий К. П.Д. смешанного соединения равняется как сумма произведений механических коэффициентов соединенных последовательно умноженное на часть движущей силы.

Пути повышения К.П.Д.

Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счет уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д. Реальные возможности для повышения КПД здесь все еще остаются большими, действия равно: Действительное же значение КПД из-за различного рода энергетических потерь приблизительно равно 40%. Максимальный КПД — около 44% — имеют двигатели внутреннего сгорания. Коэффициент полезного действия любого теплового двигателя не может превышать максимально возможного значения 40-44%.

Вывод: при рассмотрении каждого соединения механизмов в отдельности можно сказать, что наибольший кпд у параллельного соединения он равен η=0,9. Следовательно в агрегатах нужно стараться использовать параллельное соединение или максимально приблежонное к нему.

mehanik-ua.ru

Коэффициент полезного действия

Допустим, мы отдыхаем на даче, и нам нужно принести из колодца воды. Мы опускаем в него ведро, зачерпываем воду и начинаем поднимать. Не забыли, какова наша цель? Правильно: набрать воды. Но взгляните: мы поднимаем не только воду, но и само ведро, а также тяжёлую цепь, на которой оно висит. Это символизирует двухцветная стрелка: вес поднимаемого нами груза складывается из веса воды и веса ведра и цепи.

Рассматривая ситуацию качественно, мы скажем: наряду с полезной работой по подъёму воды мы совершаем и другую работу – подъём ведра и цепи. Разумеется, без цепи и ведра мы не смогли бы набрать воды, однако, с точки зрения конечной цели, их вес «вредит» нам. Если бы этот вес был бы меньше, то и полная совершённая работа тоже была бы меньше (при той же полезной).

Теперь перейдём к количественному изучению этих работ и введём физическую величину, называемую коэффициентом полезного действия.

Задача. Яблоки, отобранные для переработки, грузчик высыпает из корзин в грузовик. Масса пустой корзины 2 кг, а яблок в ней – 18 кг. Чему равна доля полезной работы грузчика от его полной работы?

Решение. Полной работой является перемещение яблок в корзинах. Эта работа складывается из подъёма яблок и подъёма корзин. Важно: поднятие яблок – полезная работа, а поднятие корзин – «бесполезная», потому что цель работы грузчика – переместить только яблоки.

Введём обозначения: Fя – сила, с которой руки поднимают вверх только яблоки, а Fк – сила, с которой руки поднимают вверх только корзину. Каждая из этих сил равна соответствующей силе тяжести: F=mg.

Пользуясь формулой  A = ±( F||· l ) , «распишем» работы этих двух сил:

Aполезн  =  +Fя · lя  =  mя g · h       и       Aбесполезн  =  +Fк · lк  =  mк g · h

Полная работа складывается из двух работ, то есть равна их сумме:

Aполн  =  Aполезн  +  Aбесполезн  =  mя g h  +  mк g h  =  ( mя + mк ) · g h

В задаче нас просят вычислить долю полезной работы грузчика от его полной работы. Сделаем это, поделив полезную работу на полную:

Доля  = Aполезн  =mя · g h  =18 кг  =18 кг  =  0,9
Aполн( mя + mк ) · g h( 18 + 2 ) кг20 кг

В физике такие доли принято выражать в процентах и обозначать греческой буквой «η» (читается: «эта»). В итоге получим:

η = 0,9     или     η = 0,9 ·100% = 90% ,   что то же самое.

Это число показывает, что из 100% полной работы грузчика доля его полезной работы составляет 90%. Задача решена.

Физическая величина, равная отношению полезной работы к полной совершённой работе, в физике имеет собственное название – КПД – коэффициент полезного действия:

      η  =  Aполезнη – коэффициент полезного действия
Aполезн – полезная работа, Дж
Aполн – полная работа, Дж
Aполн

После вычисления КПД по этой формуле его принято умножать на 100%. И наоборот: для подстановки КПД в эту формулу его значение нужно перевести из процентов в десятичную дробь, поделив на 100%.

questions-physics.ru

Термический КПД (или тепловой КПД, или термодинамический КПД)

Автор: Владимир Егоров
Источник: icarbio.ru
69243 1

Степень совершенства преобразования теплоты в механическую работу в термодинамическом цикле
двигателя оценивается термическим (или тепловым, или термодинамическим)
коэффициентом полезного действия ηt.


