Латр схема подключения – ЛАТР 3А, вх.127,220В вых.0..250В, снабжён вольтметром и предохранителями, разъёмы компьютерные-сетевые и зажимы-банан (восстановлен и переделан из ручного стабилизатора) [лето 2011] / Блог им. Celeron / Сообщество EasyElectronics.ru

Содержание

Принципиальная схема подключения ЛАТР

Для проведения лабораторных работ, а также для наладки и испытания различных устройств из области радиотехники, существует специальный прибор лабораторный автоматический трансформатор (ЛАТР). Схема подключения ЛАТР отвечает всем требованиям безопасности, с ее помощью осуществляется плавная регулировка переменного тока.

Использование трансформаторов ЛАТР

Данная конструкция трансформатора используется при лабораторных исследованиях с нестандартным напряжением. С его помощью, в ручном режиме поддерживается номинальное напряжение нагрузки. Как правило, ЛАТРы применяются при тестировании низковольтных приборов и оборудования.

Нередко, трансформаторы ЛАТР выполняют функцию блока питания в приборах, предназначенных для нагревания нихромовой нити и разрезания пенопластовых, акриловых и прочих материалов.

В трансформатор встраивается вольтметр и регулятор, изменяющий переменный ток на выходе. Коэффициент трансформации изменяется при перемещении контакта, подключающего нагрузку в обмотке ЛАТР.

Подготовка к работе и подключение

После пребывания автотрансформатора в условиях низкой температуры, его нужно выдержать в условиях будущей эксплуатации как минимум 4 часа.

Перед подключением производится осмотр корпуса трансформатора на предмет отсутствия видимых внешних повреждений. После этого, схема подключения ЛАТР предполагает подключение кабеля нагрузки и сетевого кабеля. После всех подключений, осуществляется подача к автотрансформатору питающего напряжения.

Для того, чтобы подключение было выполнено правильно, при отключенной нагрузке, на шкале прибора устанавливается половинное значение напряжения. Затем, необходимо включить вольтметр, первый щуп соединить с нулевым проводом сети, а второй щуп должен контролировать напряжение на выходе автотрансформатора. На одном контакте напряжение будет иметь нулевое, а на втором контакте половинное значение. Это означает, что прибор подключен правильно. В случае неправильного подключения, напряжение на выходе будет таким же, как и в электрической сети, в пределах 220 вольт.

При подключении ЛАТР необходимо соблюдать правила электробезопасности. Внутри прибора существует опасное значение напряжения свыше 220 вольт, при частоте 50 герц. Поэтому, работать с автотрансформатором могут только специалисты с допуском, разрешающим работать с оборудованием при напряжении до 1000 вольт.

С самим трансформатором нужно обращаться бережно, избегать ударов, перегрузок, воздействия агрессивной среды.

electric-220.ru

ЛАТР 3А, вх.127,220В вых.0..250В, снабжён вольтметром и предохранителями, разъёмы компьютерные-сетевые и зажимы-банан (восстановлен и переделан из ручного стабилизатора) [лето 2011] / Блог им. Celeron / Сообщество EasyElectronics.ru

Старики знают, что в ту эпоху, когда коммунизм ещё только строился, напряжение в электрических сетях было не 220VAC как сейчас, а по разному (обычно 110..127VAC, в редких новостройках 220VAC) и очень сильно плавало (не то что сейчас) — тогда без стабилизаторов напряжения было никак не обойтись (сейчас-то мы обходимся).

В основе всех стабилизаторов напряжения используются автотрансформаторы. Однако, первые стабилизаторы напряжения регулировались не автоматически, а вручную — фактически, это были просто голые автотрансформаторы, включенные на повышение напряжения (в обратном включении, чем привычные нам ЛАТРы). Но конечно, такие «ручные стабилизаторы» были очень неудобными: приходилось следить за ними, как рыбак за поплавком — ну, точно не меньше! Как же в таком случае расслабиться и посмотреть телевизор? Если каждые полминуты нужно глядеть на маленький экранчик аналогового вольтметра, соображать, и подкручивать сверху ручку (мать мне рассказывала, что ей доставалось от деда, когда она забывала «покрутить эту ручку» — это случалось незавидно регулярно)… Естественно, как только в продаже появились «автоматические стабилизаторы», которые «глядели» на вольтметр сами, — тогда «ручные стабилизаторы» (в количестве 1шт.) были тут же вытеснены в подвалы и забыты (почти на пол века, пока до них не добрался я).

