Крен 5в стабилизатор – Стабилизатор на К142ЕН5 — с регулируемым выходным напряжением. — Стабилизаторы — Источники питания

О стабилизаторах напряжения и стабилизаторах тока «Крен» привет

В обсуждениях электрических схем часто встречаются термины «стабилизатор напряжения» и «стабилизатор тока». Но какая между ними разница? Как работают эти стабилизаторы? В какой схеме нужен дорогой стабилизатор напряжения, а где достаточно простого регулятора? Ответы на данные вопросы вы найдёте в этой статье.

Рассмотрим стабилизатор напряжения на примере устройства LM7805.В его характеристиках указано: 5В 1,5А.  Это значит стабилизирует он именно напряжение и именно до 5В. 1,5А — это максимальный ток, который может проводить стабилизатор. Пиковая сила тока. То есть от может отдать и 3 миллиампера, и 0,5 ампер, и 1 ампер. Столько, сколько тока требует нагрузка. Но не больше полутора. Это главное отличие стабилизатора напряжения от стабилизатора тока.

Виды стабилизаторов напряжения

Различают всего 2 основных типа стабилизаторов напряжения:

  • линейные
  • импульсные

Линейные стабилизаторы напряжения

Например, микросхемы КРЕН или LM7805LM1117LM350.

Кстати, КРЕН — это не аббревиатура, как многие думают. Это сокращение. Советская микросхема-стабилизатор, аналогичная LM7805 имела обозначение КР142ЕН5А. Ну а ещё есть КР1157ЕН12В, КР1157ЕН502, КР1157ЕН24А и куча других. Для краткости всё семейство микросхем стали называть «КРЕН». КР142ЕН5А тогда превращается в КРЕН142.

Советский стабилизатор КР142ЕН5А. Аналог LM7805.

Стабилизатор LM7805

Наиболее распространенный вид. Недостаток их в том, что они не могут работать на напряжении ниже, чем заявленное выходное напряжение. Если LM7805 стабилизирует напряжение на 5 вольтах, то на вход ему подать нужно как минимум на полтора вольта больше. Если подать меньше 6,5 В, то выходное напряжение «просядет», и мы уже не получим 5 В. Еще один минус линейных стабилизаторов — сильный нагрев при нагрузке. Собственно, в этом и заключается принцип их работы — всё, что выше стабилизируемого напряжения, просто превращается в тепло. Если мы на вход LM7805 подадим 12 В, то 7 потратятся на нагрев корпуса, а 5 пойдут потребителю. Корпус при этом нагреется настолько сильно, что без радиатора микросхема просто сгорит. Из всего этого вытекает ещё один серьёзный недостаток — линейный стабилизатор не стоит применять в устройствах с питанием от батареек. Энергия батареек будет тратиться на нагрев стабилизатора. Всех этих недостатков лишены импульсные стабилизаторы.

Импульсные стабилизаторы напряжения

Импульсные стабилизаторы — лишены недостатков линейных, но и стоят дороже. Это уже не просто микросхема с тремя выводами. Выглядят они, как плата с детальками.

Один из вариантов исполнения импульсного стабилизатора.

Импульсные стабилизаторы бывают трех видов: понижающие, повышающие и всеядные. Наиболее интересные — всеядные. Независимо от напряжения на входе, на выходе будет именно то, которое нам нужно. Всеядному импульснику все равно, что на входе напряжение ниже или выше нужного. Он сам автоматом переключается в режим повышения или понижения напряжения и держит заданное на выходе. Если в характеристиках заявлено, что стабилизатору на вход можно подать от 1 до 15 вольт и на выходе будет стабильно 5, то так оно и будет. Кроме того, нагрев импульсных стабилизаторов настолько незначителен, что в большинстве случаев им можно пренебречь. Если ваша схема будет питаться от батареек или размещаться в закрытом корпусе, где сильный нагрев линейного стабилизатора недопустим — ставьте импульсный.

Купить  —  LM7805 10 штук на Алиєкспресс

Импульсный стабилизатор (повышайка) MT3608 2A на Алиєкспресс

Импульсный стабилизатор 5А (понижайка) XL4015на Алиэкспресс

Хорошо. А что со стабилизатором тока?