Термический КПД

Отношение работы, совершенной в прямом обратимом термодинамическом цикле,
к теплоте, сообщенной рабочему телу от внешних источников.

В общем случае


ηt = At/Q1 = (Q1 – Q2)/Q1,


где At – тепло, преобразованное в цикле в работу;
Q1 – тепло, подведённое в цикле к рабочему телу;
Q2 – тепло, отданное в цикле рабочим телом.


Термический КПД
На индикаторной диаграмме это отношение площадей работы за цикл At (область заштрихованая «в клетку») и подведённой в цикле к рабочему телу теплоты Q1 (вся заштрихованная область).

Термический КПД термодинамического цикла показывает, какое количество получаемой теплоты
машина превращает в работу в конкретных условиях протекания идеального цикла.
Чем больше величина ηt, тем совершеннее цикл и тепловая машина.


В качестве критерия оценки термодинамических циклов часто используют цикл Карно,
потому что КПД тепловой машины Карно максимален в том смысле,
что никакая тепловая машина с теми же температурами нагревателя и холодильника
не может обладать бόльшим КПД [1]. Формула для расчёта термического КПД данного цикла общеизвестна


ηt = (T1 – T2)/T1,


где
T1 – абсолютная температура нагревателя;
T2 – абсолютная температура холодильника.


Из анализа цикла Карно можно сделать следующие выводы:


  1. КПД любого термодинамического цикла тем больше, чем больше разница температур
    нагревателя T1 и холодильника T2;
  2. термический КПД никогда не достигает 100 %, потому что температура T2 в лучшем случае равна температуре окружающей среды;

Сегодня наибольшая разница температур достигнута в двигателях внутреннего сгорания,
благодаря высокой температуре рабочего тела T1. Температура газов в цилиндре поршневого ДВС достигает 2000 °C и более, а в газовой турбине порядка 900 – 1300 °C, что связано с необходимость обеспечить жаропрочность лопаток турбины.
Для двигателей с внешним подводом теплоты такие значения температур рабочего тела остаются
пока недостижимыми из-за высокого термического сопротивления на границе нагреватель-рабочее тело.
Температура пара в современных паровой турбине или поршневом паровом двигателе находится в диапазоне
от 300 до 600 °C.


Стоит заметить, что высокий термический КПД не служит гарантией высокого эффективного КПД двигателя.

Последнее обновление 02.03.2012
Опубликовано 20.03.2011

Читайте также

Сноски

  1. ↺ Но может иметь равный – например, тепловая машина, работающая по циклу Стирлинга

Комментарии

icarbio.ru

Расчет кпд вечных двигателей

УДК 62-932.2

Все прекрасно знают, что кпд не может быть больше 1, т.е. больше 100%. И это совершенно понятно, т.к. иначе этот коэффициент теряет свой смысл. Таким образом, мы не можем получить энергии больше, чем затратили. Верно? Ведь кпд не может быть больше 1 по определению! А поскольку кпд равен отношению полезной энергии к затраченной, полезная энергия ну никак не может быть больше, чем затраченная энергия. Вроде бы всё верно и всё логично. Но это лишь вроде бы. А если копнуть поглубже, то оказывается, что в науке произошла страшная путаница. Это выражается в том, что по этой формуле нельзя рассчитать, например, кпд магнита и электрета, которые могут совершать работу против гравитационного поля Земли хоть 100 лет подряд, поднимая с неё различные предметы. Спрашивается, какой у них кпд и откуда они берут энергию? Так вот, от таких нескромных вопросов официальная лженаука стыдливо отводит глаза в сторону и начинает мямлить что-то себе под нос про работу, совершаемую потенциальным полем, кпд которой, почему-то, никак нельзя посчитать, ибо работа хоть и совершается, но энергия ни откуда не убывает. К тому же, в серьёзной научной литературе можно встретить такую откровеннейшую бредятину как электрон отдаёт энергию полю. Поле может передать энергию электрону, а вот электрон полю не может её передать при всём желании. А все эти казусы с полями и их энергиями появились тогда, когда добрые дяди промыли нам всем мозги относительно истинной формулы расчёта кпд. Что ж, заглянем в один из авторитетнейших источников информации в мире – Большую Советскую Энциклопедию, с робкой надеждой на просветление в уму.