Найдя в подвале древний дедовский «ручной стабилизатор напряжения» — было принято единственно верное решение: разобрать и применить… В итоге, получилось вот такое винтажное чудо:

Далее, будет много фоток (все кликабельны и ведут на полноразмерное изображение)…

Описание и характеристики изделия

  • Название: Лабораторно-бытовой автотрансформатор регулируемый однофазный
  • Входы и выходы реализованы в разных видах:

    есть стандартные гнёзда-зажимы «банан» (обычные для ЛАТРа),

    и есть удобные в быту «сетевые компьютерные разъёмы IBM» (ВХОД: Штекер сетевой IBM 3pin монтажный, c предохранителем; ВЫХОД: Гнездо сетевое IBM 3pin монтажное).
    Примечание: в отличие от советских ЛАТРов, здесь каждый вход и выход представлены не тройкой, а только парой контактов — что, однако, не снижает функциональности…
  • Максимальная нагрузка (пропускаемая мощность): до 3А, в любом из контуров.
  • Первичный и вторичный контуры защищены плавкими предохранителями (итого, две штуки).
    Примечание: Предохранитель входного контура FUSE1 вмонтирован во входной «сетевой штекер IBM» (с левой стороны корпуса). Замечу, что ВХОД через гнездо-зажим «банан» — также скоммутирован через этот предохранитель (для этого разъём IBM был немного «допилен»)…
    Примечание: Обычно, ток во вторичном (выходном) контуре — больше. Поэтому выходной плавкий предохранитель FUSE2 (с правой стороны корпуса) сделан более доступным для замены, в удобном держателе, поскольку вероятность выхода его из строя — больше…
  • Индикация режимов работы: две лампочки (неоновая подсветка на тумблере питания; и лампочка накаливания, подключённая непосредственно к катушке автотрансформатора) и аналоговый вольтметр выходного напряжения.
  • Переключатель диапазонов входного напряжения питания 127/220VAC — реализован в виде ползункового переключателя (с утопленной клавишей, во избежание случайного переключения).
Осмотрим прибор снаружи


Примечание: От долгой и трудной жизни, металлический корпус повело — поэтому опорные ножки пришлось доделать, чтобы корпус стоял на резине, а не на выступающем металле. Трёхножечная конструкция, оказалось, обладает интересными свойствами: конечно, это гораздо менее устойчиво, чем 4 ножки; но зато, можно совершенно не задумываться и не подбирать высоту ножек — конструкция автобалансируется на трёх точках опоры.

Схема принципиальная ЛАТРа

Органы управления, Порядок работы и Техника Безопасности

1. Вначале, тумблер питания на передней панели должен быть в состоянии «выключено». Питающее напряжение на входных клеммах, очень желательно, должно отсуствовать — в целях техники безопасности.

Внимание: Следует иметь в виду, что входные гнёзда-зажимы «банан» запараллелены с «сетевым штекером IBM», ещё до тумблера питания. (Входы разных типов — равнозначны!) Поэтому если вы подключаете электрически безопасный кабель питания ко ВХОДУ через Штекер сетевой IBM — то высокое напряжение тут же появляется и на входных гнёздах-зажимах «банан» (а последние имеют оголённые металлические контакты)!

Примечание: Тумблер питания (S1 на схеме принципиальной) — двухполюсный. Поэтому пока S1 не включен — напряжение на ВЫХОДЕ устройства полностью отсутствует.

2. Неоновая подсветка на тумблере питания — это индикатор готовности ЛАТРа к работе. Она загорается сразу же, как только ко ВХОДУ ЛАТРа подключают питающее напряжение — ещё до включения тумблера питания.

3. Далее, следует проверить и установить правильное положение «переключателя диапазонов входного напряжения 127/220VAC» (S2 на схеме принципиальной): в Украине/России — следует установить в положение 220V; а Америке/Европе — установить в положение 127V (на случай, если я туда поеду вместе со своим ЛАТРом, случайно). И только после этого допускается включать тумблер питания!

4. Обычно, на этом этапе, Нагрузка к выходам ЛАТРа — не подключена! Поскольку мы не знаем какое выходное напряжение сейчас выставлено ползунком…

5. Можно включать прибор: После включения тумблера питания S1, электрический ток поступает на катушку автотрансформатора — загорается индикатор «рабочего режима»: лампочка накаливания за зелёным стёклышком над вольтметром, подключённая к низковольтному отводу от катушки трансформатора (простой и надёжный индикатор).

Если выходной предохранитель FUSE2 в норме, то сейчас преобразованное напряжение поступает на ВЫХОДы ЛАТРа — стрелочный вольтметр (на передней панели) покажет величину выходного напряжения.