Не открою Америку, если скажу, что стабилизатор тока стабилизирует ток.
Токовые стабилизаторы ещё иногда называют светодиодным драйвером. Внешне они похожи на импульсные стабилизаторы напряжения. Хотя сам стабилизатор — маленькая микросхема, а всё остальное нужно для обеспечения правильного режима работы. Но обычно драйвером называют всю схему сразу.

Примерно так выглядит стабилизатор тока. Красным кружком обведена та самая схема, которая и является стабилизатором. Всё остальное на плате — обвязка.

Итак. Драйвер задаёт ток. Стабильно! Если написано, что на выходе будет ток в 350мА, то будет именно 350мА. А вот напряжение на выходе может меняется в зависимости от требуемого потребителем напряжения. Не будем пускаться в дебри теории о том. как всё это работает. Просто запомним, что вы напряжение не регулируете, драйвер сделает все за вас исходя из потребителя.

Ну так и зачем всё это нужно то?

Теперь вы знаете, чем стабилизатор напряжения отличается от стабилизатора тока и можете ориентироваться в их многообразии. Возможно, вам так и не стало понятно, зачем эти штуки нужны.

Пример: вы хотите запитать 3 светодиода от бортовой сети автомобиля. Главное  для светодиода важно контролировать именно силу тока. Используем самый распространенный вариант соединения светодиодов: последовательно соединены 3 светодиода и резистор. Напряжение питания — 12 вольт.

Резистором мы ограничиваем ток на светодиоды, чтобы они не сгорели. Падение напряжения на светодиоде пусть будет у нас 3.4 вольта.
После первого светодиода остается 12-3.4= 8.6 вольт.
Нам пока хватает.
На втором потеряется еще 3.4 вольта, то есть останется 8.6-3.4=5.2 вольта.
И для третьего светодиода тоже хватит.
А после третьего останется 5.2-3.4=1.8 вольта.
При желании добавить четвёртый светодиод — уже не хватит.
Если напряжение питания поднять до 15В, то тогда хватит. Но тогда и резистор тоже надо будет пересчитать. Резистор — простейший стабилизатор (ограничитель) тока. Их часто ставят на те же ленты и модули. У него есть минус — чем ниже напряжение, тем меньше будет и ток на светодиоде (закон Ома, с ним не поспоришь). Значит, если входное напряжение нестабильно (в автомобилях обычно так и есть), то предварительно нужно стабилизировать напряжение, а потом можно ограничить резистором ток до необходимых значений. Если используем резистор, как токовый ограничитель там, где напряжение не стабильно, нужно стабилизировать напряжение.

Стоит помнить, что резисторы имеет смысл ставить только до определенной силы тока. После некоторого порога резисторы начинают сильно греться и приходится ставить более мощные резисторы . Тепловыделение растёт, КПД падает.

Импульсный стабилизатор тока

Импульсный стабилизатор тока тоже называют светодиодным драйвером. Часто те, кто не сильно разбирается в этом, стабилизатор напряжения называют просто драйвером светодиодов, а импульсный стабилизатор тока — хорошим светодиодным драйвером. Он выдаёт сразу стабильное напряжение и ток. И почти не нагревается. Вот так он выглядит:

www.electronica52.in.ua

Микросхемные стабилизаторы напряжения широкого применения (КРЕН и аналоги)

Микросхемные стабилизаторы напряжения широкого применения (КРЕН и аналоги)

МИКРОСХЕМНЫЕ  СТАБИЛИЗАТОРЫ  НАПРЯЖЕНИЯ  ШИРОКОГО  ПРИМЕНЕНИЯ  (КРЕН  И  АНАЛОГИ)

          Один из важных узлов радиоэлектронной аппаратуры — стабилизатор напряжения в блоке питания. Еще совсем недавно такие узлы строили на стабилитронах и транзисторах. Общее число элементов стабилизатора было довольно значительным, особенно если от него требовались функции регулирования выходного напряжения, защиты от перегрузки и замыкания выхода, ограничения выходного тока на заданном уровне.

          С появлением специализированных микросхем ситуация изменилась. Выпускаемые микросхемные стабилизаторы напряжения способны работать в широких пределах выходных напряжения и тока, часто имеют встроенную систему защиты от перегрузки по току и от перегревания — как только температура кристалла микросхемы превысит допустимое значение, происходит ограничение выходного тока.