КПД – характеристика эффективности системы в отношении преобразования или передачи энергии; определяется отношением полезно использованной энергии к суммарному количеству энергии, полученному системой; обозначается обычно .

Вот оно как получается! Читаем дальше.

В технической литературе кпд иногда определяют т.о., что он может оказаться больше единицы. Подобная ситуация возникает, если определять кпд отношением , где Wпол – используемая энергия, получаемая на выходе системы, Wзатр – не вся энергия, поступающая в систему, а лишь та её часть, для получения которой производятся реальные затраты. Например, при работе полупроводниковых термоэлектрических обогревателей затрата электроэнергии меньше количества теплоты, выделяемой термоэлементом. Избыток энергии черпается из окружающей среды. При этом, хотя истинный кпд установки меньше единицы, рассмотренный кпд η = оказаться больше единицы.

Во как! Оказывается, полученная энергия запросто может оказаться больше затраченной и, следовательно, кпд, рассчитываемый по формуле η = может запросто равняться 2, 3, 10, 15, 100 и т.д.!! Так что же это за кпд такой, который может равняться 10000%??? Правильно, ни какой это не кпд, а фигня на постном масле! Пресловутая формула η = – это злостная подмена понятий и наглое переопределение терминов! Вообще непонятно, откуда взялась эта формула. Но это теперь и не важно, т.к. мы всё-таки докопались до истины, узнав подлинную формулу для расчёта кпд. А теперь, давайте с вами разберёмся, что же это за новое для многих из нас понятие – суммарная энергия системы. Не знаю, как вы, но лично я предпочитаю термин полная энергия системы.

Итак, что же это такое? Ну, здесь без вариантов: энергия любой системы складывается из внутренней энергии самой системы и внешней энергии, сообщаемой системе извне. Говоря немного другими словами, внутренняя энергия системы – это та энергия, которую мы хотим получить из системы, а внешняя энергия – это та энергия, которую мы вынуждены затратить, чтобы система начала нам отдавать свою внутреннюю энергию. Разумеется, нам нет никакого резона затрачивать на ту или иную систему свою энергию, если при этом она не будет отдавать нам больше того, что мы в неё вложили. Это прекрасно знает любой инвестор, который вкладывает свою энергию в ту или иную экономическую систему. Но, вот курьёз, инвесторы, экономисты, да даже обычные люди это понимают, а умудрённые сединами профессора физики этого не понимают и упорно продолжают настаивать на агрегатах, пожирающие больше энергии, чем отдают! А те, которые отдают больше, чем получают – засекречивают и прячут в чулан, на дальнюю полку, словно и не было никогда ничего такого. Как такое вообще возможно? Если бы такой бедлам творился в мировой экономике, то вся человеческая цивилизация давно бы уже укатилась коту под хвост!

Представьте себе на минуточку, что на каждый посеянный центнер зерна вырастала бы не 1 тонна зерна, как то полагается, а 90 кг зерна! А агроном с тремя дипломами и с учёной степенью, рассказывал бы вам, какой это замечательный кпд – аж целых 90%, и что они работают над новыми, усовершенствованными сортами зерна, которое будет иметь кпд 95%, т.е. давать аж целых 95 кг на каждые 100 кг зерна! Да мы бы уже все давно с голоду повымерли с таким кпд! К счастью, в сельском хозяйстве ничего похожего нет, но, к несчастью, это есть в физике, и, как следствие, в технике, промышленности и энергетике… По-моему, пора с этим заканчивать!

Или вот другой пример.

Возьмём балерину. Дабы быть в форме, балерины сидят» на очень строгой диете – их рацион составляет не более 1000 ккал в день. При этом затрачивают балерины за один рабочий день порядка 8000 ккал. Если бы организм балерины получал энергию из пищи, как из некоего «топлива», как нам это преподносят умные мира сего, то балерине хватало бы сил разве что лежать целый день на диване.