6. Настройте требуемое выходное напряжение «регулировочной ручкой», расположенной сверху прибора…

7. Наконец, подключите к ЛАТРу выходную Нагрузку.
Примечание: Выходные гнёзда-зажимы «банан» также запараллелены с выходным «сетевым гнездом IBM», и включены после выходного предохранителя FUSE2 — они совершенно равнозначны.

8. Можно тестировать поведение Нагрузки при изменяющемся напряжении питания: крутим «регулировочную ручку», смотрим как изменяются показания напряжения на вольтметре (удобно, когда в ЛАТРе есть встроенный вольтметр!)…

8. По завершению работы, первым делом отключаем тумблер питания S1 — зелёная лампочка «рабочего режима» погасает (автотрансформатор обесточен, выходное напряжение отключено), а красная неонка («готов к работе») на тумблере питания — останется светить.
Примечание: такие цветовые кодировки индикаторов выбраны удачно: зелёный — «нормально работаю»; красный — «внимание».

А теперь заглянем внутрь прибора (вскрытие)



Все провода, идущие к трансформаторной катушке — разъёмны без пайки! Это необходимо из-за особенностей строения корпуса (высокая и узкая бочка) — чтобы разбирать и собирать устройство без проблем.

На верхнем фото заметно: Кроме обычных клеммных «кольцевых наконечников под винт M4» (одеваемых на гнёздо-зажим «банан») — для других четырёх проводов, которые идут от трансформатора, но не соединены с выходами непосредственно (не идут под винт гнезда «банан»), я использовал «кабельный наконечник-соединитель» (пара ST-040/B и ST-050/B) в разноцветных термоусадках (жёлтый, белый, зелёный, красный). (Примечание: цвет здесь ключ — в зависимости от назначения проводов, чтобы не перепутать их при коммутации — потому что механически: разъёмы одинаковы!).

В изначальной конструкции «ручного стабилизатора напряжения» многие узлы, представленные на этих фотографиях, отсутствовали или были реализованы иначе:

  • Входной разъём отсутствовал: так как это бытовой прибор, то питание поступало по обычному гибкому силовому проводу, жёстко закреплённому внутри корпуса, и оканчивавшемуся бытовой сетевой вилкой.
  • В качестве выходной розетки: присутствовала странная конструкция, с двумя втулочками под штырьки вилки, без подпружиненных контактов (бюджетный совковый вариант минирозетки), на пластмассовой основе.

    В эту же конструкцию был встроен «переключатель диапазонов входного напряжения 127/220VAC»: реализованный как перекидной контакт клеммника, фиксируемый винтом; и всё накрывалось декоративной крышечкой, также фиксируемой винтом (что интересно: в этой крышечке была проделана щёлочка, через которую можно было наблюдать текущее положение, в котором зафиксирован контакт переключателя) — винтажная эстетика… 🙂
  • За давностью лет, все провода в приборе (как и внешний силовой, так и внутренние коммутационные) — совершенно износились и подлежали безусловной замене.
  • Но главное: сама катушка автотрансформатора — была целая, без обрывов и замыканий. Механизм подстроечного ползунка — также присутствовал в полной мере (пришлось только его почистить и отрегулировать).
  • Вольтметр отсутствовал — в корпусе зияла дыра (панельный вольтметр я потом подобрал отдельно — он почти подошёл по размерам ниши: хотя видно, чуток больше, чем стоявший в конструкции изначально — крепления пришлось переделать и обернуть корпус вольтметра изолирующей фторопластовой плёнкой).
  • Зелёного стёклышка «индикатора рабочего режима» — не было (это уже я доделал, и лампочку закрепил). Вместо него был: металлический козырёк (чтобы свет не бил в глаза пользователю), из под которого в щёлку светила лампочка накаливания (почему-то не закреплённая) — подобная конструкция, например, использовалась в подсветке заднего номерного знака старых советских автомобилей (тренд того времени)

За сим, пока всё…

we.easyelectronics.ru

Схема подключения латр 1м. Что такое трансформаторы (ЛАТР)

Что такое трансформаторы ЛАТР: назначение и применение

Автотрансформаторы предназначены для плавного регулирования напряжения переменного тока частотой 50-60Гц при различных электротехнических работах. Очень часто автотрансформаторы применяют, когда нужно понизить или повысить переменное напряжение для строительных или бытовых электроприборов.

Особенности конструкции трансформаторов

К трансформаторам относят электрическую аппаратуру, имеющую от двух и более обмоток связанных индуктивно, предназначенную для преобразования электрической энергии по уровню тока или напряжения.

В трансформаторе может быть одна (у автотрансформатора) или несколько изолированных ленточных, либо проволочных обмоток (или катушек), которые охватываются общим магнитным потоком и наматываются на магнитопровод (называемым сердечником) из магнитомягкого ферромагнитного материала.