          В настоящее время ассортимент отечественных и зарубежных микросхем-стабилизаторов напряжения настолько широк, что ориентироваться в нем стало уже довольно трудно. Помещенные ниже таблицы призваны облегчить предварительный выбор микросхемного стабилизатора для того или иного электронного устройства.

          В табл. 1 представлен перечень наиболее распространенных на отечественном рынке трехвыводных микросхем линейных стабилизаторов напряжения на фиксированное выходное напряжение и их основные параметры; на рис. 1 упрощенно показан внешний вид приборов, а также показана их цоколевка. В таблицу включены лишь стабилизаторы с выходным напряжением в пределах 5…27 В — в этот интервал укладывается подавляющее большинство случаев радиолюбительской практики. Конструктивное оформление зарубежных приборов может отличаться от показанного на рис. 1.

          Следует иметь в виду, что сведения о рассеиваемой мощности при работе микросхемы с теплоотводом в паспортах приборов обычно не указывают, поэтому в таблицах даны некоторые усредненные ее значения, полученные из графиков, имеющихся в документации. Отметим также, что микросхемы одной серии, но на разные напряжения, по рассеиваемой мощности могут различаться.

          Ряд микросхем, изготовляемых в дальнем и ближнем зарубежье, имеют маркировку, не соответствующую российской стандартизированной системе. Так, перед обозначением стабилизаторов групп 78, 79, 78L, 79L, 78M, 79M, перечисленных в таблице, в действительности могут присутствовать одна или две буквы, кодирующие, как правило, фирму-изготовитель. Позади указанных в таблице обозначений также могут быть буквы и цифры, указывающие на те или иные конструктивные или эксплуатационные особенности микросхемы.

          Более подробная информация о некоторых сериях отечественнох микросхемных стабилизаторах помещена в [1-5], а по зарубежным — в [6;7].