Итак, выводы.

  1. Внутренняя энергия системы – это энергия, могущая быть высвобожденной, т.е. могущая стать полезной при определённых условиях, на создание которых необходимо затратить порцию внешней энергии.
  2. Полная энергия системы – это сумма полезной и затраченной энергии в рамках данной системы.
  3. Истинная формула для расчёта кпд выглядит следующим образом:
  4. η = ,

    где:

    Wпол — полезная энергия системы;

    Wзатр — затраченная энергия системы;

    Wсум — суммарная энергия системы.

  5. Вечный двигатель – это система, преобразующая свою внутреннюю энергию в полезную нам энергию, при условии, что полезная энергия превышает затраченную энергию, сообщаемую этой системе с целью создания условий для отбора энергии, при котором система возобновляет свою энергию из окружающей среды.

Ну и напоследок – небольшая история о том, как преподавали работу магнетрона в далёком 1974 году.

В 1974 году на стенде – магнетронной установке непрерывного действия разработки Алексея Михайловича Бонч-Бруевича мощностью 300 Вт – пытливые студенческие умы выполняли одну из лабораторных работ. Анодное напряжение на магнетроне составляло 630 В. Анодный ток составлял 1,5 мА. Выход энергии – на активное сопротивление. Спираль нагревалась докрасна.

Преподаватели на отчёте по лабораторной работе долбали студентов вопросами:

Откуда мощность (энергия) в нагрузке, превышающая мощность от анодного источника?

Отвечали, что это ОТНИМАЕТСЯ ЭНЕРГИЯ ЭЛЕКТРОНОВ в электронно-плазменном роторе между катодом и анодом.

Спрашивали: Что делает источник анодного напряжения, работающий на холостом ходу, и для чего нужен постоянный магнит?

О. Для создания УСЛОВИЙ, при которых возможен отбор ВНУТРЕННЕЙ энергии электронно-плазменного ротора.

С. Как рассчитывать кпд, если на выходе около 300 Вт, а магнит – ДАРОВОЙ, при этом анодный источник на холостом ходу?

О. 300 ватт в числителе делим на ПОЛНУЮ энергию системы.

С. Что такое ПОЛНАЯ энергия системы?

О. Это полезная энергия + энергия дарового магнита + энергия анодного источника на холостом ходу. Поэтому кпд был МЕНЬШЕ 100%.

Такие ответы уже были достаточны для ПОЛОЖИТЕЛЬНОЙ оценки.

УДК 536.72

 Покажите мне изолированную систему,

и я докажу, что она является открытой.

Народная мудрость

Так уж сложилось, что закон сохранения энергии – это святая святых официальной лженауки, а его нарушение влечёт за собой самые тяжёлые последствия: от публичных высмеиваний и блокировок на интернет-форумах, административных санкций до применения карательной психиатрии и высшей меры наказания – смерти. В России даже создана специальная комиссия для борьбы с нарушителями сего закона.

Вот общепринятая, официальная формулировка закона сохранения энергии.

В изолированной системе количество энергии остается постоянным. Энергия не возникает из ниоткуда и не исчезает бесследно; она лишь переходит из одной формы в другую.

И действительно, для изолированной системы подобное утверждение более чем справедливо. Однако возникает вопрос: где во Вселенной существуют изолированные системы???

Как показывает практика – нигде, ибо даже в подземном царстве, в бункере на глубине 3 км, окружённом 10-метровой свинцовой стеной, будут присутствовать неэкранируемые излучения и поля. Поэтому, даже там не может существовать на 100% изолированная система, не говоря уже о других местах. Ну а если система изолирована не на 100%, а, скажем, на 99,9%, то, говоря неумолимо строгим языком науки, это никакая не изолированная система – это система открытая. А энергия открытой системы, как известно, может меняться. И она меняется! Вот только официальная лженаука этого в упор не видит, и видеть не хочет. Ну а те, кто это видит и понимает, подвергаются репрессиям со стороны Комиссии по борьбе с лженаукой и её вездесущих боевиков – троллей-комментаторов.

Резюмируем вышесказанное.