На сегодняшний день очень широкое распространение в быту приобрели однофазные автотрансформаторы (ЛАТРы — расшифровываются как «лабораторные автотрансформаторы) — это вид трансформатора, где первичные и вторичные обмотки не изолированы друг от друга, а электрически соединены напрямую, поэтому в них имеется не только электромагнитная связь, но и электрическая. Эта общая обмотка имеет несколько разных выводов (от 3 и более), подключившись к которым, возможно получить различные напряжения.

Преимущества автотрансформаторов

Преимущество автотрансформатора заключается в более высоком КПД, т.к. лишь некоторая часть мощности преобразовывается — это особенно важно, когда выходное и входное напряжения различаются на небольшую величину. Отрицательным моментом служит то, что нет электрической изоляции между обмотками и, как следствие, первичной и вторичной цепью. Так как в промышленных электрических сетях имеется заземление нулевого провода, поэтому озвученный фактор не будет играть никакой роли, но другим очень важным моментом здесь служит существенно меньший расход меди для обмоток, собственно стали для сердечников, уменьшаются габариты и вес. В итоге мы имеем понижение стоимости. А это уже серьёзный довод в условиях современного рынка.

У Автотрансформатора ЛАТРимеется подвижный контакт-токосъём, который подключён к обмотке. Это позволяет плавно изменить число витков, которые включены во вторичную цепь, и, соответственно, выходное напряжение, которое можно выбрать практически от 0 до наибольшего значения у ЛАТР данной модели.

Применение трансформаторов ЛАТР

ЛАТРы нашли применение там, где требуется, стабилизация напряжения электросети, часто применяют в лабораторных установках. ЛАТР способен плавно регулировать напряжение переменного тока промышленной частоты 50 Гц при разнообразных электротехнических работах. Необходимым требованием безопасности при его работе служит надёжное заземление.

Эксплуатировать автотрансформаторы со снятой оболочкой запрещено. ЛАТР относят к электротехническим приборам, нестойким по отношению к короткому замыканию, а значит его использование возможно лишь в тех сетях, которые защищены плавкими предохранителями или автоматами, отключающими сеть при токах более 20 А (или более, в зависимости от модели).

По климатическим характеристикам допускается эксплуатация ЛАТРов при высоте 2000 метров над уровнем моря, но при этом ток нагрузки необходимо уменьшать на 2,5% при подъёме на каждые 500 м высоты.

егодня на рынке представлены модели автотрансформаторов со сроком службы 12 лет и более, при наработках на отказ не меньше 6250 часов. Положение автотрансформаторов ЛАТР во время эксплуатации может быть произвольным, режим работы — продолжительным.


electric-220.ru

ЛАТР-1М автотрансформатор >> 9999руб, 4999грн, 3шт. в наличии.

    Автотрансформатор ЛАТР-1М регулировочный лабораторный (ЛАТР1М, ЛАТР-1-М, ЛАТР 1 М, ЛАТР 1М)

 

    Автотрансформатор ЛАТР-1М регулировочный лабораторный — предназначены для плавного регулирования напряжения от 0В до 250В без разрыва цепи в различных электротехнических устройствах.

 

    Технические характеристики приборов автотрансформаторы ЛАТР-1М регулировочные лабораторные:

 

    Пределы регулирования вторичного напряжения — 0В-250В;

    Ток холостого хода прибора автотрансформатор ЛАТР-1М регулировочный лабораторный — 0,7А;

    Потеря холостого хода — 25Вт;

    Номинальное значение силы тока нагрузки прибора автотрансформатор ЛАТР-1М регулировочный лабораторный при кратковременном (не более 1 часа) режиме работы указано в таблице 1;

 

    Таблица 1 Номинальное значение силы тока нагрузки при кратковременном (не более 1 часа) режиме работы

 

Напряжение сети

220В

127В

Пределы регулирования

0В-220В

220В-250В

0В-140В

140В-250В

Допустимый ток нагрузки

   

    Примечание. При длительных (более 1 часа) нагрузках допустимые токи, указанные в таблице 1 снижаются на 20%.

 

    Габариты — 168х130х198мм;

    Масса прибора автотрансформатор регулировочный лабораторный ЛАТР-1М — не менее 8,4кг.

Фотографии на: ЛАТР-1М

ЛАТР-1М фотография автотрансформатора.

zapadpribor.com

ЛАТР-1М автотрансформатор >> 4999грн, 9999руб, 3шт. в наявності.

    Автотрансформатор ЛАТР-1М регулювальний лабораторний (ЛАТР1М, ЛАТР-1-М, ЛАТР 1 М, ЛАТР 1М)

 

    Автотрансформатор ЛАТР-1М регулювальний лабораторний призначені для плавного регулювання напруги від 0В до 250В без розриву кола в різних електротехнічних пристроях.