Таблица 1

МикросхемаUвых, ВIмакс, АPмакс, ВтВключениеКорпус (см. рис.1)
КР1157ЕН501А, КР1157ЕН501Б50,10,5плюсовоеКТ-26 (1,б)
КР1157ЕН601А, КР1157ЕН601Б6
КР1157ЕН801А, КР1157ЕН801Б8
КР1157ЕН901А, КР1157ЕН901Б9
КР1157ЕН1201А, КР1157ЕН1201Б12
КР1157ЕН1501А, КР1157ЕН1501Б15
КР1157ЕН1801А, КР1157ЕН1801Б18
КР1157ЕН2401А, КР1157ЕН2401Б24
КР1157ЕН502А, КР1157ЕН502Б50,10,5плюсовоеКТ-26 (1,а)
КР1157ЕН602А, КР1157ЕН602Б6
КР1157ЕН802А, КР1157ЕН802Б8
КР1157ЕН902А, КР1157ЕН902Б9
КР1157ЕН1202А, КР1157ЕН1202Б12
КР1157ЕН1502А, КР1157ЕН1502Б15
КР1157ЕН1802А, КР1157ЕН1802Б18
КР1157ЕН2402А, КР1157ЕН2402Б24
КР1157ЕН2702А, КР1157ЕН2702Б27
КР1157ЕН5А, КР1157ЕН5Б50,10,5плюсовоеКТ-27-2 (1,в)
КР1157ЕН9А, КР1157ЕН9Б9
КР1157ЕН12А, КР1157ЕН12Б12
КР1157ЕН15А, КР1157ЕН15Б15
КР1157ЕН18А, КР1157ЕН18Б18
КР1157ЕН24А, КР1157ЕН24Б24
КР1168ЕН550,10,5минусовоеКТ-26 (1,б)*
КР1168ЕН66
КР1168ЕН88
КР1168ЕН99
КР1168ЕН1212
КР1168ЕН1515
78L0550,10,5плюсовоеТО-92 (1,а)
78L626,2
78L828,2
78L099
78L1212
78L1515
78L1818
78L2424
79L0550,10,5минусовуюТО-92 или КТ-26 (1,б)
79L066
79L1212
79L1515
79L1818
79L2424
КР1157ЕН5В, КР1157ЕН5Г50,251,3плюсовоеКТ-27-2 или ТО-126 (1,в)
КР1157ЕН9В, КР1157ЕН9Г9
КР1157ЕН12В, КР1157ЕН12Г12
КР1157ЕН15В, КР1157ЕН15Г15
КР1157ЕН18В, КР1157ЕН18Г18
КР1157ЕН24В, КР1157ЕН24Г24
78M0550,57,5плюсовоеТО-202 или ТО-220 (1,г)
78M066
78M088
78M1212
78M1515
78M1818
78M2020
78M2424
79M0550,57,5минусовоеТО-220 (1,д)
79M066
79M088
79M1212
79M1515
79M2020
79M2424
КР142ЕН8Г9110плюсовоеКТ-28-2 (1,г)
КР142ЕН8Д12
КР142ЕН8Е15
КР142ЕН9Г20
КР142ЕН9Д24
КР142ЕН9Е27
КР142ЕН5В51,510плюсовоеКТ-28-2 (1,г)
КР142ЕН5Г6
КР142ЕН8А9
КР142ЕН8Б12
КР142ЕН8В15
КР142ЕН9А20
КР142ЕН9Б24
КР142ЕН9В27
780551,5**10плюсовоеТО-220 (1,г)
78066
78088
78858,5
78099
781212
781515
781818
782424
790551,5**10минусовоеТО-220 (1,д)
79066
79088
79099
791212
791515
791818
792424
КР1162ЕН5А, КР1162ЕН5Б51,510минусовоеКТ-28-2 (1,д)
КР1162ЕН6А, КР1162ЕН6Б6
КР1162ЕН8А, КР1162ЕН8Б8
КР1162ЕН9А, КР1162ЕН9Б9
КР1162ЕН12А, КР1162ЕН12Б12
КР1162ЕН15А, КР1162ЕН15Б15
КР1162ЕН18А, КР1162ЕН18Б18
КР1162ЕН24А, КР1162ЕН24Б24
КР1179ЕН0551,510минусовоеТО-220 (1,д)
КР1168ЕН066
КР1179ЕН088
КР1179ЕН1212
КР1179ЕН1515
КР1179ЕН2424
КР1180ЕН5А, КР1180ЕН5Б51,510плюсовоеКТ-28-2 (1,г)
КР1180ЕН6А, КР1180ЕН6Б6
КР1180ЕН8А, КР1180ЕН8Б8
КР1180ЕН9А, КР1180ЕН9Б9
КР1180ЕН12А, КР1180ЕН12Б12
КР1180ЕН15А, КР1180ЕН15Б15
КР1180ЕН18А, КР1180ЕН18Б18
КР1180ЕН24А, КР1180ЕН24Б24
КР142ЕН5А5210плюсовоеКТ-28-2 (1,г)
КР142ЕН5Б6

* Была выпущена опытная партия с цоколевкой, соответствующей рис. 1,а.
** Выпускают также разновидности на ток нагрузки до 1 А.

Рис. 1

          Некоторые типы отечественных стабилизаторов имеют оригинальную устоявшуюся цифровую нумерацию выводов (она показана на рис. 1 в скобках). Это произошло оттого, что первоначально микросхемы этих серий выпускали в «микросхемных» корпусах со стандартизированной нумерацией выводов. После того, как было налажено производство в «транзисторных» корпусах, нумерация выводов сохранилась.

          Типовая схема включения микросхемных стабилизаторов на фиксированное выходное напряжение показана на рис. 2,а и б. Для всех микросхем емкость входного конденсатора C1 должна быть не менее 2,2 мкф для керамических или оксидных танталовых и не менее 10 мкф — для алюминиевых оксидных конденсаторов, а выходного конденсатора C2 — не менее 1 и 10 икф соответственно. Некоторые микросхемы допускают и меньшую емкость, но указанные значения гарантируют устойчивую работу любых стабилизаторов. Роль входного может исполнять конденсатор сглаживающего фильтра, если он расположен не далее 70 мм от микросхемы. В [6] опубликовано множество схем различных вариантов включения микросхемных стабилизаторов для обеспечения большего выходного тока, изменения выходного напряжения, реализации других вариантов защиты, использования стабилизаторов напряжения в качестве генераторов тока.