  1. Закон сохранения энергии справедлив только для изолированных систем.
  2. Изолированных систем во Вселенной не существует, равно как и сама видимая Вселенная таковой не является.
  3. В открытых системах закон сохранения энергии не выполняется.

Итак, с этим более-менее разобрались. Однако на повестке дня ещё один важный вопрос.

Постулат о невозможности совершения полезной работы потенциальным полем.

Официальная лженаука в лице гинзбургов, кругляковых и иже с ними глаголит, что

суммарная работа потенциального поля при перемещении тела по замкнутой траектории равна нулю.

И действительно, трудно с этим не согласиться. Но далее эта самая лженаука в лице вышеупомянутых индивидуумов впадает в откровенную… логическую ошибку под названием некорректное следствие и утверждает:

…а поэтому потенциальное поле не может использоваться для совершения полезной работы,

что есть величайшая и откровенная ложь. Почему ложь? Да потому что, исходя из вот этой формулировки, получается, будто бы тела могут двигаться лишь по замкнутым траекториям, что не соответствует действительности и является, по сути дела, намеренной промывкой мозгов.

Возьмём для примера кирпич, лежащий на самом краю стола. Толкаем его мизинчиком, он падает и… раскалывает орех, совершая тем самым полезную работу. Следовательно, постулат о невозможности совершения полезной работы потенциальным полем экспериментально опровергнут. Вот так просто.

Но это ещё не всё! Ещё возникает вопрос: откуда взялась энергия для раскалывания ореха??? Из кирпича? Нет. От мизинца? Конечно же, нет. Так откуда же? Интуиция нам подсказывает, что из гравитационного поля. Но, если это действительно так, то, следуя логике закона сохранения энергии, энергия гравитационного поля должна уменьшиться! К несчастью, гравитационное поле совершенно неграмотно, и о законе сохранения энергии ничего не слышало, поэтому энергия его не уменьшится. Получается, что энергия взялась в прямом смысле слова из ниоткуда!!! Как же так?! Лженаука!!!

Другой пример. Возьмём постоянный магнит и прикрепим его снизу к тому столу, на котором до этого лежал кирпич. Далее поднесём к магниту соответствующую ему по весу груз, например, гирьку. При достаточном их сближении произойдёт чудо: гирька воспарит вверх и, устремившись к магниту, сольётся с ним в крепких объятьях. Итак, полезная работа снова совершена – гирька поднята.

Откуда взялась энергия??? – спрашивается в задаче. Из гирьки? Нет. Из воздуха? Тоже нет. Так откуда же? По идее, из магнитного поля. Но тогда, в соответствии с логикой закона сохранения энергии, энергия магнитного поля должна уменьшиться! Но магнитное поле столь же неграмотно, как и гравитационное, поэтому энергия его останется прежней.

Получается, что и здесь энергия взялась из ниоткуда!!! Опять лженаука!!!

Ну и третий пример. Возьмём электрет. В поле этого электрета будут самопроизвольно ускоряться электроны, протоны, ну и прочие заряженные частицы. Спрашивается: откуда берётся энергия на их ускорение? Из электрического поля? Если так, то, следуя логике закона сохранения энергии, энергия поля должна уменьшиться. Однако его энергия не уменьшится хотя бы потому, что пролетающим мимо частицам не под силу хоть как-то повлиять на поляризацию электрета. Снова энергия берётся из ниоткуда!

— Каравул!!! Кругом лженаука!!! – должны воскликнуть лжеучёные-физики, ибо оказывается, что потенциальное поле таки может использоваться для совершения полезной работы! Осталось лишь ответить на вопрос: откуда берётся энергия на совершение полезной работы??? Если не из ничего, то из чего? Однако, пролистывая официально-лженаучные учебники, мы слышим в ответ лишь шелест бумаги и гробовую тишину, доносящуюся из них, как из гробницы, в которой похоронена истина…

Остаётся лишь пожелать удачи официальной лженауке в поиске ответа на этот поистине детский вопрос, ибо если эфира нет, а пространство – пустое, как утверждает концепция дальнодействия, безраздельно властвующая в официальной лжефизике, то, лженауке с этой задачей не справиться, ибо поле с точки зрения этой концепции – это ничто, а не особая форма материи, как это чёрным по белому написано в словарях и энциклопедиях. А как эту особую форму материи назвать – эфир, оргон, флогистон, квантовый бульон, физический вакуум или поле – дело десятое. Главное, чтобы в головах профессоров и студентов начало возрождаться понимание того факта, что поле – материально. Другими словами, поля – это вихревые и ламинарные потоки материи, а не математические абстракции, обозначаемые буковками B, H, E или D. Именно это очень важно понять.