 

    Технічні характеристики приладів автотрансформатори ЛАТР-1М регулювальні лабораторні:

 

    Межі регулювання вторинного напруги — 0В-250В;

    Струм холостого ходу приладу автотрансформатор ЛАТР-1М регулювальний лабораторний — 0,7А;

    Втрата холостого ходу — 25Вт;

    Номінальне значення сили струму навантаження приладу автотрансформатор ЛАТР-1М регулювальний лабораторний при короткочасному (не більше 1 години) режимі роботи зазначено в таблиці 1;

 

    Таблиця 1 Номінальне значення сили струму навантаження при короткочасному (не більше 1 години) режимі роботи

 

Напруга мережі

220В

127В

Межі регулювання

0В-220В

220В-250В

0В-140В

140В-250В

xn—-7sbeb3bupph.xn--p1ai

схема для регулировки напряжения с трансформатором

Полвека назад лабораторный автотрансформатор был очень распространен. Сегодня электронный ЛАТР, схема которого должна быть у каждого радиолюбителя, имеет множество модификаций. Старые модели имели токосъемный контакт, расположенный на вторичной обмотке, что давало возможность плавно менять значение выходного напряжения, позволяло оперативно изменять напряжение при подключении различных лабораторных приборов, изменении интенсивности нагрева жала паяльника, регулировки электрического освещения, изменения оборотов электродвигателя и многого другого. Особое значение имеет ЛАТР в качестве устройства стабилизации напряжения, что очень важно при настройке различных приборов.

Современный ЛАТР используется почти в каждом доме для стабилизации напряжения.

Сегодня, когда электронный ширпотреб заполонил прилавки магазинов, приобрести надежный регулятор напряжения простому радиолюбителю стало проблемой. Конечно, можно найти и промышленный образец. Но они часто слишком дорогие и громоздкие, а для домашних условий это не всегда подходит. Вот и приходится многочисленным радиолюбителям «изобретать велосипед», создавая электронный ЛАТР своими руками.

Простое устройство регулирования напряжения

Схема простой модели ЛАТРа.

Одна из самых простых моделей ЛАТР, схема которой изображена на рис.1, доступна и начинающим. Регулируемое устройством напряжение — от 0 до 220 вольт. Мощность этой модели — от 25 до 500 Вт. Повысить мощность регулятора можно до 1,5 кВт, для этого тиристоры VD1 и VD2 следует установить на радиаторы.

Эти тиристоры (VD1 и VD2) подключаются параллельно нагрузке R1. Они пропускают ток в противоположных направлениях. При включении устройства в сеть эти тиристоры закрыты, а конденсаторы С1 и С2 заряжаются посредством резистора R5. Величину напряжения, получаемого на нагрузке, изменяют по необходимости переменным резистором R5. Он вместе с конденсаторами (С1 и С2) создает фазосдвигающую цепь.

Рис. 2. Схема ЛАТРа, дающего синусоидальное напряжение без помех в системе.

Особенностью этого технического решения является использование обоих полупериодов переменного тока, поэтому для нагрузки используется не половинная мощность, а полная.

Недостатком данной схемы (плата за простоту) надо считать то, что форма переменного напряжения на нагрузке оказывается не строго синусоидальной, что обусловлено спецификой работы тиристоров. Это может привести к помехам по сети. Для устранения проблемы дополнительно к схеме можно установить фильтры последовательно нагрузке (дроссели), например, взять их из неисправного телевизора.

Вернуться к оглавлению

Схема регулятора напряжения с трансформатором

Схема ЛАТРа, не создающего помехи в сети и дающего на выходе синусоидальное напряжение, приведена на рис.2. Регулирующим элементом в используемом приборе является биполярный транзистор VT1 (его мощность рассчитывают из потребности нагрузки), функционирующий как переменный резистор, он включен в схему последовательно с нагрузкой.

Это техническое решение дает возможность регулировать рабочее напряжение при активной, а также реактивной нагрузках.

Недостатком предложенного решения является выделение слишком большого количества тепла используемым регулирующим транзистором (необходим мощный радиатор для теплоотвода). Для данного устройства площадь радиатора должна быть не менее 250 см².