Рис. 2

          Если требуется нестандартное значение стабилизированного выходного напряжения или плавное его регулирование, удобно использовать специализированные регулируемые микросхемные стабилизаторы, поддерживающие напряжение 1,25 В между выходом и управляющим выводом. Их перечень представлен в табл. 2, а типовая схема включения для стабилизаторов с регулирующим элементом в плюсовом проводе — на рис. 3. Резисторы R1 и R2 образуют внешний регулируемый делитель напряжения, который входит в цепь установки уровня выходного напряжения Uвых, равного Uвых=1,25(1+R2/R1)+Iпот*R2, где Iпот=50…100 мкА — собственный потребляемый ток микросхемы. Число 1,25 в этой формуле — это упомянутое выше напряжение между выходом и управляющим выводом, которое поддерживает стабилизатор в рабочем режиме.

Таблица 2

МикросхемаUвых, ВIмакс, АPмакс, ВтВключениеКорпус
КР1157ЕН11,2…370,10,6плюсовоеКТ-26 (1,е)
КР1168ЕН11,3…370,10,5минусовоеКТ-26 (1,е)
КР142ЕН12А1,2…371,510плюсовоеКТ-28-2 (1,ж)
КР142ЕН12Б1,2…37110плюсовоеКТ-28-2 (1,ж)
КР142ЕН18А1,3…26,5110минусовоеКТ-28-2 (1,и)
КР142ЕН18Б1,3…26,51,510минусовоеКТ-28-2 (1,и)
LM317L1,2…370,10,625плюсовоеТО-92 (1,е)
LM337LZ1,2…370,10,625минусовоеТО-92 (1,е)
LM317T1,2…371,515плюсовоеТО-220 (1,ж)
LM337T1,2…371,515минусовоеТО-220 (1,и)

          Обратим внимание на то, что, в отличие от стабилизаторов на фиксированное выходное напряжение, регулируемые без нагрузки не работают. Минимальное значение выходного тока маломощных регулируемых стабилизаторов равно 2,5…5 мА и 5…10мА — мощных. В большинстве случаев применения нагрузкой служит резистивный делитель напряжения R1 R2 на рис. 3.

Рис. 3

          По этой схеме можно включать и стабилизаторыс фиксированным выходным напряжением. Однако, во-первых, потребляемый ими ток значительно больше (2…4 мА) и, во-вторых, он менее стабилен при изменении выходного тока и входного напряжения. По этим причинам максимально возможного коэффициента стабилизации устройства достичь не удастся.

          Для снижения уровня пульсаций на выходе, особенно при большем выходном напряжении, рекомендуется включать сглаживающий конденсатор C3 емкостью 10 мкФ и более. К конденсаторам C1 и C2 требования такие же, как и к соответствующим конденсаторам фиксированных стабилизаторов.

          Если стабилизатор работает при максимальном выходном напряжении, то при случайном замыкании входной цепи или отключении источника питания микросхема оказывается под большим обратным напряжением со стороны нагрузки и может быть выведена из строя. Для защиты микросхемы по выходу в таких ситуациях параллельно ей включают защитный диод VD1.

          Другой защитный диод — VD2 — защищает микросхему со стороны заряженного конденсатора C3. Диод быстро разряжает этот конденсатор при аварийном замыкании выходной или входной цепи стабилизатора.

          Все сказанное служит только для предварительного выбора стабилизатора, перед проектированием блока питания следует ознакомиться м полными справочными характеристиками, хотя бы для того, чтобы точно знать, каково максимально допустимое входное напряжение, достаточна ли стабильность выходного напряжения при изменении входного напряжения, тока нагрузки или температуры. Можно выразить уверенность, что перечисленные в статье микросхемы находятся на техническом уровне, достаточном для решения подавляющего числа задач радиолюбительской практики.

          Заметный недостаток у описанных стабилизаторов один — довольно большое минимально необходимое напряжение между входом и выходом — 2…3 В, однако он с лихвой окупается простотой применения и низкой ценой микросхем.

С. Бирюков.