Данное понимание утрачивалось на протяжении века – с приходом к власти Эйнштейна, его СТО и концепции пустого пространства. Впрочем, даже Эйнштейн осознал, какую глупость он совершил, поэтому 15 лет спустя, в 1920-м году, он написал в своей статье Эфир и теория относительности:

Согласно общей теории относительности пространство немыслимо без эфира; действительно, в таком пространстве не только было бы невозможно распространение света, но и не могли бы существовать масштабы и часы и не было бы никаких пространственно-временных расстояний в физическом смысле слова.

А.Эйнштейн. Собрание научных трудов. М.: Наука. 1965. Т.1. С.689

Итак, Эйнштейну потребовалось 15 лет на то, чтобы осознать и признать своё заблуждение об отсутствии эфира в природе и ничтожности вакуума и пространства. Интересно, сколько должно пройти времени, прежде чем сегодняшние академики осознают и признают свои заблуждения?

Впрочем, Нобелевский лауреат Макс Планк как-то сказал, что новая научная истина торжествует не потому, что её противники признают своё заблуждение, а потому, что со временем они вымирают, а подрастающее поколение изучает эту новую истину с самого начала.

Именно это сейчас происходит. Круглякова и Гинзбурга уже нет. Скоро и других не останется.

Приглашение к обсуждению прочитанного

Из wikipedia.org

Тепловой насос, устройство для переноса тепловой энергии от источника низкопотенциальной тепловой энергии к потребителю с более высокой температурой.


Алексей Михайлович Бонч-Бруевич (1916 — 2006), советский и российский физик, крупный специалист в области квантовой электроники и физической оптики.


Электрет, диэлектрик, длительное время сохраняющий поляризованное состояние после снятия внешнего воздействия, которое привело к поляризации этого диэлектрика, и создающий в окружающем пространстве квазипостоянное электрическое поле.


Специальная теория относительности, теория, описывающая движение, законы механики и пространственно-временные отношения при произвольных скоростях движения, меньших скорости света в вакууме, в том числе близких к скорости света.


Эдуард Павлович Кругляков (1934 — 2012), российский физик-экспериментатор, доктор физико-математических наук, академик РАН, сотрудник Института ядерной физики Сибирского отделения АН СССР.


Виталий Лазаревич Гинзбург (1916 — 2009), советский и российский физик-теоретик, доктор физико-математических наук, профессор, академик РАН, до 1991 — АН СССР; чл.-корр. с 1953, лауреат Нобелевской премии по физике.


Как решать задачи по физике

Как утверждает Stanley J. Farlow в своей книге Partial Differential Equations for Scientists and Engineers, 99% задач по физике можно значительно упростить путем изменения системы координат для анализа. И не только задач из школьного или вузовского задачника. но и настоящих, жизненных, никем доселе не изученных. Иллюстрирует этот алгоритм этот рисунок…

e-lub.net

КПД трансформатора: способы определения и формулы

Известно, что электрическая энергия передаётся на большие расстояния при напряжениях, превышающих уровень, используемый потребителями. Применение трансформаторов необходимо для того, чтобы преобразовывать напряжения до требуемых значений, увеличивать качество процесса передачи электроэнергии, а также уменьшать образующиеся потери.

Описание и принцип работы трансформатора

Трансформатор представляет собой аппарат, служащий для понижения или повышения напряжения, изменения числа фаз и, в редких случаях, для изменения частоты переменного тока.

Существуют следующие типы устройств:

  • силовые;
  • измерительные;
  • малой мощности;
  • импульсные;
  • пик-трансформаторы.