Трансформатор Т1, используемый в этой модели, должен иметь мощность 12-15 Вт и вторичное напряжение 6-10 В. Ток выпрямляется диодным мостом VD6. Далее при любом полупериоде переменного тока через диодный мост VD2-VD5 протекает выпрямленный ток для транзистора VT1. При использовании устройства переменным резистором R2 регулируем базовый ток транзистора VT1. Этим изменяются параметры тока нагрузки. На выходе устройства величина напряжения контролируется вольтметром PV1 (он должен быть рассчитан на напряжение 250-300 В). Для повышения мощности нагрузки необходимо заменить транзистор VD1 и диоды VD2-VD5 на более мощные и, конечно, увеличить площадь радиатора.


moiinstrumenty.ru

Электронный ЛАТР своими руками

В настоящее время производится много регуляторов напряжения и большинство из них изготовлены на тиристорах и симисторах, которые создают значительный уровень радиопомех. Предлагаемый регулятор помех не даёт совсем и может использоваться для питания различных устройств переменного тока, без каких – либо ограничений, в отличие от симисторных и тиристорных регуляторов.
В Советском Союзе выпускалось очень много автотрансформаторов, которые, в основном, применялись для повышения напряжения в домашней электрической сети, когда по вечерам напряжение очень сильно падало, и ЛАТР (лабораторный автотрансформатор) был единственным спасением для людей, желающих посмотреть телевизор. Но главное в них то, что на выходе из этого автотрансформатора получается такая же правильная синусоида, как и на входе, не зависимо от напряжения. Этим свойством активно пользовались радиолюбители.
Выглядит ЛАТР так:

Напряжение в этом приборе регулируется при помощи качения графитового ролика по оголённым виткам обмотки:

Помехи в таком ЛАТРе, всё же были из — за искрения, в момент качения ролика по обмоткам.
В журнале «РАДИО», №11, 1999г на странице 40 была напечатана статья «Беспомеховый регулятор напряжения».
Схема этого регулятора из журнала:

В предлагаемом журналом регуляторе не искажается форма выходного сигнала, но низкий коэффициент полезного действия и невозможность получения повышенного напряжения (выше напряжения сети), а также устаревшие комплектующие, которые найти сегодня проблематично, сводят на нет все преимущества данного прибора.

Схема электронного ЛАТРа

Я решил по возможности избавиться от некоторых недостатков регуляторов, перечисленных выше и сохранить их главные достоинства.
От ЛАТРа возьмём принцип автотрансформации и применим его на обычном трансформаторе, тем самым повысим напряжение выше напряжения сети. Мне понравился трансформатор от блока бесперебойного питания. В основном тем, что его не нужно перематывать. Всё нужное в нём есть. Марка трансформатора: RT-625BN.

Вот его схема:

Как видно из схемы, в нём присутствует, помимо основной обмотки на 220 вольт, ещё две, выполненные обмоточным проводом того же диаметра, и две вторичные мощные. Вторичные обмотки отлично подходят для питания цепи управления и работы кулера охлаждения силового транзистора. Две дополнительные обмотки соединяем последовательно с первичной обмоткой. На фотографиях видно, как это сделано по цветам.

На красный и чёрный провода подаём питание.

Добавляется напряжение с первой обмотки.

Плюс две обмотки. Итого получается 280 вольт.
Если нужно большее напряжение, то можно домотать ещё провода до заполнения окна трансформатора, предварительно сняв вторичные обмотки. Только мотать нужно обязательно в том же направлении, что и предыдущая обмотка, и соединять конец предыдущей обмотки с началом следующей. Витки обмотки должны, как бы продолжать предыдущую обмотку. Если намотаете навстречу, то при включении нагрузки будет большая неприятность!
Повышать напряжение можно, лишь бы регулирующий транзистор выдержал это напряжение. Транзисторы из импортных телевизоров встречаются до 1500 вольт, так что простор есть.
Трансформатор можно взять и любой другой, подходящий вам по мощности, удалить вторичные обмотки и домотать провод до нужного вам напряжения. В этом случае, напряжение управления можно получить от дополнительного вспомогательного маломощного трансформатора на 8 – 12 вольт.

Если кому – то захочется повысить КПД регулятора, то можно и здесь найти выход. Транзистор бесполезно расходует электроэнергию на нагрев тогда, когда ему приходится сильно убавлять напряжение. Чем сильнее нужно убавить напряжение, тем сильнее нагрев. В открытом состоянии, нагрев незначителен.
Если изменить схему автотрансформатора и сделать на нём много выводов нужных вам уровней напряжения, то можно при помощи переключения обмоток подать на транзистор напряжение близкое к нужному вам в данный момент. Ограничения в количестве выводов трансформатора не имеется, нужен только соответствующий количеству выводов переключатель.
Транзистор в этом случае будет нужен только для незначительной точной корректировки напряжения и КПД регулятора повысится, а нагрев транзистора уменьшится.