Литература

  1. Щербина А., Благий С. Микросхемные стабилизаторы серий 142, К142, КР142. — Радио, 1990, ╧8, с. 89, 90; ╧9, с. 73, 74.
  2. Нефедов А., Головина В. Микросхемы серии КР142ЕН12. — Радио, 1993, ╧8, с. 41, 42.
  3. Нефедов А., Головина В. Микросхемы КР142ЕН18А, КР142ЕН18Б. — Радио, 1994, ╧3, с. 41, 42.
  4. Нефедов А. Микросхемные стабилизаторы серии КР1157. — Радио, 1995, ╧3, с. 59, 60.
  5. Нефедов А., Валявский А. Микросхемные стабилизаторы серии КР1162. — Радио, 1995, ╧4, с. 59, 60.
  6. Интегральные микросхемы. Микросхемы для линейных источников питания и их применение. — ДОДЭКА (изд. первое), 1996, 288 с.; 1998 (изд. второе), 1998, 400 с.
  7. Нефедов А.В., Савченко А.М., Феоктистов Ю.Ф. Зарубежные интегральные микросхемы для промышленной электронной аппаратуры. Справочник. — М.: Энергоатомиздат, 1989.

pblock.narod.ru

Микросхемные стабилизаторы напряжения широкого применения (КРЕН и аналоги)

Читать все новости

Один из важных узлов радиоэлектронной аппаратуры — стабилизатор напряжения в блоке питания. Еще совсем недавно такие узлы строили на стабилитронах и транзисторах. Общее число элементов стабилизатора было довольно значительным, особенно если от него требовались функции регулирования выходного напряжения, защиты от перегрузки и замыкания выхода, ограничения выходного тока на заданном уровне.

С появлением специализированных микросхем ситуация изменилась. Выпускаемые микросхемные стабилизаторы напряжения способны работать в широких пределах выходных напряжения и тока, часто имеют встроенную систему защиты от перегрузки по току и от перегревания — как только температура кристалла микросхемы превысит допустимое значение, происходит ограничение выходного тока.

В настоящее время ассортимент отечественных и зарубежных микросхем-стабилизаторов напряжения настолько широк, что ориентироваться в нем стало уже довольно трудно. Помещенные ниже таблицы призваны облегчить предварительный выбор микросхемного стабилизатора для того или иного электронного устройства.

В табл. 1 представлен перечень наиболее распространенных на отечественном рынке трехвыводных микросхем линейных стабилизаторов напряжения на фиксированное выходное напряжение и их основные параметры; на рис. 1 упрощенно показан внешний вид приборов, а также показана их цоколевка. В таблицу включены лишь стабилизаторы с выходным напряжением в пределах 5…27 В — в этот интервал укладывается подавляющее большинство случаев радиолюбительской практики. Конструктивное оформление зарубежных приборов может отличаться от показанного на рис. 1.

Следует иметь в виду, что сведения о рассеиваемой мощности при работе микросхемы с теплоотводом в паспортах приборов обычно не указывают, поэтому в таблицах даны некоторые усредненные ее значения, полученные из графиков, имеющихся в документации. Отметим также, что микросхемы одной серии, но на разные напряжения, по рассеиваемой мощности могут различаться.

Ряд микросхем, изготовляемых в дальнем и ближнем зарубежье, имеют маркировку, не соответствующую российской стандартизированной системе. Так, перед обозначением стабилизаторов групп 78, 79, 78L, 79L, 78M, 79M, перечисленных в таблице, в действительности могут присутствовать одна или две буквы, кодирующие, как правило, фирму-изготовитель. Позади указанных в таблице обозначений также могут быть буквы и цифры, указывающие на те или иные конструктивные или эксплуатационные особенности микросхемы.

Более подробная информация о некоторых сериях отечественнох микросхемных стабилизаторах помещена в [1-5], а по зарубежным — в [6;7].