Статический аппарат состоит из следующих основных конструктивных элементов: двух (или более) обмоток и магнитопровода, который также называют сердечником. В трансформаторах напряжение подаётся на первичную обмотку, и с вторичной снимается уже в преобразованном виде. Обмотки связаны индуктивно, посредством магнитного поля в сердечнике.

Наряду с прочими преобразователями, трансформаторы обладают коэффициентом полезного действия (сокращённо — КПД), с условным обозначением . Данный коэффициент представляет собой соотношение эффективно использованной энергии к потреблённой энергии из системы. Также его можно выразить в виде соотношением мощности, потребляемой нагрузкой к потребляемой устройством из сети. КПД относится к одному из первостепенных параметров, характеризующих эффективность производимой трансформатором работы.

Виды потерь в трансформаторе

Процесс передачи электроэнергии с первичной обмотки на вторичную сопровождается потерями. По этой причине происходит передача не всей энергии, но большей её части.

В конструкции устройства не предусмотрены вращающиеся части, в отличие от прочих электромашин. Это объясняет отсутствие в нём механических потерь.

Так, в аппарате присутствуют следующие потери:

  • электрические, в меди обмоток;
  • магнитные, в стали сердечника.

Энергетическая диаграмма и Закон сохранения энергии

Принцип действия устройства можно схематически в виде энергетической диаграммы, как это показано на изображении 1. Диаграмма отражает процесс передачи энергии, в ходе которого и образуются электрические и магнитные потери .

Согласно диаграмме, формула определения эффективной мощности P2 имеет следующий вид:

P2=P1-ΔPэл1-ΔPэл2-ΔPм (1)

где, P2 — полезная, а P1 — потребляемая аппаратом мощность из сети.

Обозначив суммарные потери ΔP, закон сохранения энергии будет выглядеть как: P1=ΔP+P2 (2)

Из этой формулы видно, что P1 расходуется на P2, а также на суммарные потери ΔP. Отсюда, коэффициент полезного действия трансформатора получается в виде соотношения отдаваемой (полезной) мощности к потребляемой (соотношение P2 и P1).

Определение коэффициента полезного действия

С требуемой точностью для расчёта устройства, заранее выведенные значения коэффициента полезного действия можно взять из таблицы №1:

Суммарная мощность, ВтКоэффициент полезного действия
10-200,8
20-400,85
40-1000,88
100-3000,92

Как показано в таблице, величина параметра напрямую зависит от суммарной мощности.

Определение КПД методом непосредственных измерений

Формулу для вычисления КПД можно представить в нескольких вариантах:

 (3)

Данное выражение наглядно отражает, что значение КПД трансформатора не больше единицы, а также не равно ей.

Следующее выражение определяет значение полезной мощности:

P2=U2*J2*cosφ2, (4)

где U2 и J2 — вторичные напряжение и ток нагрузки, а cosφ2 — коэффициент мощности, значение которого зависит от типа нагрузки.

Поскольку P1=ΔP+P2, формула (3) приобретает следующий вид:

 (5)

Электрические потери первичной обмотки ΔPэл1н зависят от квадрата силы протекающего в ней тока. Поэтому определять их следует таким образом:

 (6)

В свою очередь:

 (7)

где rmp — активное обмоточное сопротивление.

Так как работа электромагнитного аппарата не ограничивается номинальным режимом, определение степени загрузки по току требует использования коэффициента загрузки , который равен:

β=J2/J, (8)

где J — номинальный ток вторичной обмотки.

Отсюда, запишем выражения для определения тока вторичной обмотки:

J2=β*J(9)

Если подставить данное равенство в формулу (5), то получится следующее выражение:

 (10)

Отметим, что определять значение КПД, с использованием последнего выражения, рекомендовано ГОСТом.

Резюмируя представленную информацию, отметим, что определить коэффициент полезного действия трансформатора можно по значениям мощности первичной и вторичной обмотки аппарата при номинальном режиме.

Определение КПД косвенным методом

Из-за больших величин КПД, которые могут быть равны 96% и более, а также неэкономичности метода непосредственных измерений, вычислить параметр с высокой степенью точности не представляется возможным. Поэтому его определение обычно проводится косвенным методом.