Изготовление ЛАТРа

Можно приступать к сборке регулятора.
Схему из журнала я немного доработал, и получилось вот что:

С такой схемой можно значительно повышать верхний порог напряжения. С добавлением автоматического кулера, снизился риск перегрева регулирующего транзистора.
Корпус можно взять от старого компьютерного блока питания.

Сразу нужно прикинуть порядок размещения блоков устройства внутри корпуса и предусмотреть возможность их надёжного закрепления.

Если нет предохранителя, то обязательно нужно предусмотреть другую защиту от короткого замыкания.

Высоковольтный клеммник надёжно крепим к трансформатору.

На выход я поставил розетку для подключения нагрузки и контроля напряжения. Вольтметр можно поставить любой другой, на соответствующее напряжение, но не меньше 300 Вольт.

Понадобится

Нам понадобятся детали:

  • Радиатор охлаждения с кулером (любой).
  • Макетная плата.
  • Контактные колодки.
  • Детали можно подбирать исходя из наличия и соответствия номинальным параметрам, я ставил то, что первым под руку попало, но выбирал более или менее подходящее.
  • Диодные мосты VD1 – на 4 — 6А – 600 В. Из телевизора, кажется. Или собрать из четырёх отдельных диодов.
  • VD2 — на 2 — 3 А – 700 В.
  • T1 – C4460. Транзистор я поставил от импортного телевизора на 500V и мощностью рассеяния 55W. Можете попробовать любой другой подобный высоковольтный, мощный.
  • VD3 – диод 1N4007 на 1A 1000 В.
  • C1 – 470mf х 25 В, лучше ёмкость ещё увеличить.
  • C2 – 100n.
  • R1 – 1 кОм потенциометр любой проволочный, от 500 Ом и выше.
  • R2 – 910 — 2 Вт. Подбор по току базы транзистора.
  • R3 и R4 — по 1 кОм.
  • R5 – подстрочный резистор на 5 кОм.
  • NTC1 — терморезистор на 10 кОм.
  • VT1 – любой полевой транзистор. Я поставил RFP50N06.
  • M – кулер на 12 В.
  • HL1 и HL2 – любые сигнальные светодиоды, их можно вовсе не ставить вместе с гасящими резисторами.

Первым делом нужно приготовить плату для размещения деталей схемы и закрепить её на месте в корпусе.



Размещаем на плате детали и припаиваем их.






Когда схема собрана, настаёт время её предварительного испытания. Но нужно это делать очень осторожно. Все детали находятся под напряжением сети.
Для испытания устройства я спаял две лампочки на 220 вольт последовательно, чтобы они не сгорели, когда на них пойдёт напряжение 280 вольт. Одинаковой мощности лампочек не нашлось и поэтому накал спиралей сильно различается. Нужно иметь ввиду, что без нагрузки регулятор работает очень некорректно. Нагрузка в данном устройстве является частью схемы. При первом включении лучше поберегите глаза (вдруг что – то напутали).
Включаем напряжение и потенциометром проверяем плавность регулировки напряжения, но не долго, во избежание перегрева транзистора.

После испытаний начинаем собирать схему автоматической работы кулера, в зависимости от температуры.
У меня не нашлось терморезистора на 10 кОм, пришлось взять два по 22 кОм и соединить их параллельно. Получилось около десяти кОм.

Крепим терморезистор рядом с транзистором с применением теплопроводной пасты, как и для транзистора.

Устанавливаем остальные детали и припаиваем. Не забудьте удалить медные контактные площадки макетной платы между проводниками, как на фото, иначе при включении высокого напряжения может произойти замыкание в этих местах.


Осталось отрегулировать подстроечным резистором начало работы кулера, когда температура радиатора возрастёт.

Помещаем всё в корпус на штатные места и закрепляем. Окончательно проверяем и закрываем крышку.

Смотрите, пожалуйста, видео работы беспомехового регулятора напряжения.
Удачи вам.

Смотрите видео

sdelaysam-svoimirukami.ru

Электронный латр своими руками (схемы)

24 сентября 2015

Просмотров: 7955

Основным поводом для создания электронного ЛАТРа своими руками является избыток на рынке электротоваров ненадежных регуляторов. Выходом из ситуации может быть образец промышленного типа, но такие экземпляры стоят дорого и обладают внушительными габаритами, что затрудняет его использование в домашних условиях.

Схема устройства электронного ЛАТРа.

Что представляет собой прибор

Стоит упомянуть, что лабораторные автотрансформаторы (ЛАТР) широко использовались еще полвека тому назад. Прежние варианты прибора обладали токосъемным контактом, который был расположен на вторичной обмотке. Это позволяло плавно изменять выходное напряжение (его значение).