Таблица 1

МикросхемаUвых, ВIмакс, АPмакс, ВтВключениеКорпус (см. рис.1)
КР1157ЕН501А, КР1157ЕН501Б50,10,5плюсовоеКТ-26 (1,б)
КР1157ЕН601А, КР1157ЕН601Б6
КР1157ЕН801А, КР1157ЕН801Б8
КР1157ЕН901А, КР1157ЕН901Б9
КР1157ЕН1201А, КР1157ЕН1201Б12
КР1157ЕН1501А, КР1157ЕН1501Б15
КР1157ЕН1801А, КР1157ЕН1801Б18
КР1157ЕН2401А, КР1157ЕН2401Б24
КР1157ЕН502А, КР1157ЕН502Б50,10,5плюсовоеКТ-26 (1,а)
КР1157ЕН602А, КР1157ЕН602Б6
КР1157ЕН802А, КР1157ЕН802Б8
КР1157ЕН902А, КР1157ЕН902Б9
КР1157ЕН1202А, КР1157ЕН1202Б12
КР1157ЕН1502А, КР1157ЕН1502Б15
КР1157ЕН1802А, КР1157ЕН1802Б18
КР1157ЕН2402А, КР1157ЕН2402Б24
КР1157ЕН2702А, КР1157ЕН2702Б27
КР1157ЕН5А, КР1157ЕН5Б50,10,5плюсовоеКТ-27-2 (1,в)
КР1157ЕН9А, КР1157ЕН9Б9
КР1157ЕН12А, КР1157ЕН12Б12
КР1157ЕН15А, КР1157ЕН15Б15
КР1157ЕН18А, КР1157ЕН18Б18
КР1157ЕН24А, КР1157ЕН24Б24
КР1168ЕН550,10,5минусовоеКТ-26 (1,б)*
КР1168ЕН66
КР1168ЕН88
КР1168ЕН99
КР1168ЕН1212
КР1168ЕН1515
78L0550,10,5плюсовоеТО-92 (1,а)
78L626,2
78L828,2
78L099
78L1212
78L1515
78L1818
78L2424
79L0550,10,5минусовуюТО-92 или КТ-26 (1,б)
79L066
79L1212
79L1515
79L1818
79L2424
КР1157ЕН5В, КР1157ЕН5Г50,251,3плюсовоеКТ-27-2 или ТО-126 (1,в)
КР1157ЕН9В, КР1157ЕН9Г9
КР1157ЕН12В, КР1157ЕН12Г12
КР1157ЕН15В, КР1157ЕН15Г15
КР1157ЕН18В, КР1157ЕН18Г18
КР1157ЕН24В, КР1157ЕН24Г24
78M0550,57,5плюсовоеТО-202 или ТО-220 (1,г)
78M066
78M088
78M1212
78M1515
78M1818
78M2020
78M2424
79M0550,57,5минусовоеТО-220 (1,д)
79M066
79M088
79M1212
79M1515
79M2020
79M2424
КР142ЕН8Г9110плюсовоеКТ-28-2 (1,г)
КР142ЕН8Д12
КР142ЕН8Е15
КР142ЕН9Г20
КР142ЕН9Д24
КР142ЕН9Е27
КР142ЕН5В51,510плюсовоеКТ-28-2 (1,г)
КР142ЕН5Г6
КР142ЕН8А9
КР142ЕН8Б12
КР142ЕН8В15
КР142ЕН9А20
КР142ЕН9Б24
КР142ЕН9В27
780551,5**10плюсовоеТО-220 (1,г)
78066
78088
78858,5
78099
781212
781515
781818
782424
790551,5**10минусовоеТО-220 (1,д)
79066
79088
79099
791212
791515
791818
792424
КР1162ЕН5А, КР1162ЕН5Б51,510минусовоеКТ-28-2 (1,д)
КР1162ЕН6А, КР1162ЕН6Б6
КР1162ЕН8А, КР1162ЕН8Б8
КР1162ЕН9А, КР1162ЕН9Б9
КР1162ЕН12А, КР1162ЕН12Б12
КР1162ЕН15А, КР1162ЕН15Б15
КР1162ЕН18А, КР1162ЕН18Б18
КР1162ЕН24А, КР1162ЕН24Б24
КР1179ЕН0551,510минусовоеТО-220 (1,д)
КР1168ЕН066
КР1179ЕН088
КР1179ЕН1212
КР1179ЕН1515
КР1179ЕН2424
КР1180ЕН5А, КР1180ЕН5Б51,510плюсовоеКТ-28-2 (1,г)
КР1180ЕН6А, КР1180ЕН6Б6
КР1180ЕН8А, КР1180ЕН8Б8
КР1180ЕН9А, КР1180ЕН9Б9
КР1180ЕН12А, КР1180ЕН12Б12
КР1180ЕН15А, КР1180ЕН15Б15
КР1180ЕН18А, КР1180ЕН18Б18
КР1180ЕН24А, КР1180ЕН24Б24
КР142ЕН5А5210плюсовоеКТ-28-2 (1,г)
КР142ЕН5Б6

* Была выпущена опытная партия с цоколевкой, соответствующей рис. 1,а.
** Выпускают также разновидности на ток нагрузки до 1 А.