Обобщив все полученные выражения, получим следующую формулу для вычисления КПД:

η=(P2/P1)+ΔPм+ΔPэл1+ΔPэл2, (11)

Подводя итог, следует отметить, что высокий показатель КПД свидетельствует об эффективно производимой работе электромагнитного аппарата. Потери в обмотках и стали сердечника, согласно ГОСТу, определяют при опыте холостого хода, либо короткого замыкания, а мероприятия, направленные на их снижение, помогут достичь максимально возможных величин коэффициента полезного действия, к чему и необходимо стремиться.

Интересное видео: КПД трансформатора 100%

protransformatory.ru

Что такое коэффициент полезного действия?

Дата публикации


Ни одно выполняемое действие не проходит без потерь – они есть всегда. Полученный результат всегда меньше тех усилий, которые приходится затрачивать для его достижения. О том, насколько велики потери при выполнении работы, и свидетельствует коэффициент полезного действия (КПД).

Что же скрывается за этой аббревиатурой? По сути дела, это коэффициент эффективности механизма или показатель рационального использования энергии. Величина КПД не имеет каких-то единиц измерения, она выражается в процентах. Определяется этот коэффициент как отношение полезной работы устройства к затраченной на его функционирование. Для вычисления КПД формула расчета будет выглядеть таким образом:

КПД =100* (полезная выполненная работа/затраченная работа)

В различных устройствах для расчета такого соотношения используются разные значения. Для электрических двигателей КПД будет выглядеть как отношение совершаемой полезной работы к электрической энергии, полученной из сети. Для тепловых машин коэффициент полезного действия будет определяться как отношение полезной совершаемой работы к затраченному количеству теплоты.

Для определения КПД необходимо, чтобы все разные виды энергии и работа выражались в одних единицах. Тогда возможно будет сравнивать любые объекты, например атомные станции, генераторы электроэнергии и биологические объекты, с точки зрения эффективности.

Как уже отмечалось, из-за неизбежных потерь при работе механизмов коэффициент полезного действия всегда меньше 1. Так, КПД тепловых станций достигает 90%, у двигателей внутреннего сгорания КПД меньше 30%, КПД электрического трансформатора составляет 98%. Понятие КПД может применяться как к механизму в целом, так и к его отдельным узлам. При общей оценке эффективности механизма в целом (его КПД) берется произведение КПД отдельных составных частей этого устройства.

Проблема эффективного использования топлива появилась не сегодня. При непрерывном росте стоимости энергоресурсов вопрос повышения КПД механизмов превращается из чисто теоретического в вопрос практический. Если КПД обычного автомобиля не превышает 30%, то 70% своих денег, расходуемых на заправку топливом авто, мы просто выбрасываем.

Рассмотрение эффективности работы ДВС (двигателя внутреннего сгорания) показывает, что потери происходят на всех этапах его работы. Так, только 75% поступающего топлива сгорает в цилиндрах мотора, а 25% выбрасывается в атмосферу. Из всего сгоревшего топлива только 30-35% выделившегося тепла расходуется на выполнение полезной работы, остальное тепло или теряется с выхлопными газами, или остается в системе охлаждения автомобиля. Из полученной мощности на полезную работу используется около 80%, остальная мощность тратится на преодоление сил трения и используется вспомогательными механизмами автомобиля.

Даже на таком простом примере анализ эффективности работы механизма позволяет определить направления, в которых должны проводиться работы для сокращения потерь. Так, одно из приоритетных направлений – обеспечение полного сгорания топлива. Достигается это дополнительным распылением топлива и повышением давления, поэтому так популярны становятся двигатели с непосредственным впрыском и турбонаддувом. Тепло, отводимое из двигателя, используется для подогрева топлива с целью лучшей его испаряемости, а механические потери уменьшаются за счет использования современных сортов синтетического масла.

Здесь нами рассмотрено такое понятие, как коэффициент полезного действия, описано, что он собой представляет и на что влияет. Рассмотрена на примере ДВС эффективность его работы и определены направления и пути повышения возможностей этого устройства, а, следовательно, и КПД.



Опубликовано в Образование и наука

Добавить комментарий

www.vigivanie.com