Рис. 1

Некоторые типы отечественных стабилизаторов имеют оригинальную устоявшуюся цифровую нумерацию выводов (она показана на рис. 1 в скобках). Это произошло оттого, что первоначально микросхемы этих серий выпускали в «микросхемных» корпусах со стандартизированной нумерацией выводов. После того, как было налажено производство в «транзисторных» корпусах, нумерация выводов сохранилась.

Возможно, Вам это будет интересно:

meandr.org

Крен5а — Стабилизатор напряжения КРЕН5А — 22 ответа



стабилизаторы крен

В разделе Техника на вопрос Стабилизатор напряжения КРЕН5А заданный автором Правоспособный лучший ответ это суть стабилизатора как раз в том, что какое напряжение (в диапазоне рабочих) ни подавай — на выходе будет ровно 5 вольт (если стаб на 5 вольт)
Радиатор нужен. все-таки, и чем больше входное напряжение — тем сильнее нагрев, ибо мощность выделяемая будет равна (Uпит-Uвых) * Iнагр
нет, это не контроллер разряда, ток покоя определенный есть, поэтому надо отключать от батареи.
И, кстати, входное напряжение не менее 7-7,5в, так что в твоем случае от батареи 7,4в КРЕНка будет работать на нижнем пороге, и выходное будет садиться, т. е. работать как надо на стабилизацию не будет.
Лучше собирать на ШИМ — гугли про DC-DC converter. Популярная микросхема — MC34063
на ШИМ можно собрать не только понижающий, но и повышающий стабилизатор. И радиатор не нужен будет

Ответ от 22 ответа[гуру]

Привет! Вот подборка тем с ответами на Ваш вопрос: Стабилизатор напряжения КРЕН5А

Ответ от Вровень[мастер]
в первом случае на выходе тоже будет 5 вольт, и потреблении в 300 милиампер будет грется ощутимо, но в китай игровых приставках зачастую кренки были просто прижаты болтом к плате. небольшой но радиатор нужен

Ответ от роскошество[гуру]
1) 5 вольт
2) зависит от входного напряжения
3)разрядит

Ответ от SELIGOZAVR[гуру]
78l05 есть в корпусе, как кт3107, на компьютерных платах, к примеру. При конкретных схемах — можно задать от 3 до 5В. Перегрев… если есть сомнения -то надо ставить на радиатор однозначно и в корпусе кт814

Ответ от [эксперт]
Ну тебе все сказали почти все правильно Я просто покажу тебе как считать мощность рассеивания Ррасс Итак Ррасс=(Uвходное — Uвыходное) *Iнагрузки = (12В-5В) *0,5А=3,5Вт Это очень жестко для КРЕНки без радиатора )) А вот если входное будет 7,5В то мощность рассеивания = (7,5-5)*0,5=1,25 Вт Тоже радиатор нужен Только лично я никогда не даю на такую кренку напругу ниже 8В Если же возникает такая необходимость — существует класс стабилизаторов LDO Вот так все просто

Ответ от Dmitry[гуру]
Андрей всё написал правильно, за одним маленьким исключением.
Если это именно КРЕН5А, а не 7805 и не 142ЕН5А, то при напряжении на входе 7,4 В на выходе вполне может быть уже не 5 В, а несколько меньше. Для КРЕН5А режим стабилизации гарантируется при входном напряжении не ниже 8 В.

Ответ от 2 ответа[гуру]

Привет! Вот еще темы с нужными ответами:

 

Ответить на вопрос:

22oa.ru

Радио портал

Радио портал
Радио схемы,
статьи, разработки
 

 Главная   Схемы   Мануалы   Справочники   Софт   Поиск   Форум   Ссылки 

Регулироемый стабилизатор на КРЕН12А


Регулироемый стабилизатор на КРЕН5А


Главная | 
Схемы | 
Мануалы | 
Справочники | 
Софт | 
Поиск | 
Форум | 
Ссылки |

  Всего на сайте побывало: 132   ( 29 сегодня, 35 на этой неделе, 35 в этом месяце )     Сейчас: 1    Обнавлено:     

radioh10.narod.ru