Если подключались всевозможные лабораторные приборы, был вариант оперативной смены напряжения. Например, при необходимости легко можно было повлиять на степень нагрева паяльника, регулировать яркость освещения, обороты электродвигателя и многое другое. Вот такой своеобразный регулирующий блок питания.

Рисунок 1. Схема простого варианта ЛАТРа.

Нынешний вариант ЛАТРа обладает различными модификациями. В целом его можно считать трансформатором, в котором происходит трансформация переменного напряжения одной величины в переменное напряжение другой. Устройство широко используется в качестве стабилизатора напряжения. Основной особенностью является возможность изменения напряжения на выходе из прибора. ЛАТРы бывают нескольких вариантов исполнения:

  • однофазного;
  • трехфазного.

Трехфазный вариант представляет собой вмонтированные в едином корпусе три однофазных лабораторных автотрансформатора. Кстати, желающих стать обладателем трехфазного варианта значительно меньше.

Простой прибор для регулирования

Существует весьма простенький вариант ЛАТРа, который доступен даже для начинающих, его схема изображена на рис. 1. Регулируемый таким прибором диапазон напряжений находится в пределах 0-220 вольт. Данный самодельный регулятор обладает мощностью 25-500 Вт. Увеличение мощности устройства может быть проведено посредством установки тиристоров VD1 и VD2 на радиаторы.

Полупроводниковые приборы (речь идет о тиристорах ВД1 и ВД2) следует подключить параллельно с нагрузкой R1. Пропускаемый ими ток имеет противоположные направления. Когда прибор включается в сеть, тиристоры остаются закрытыми, в отличие от конденсаторов С1 и С2, зарядка которых производится резистором R5. Если есть потребность, с помощью резистора R5 можно изменить напряжение, которое получается во время нагрузки. Резистор и конденсаторы создают фазосдвигающую цепь.

Рисунок 2. ЛАТР с биполярным транзистором.

Фазосдвигающая цепь — это электрический четырехполюсник, гармонический сигнал на выходе которого сдвигается по фазе относительно входного сигнала. Распространены в САУ в качестве устройств корректировки, которые обеспечивают устойчивость и необходимое качество управления. Частными случаями являются дифференцирующие и интегрирующие цепи.

Данное техническое решение позволяет использовать для нагрузки не половинную мощность, а полную. Достигается это благодаря тому, что используются оба полупериода переменного тока.

К недостаткам можно отнести форму переменного напряжения на нагрузке. В этом варианте она не строго синусоидальная. Специфика работы полупроводниковых приборов является основной причиной. Наличие такой особенности способно вызвать помехи в сети. Но их можно устранить путем дополнительной установки дросселей (фильтров последовательной нагрузки) на схему. Такие фильтры можно найти даже в неисправном телевизоре.

Регулятор напряжения: вариант с трансформатором

Лабораторный автотрансформатор, который не станет причиной помех в сети и способный на выходе давать синусоидальное напряжение, устроен немного сложнее предыдущего.

Его схема (рис. 2) содержит биполярный транзистор VТ1. Он выступает в роли регулирующего элемента в таком устройстве. Мощность этого транзистора определяется в зависимости от необходимой нагрузки. В схеме он включен последовательно с нагрузкой и функционирует как реостат. Такой вариант предоставляет способность производить регулировку рабочего напряжения как во время активных, так и реактивных нагрузок.

К сожалению, и тут имеется свой недостаток. Он заключается в том, что задействованный регулирующий транзистор выделяет слишком большое количество тепла. Чтобы устранить его, понадобится теплоотводящий радиатор, который будет обладать достаточной мощностью. В данном случае площадь такого радиатора должна составлять как минимум 250 см².

В такой модели используется трансформатор Т1, который должен обладать мощностью от 12 и до 15 Вт и вторичным напряжением от 6 до 10 В. Выпрямление тока происходит с помощью диодного моста VD6. Выпрямленный ток к транзистору VТ1 в любом варианте полупериода проходит через мост диодов VD2 и VD5. Чтобы произвести регулировку базового тока транзистора VТ1, необходимо прибегнуть к помощи переменного резистора R1. Таким образом происходит изменение параметров тока нагрузки.

С помощью вольтметра РV1 осуществляется контроль величины напряжения на выходе из устройства. Вольтметр берется с расчетом на напряжение от 250 до 300 В. Если есть необходимость повышения мощности нагрузки, следует произвести замену транзистора VD1 и диодов VD2-VD5 более мощными. За этим, разумеется, последует увеличение площади радиатора.

Как можно заметить, самостоятельная сборка ЛАТРа возможна, необходимо лишь обладать знаниями в этой области и обзавестись нужными материалами.

Похожие статьи

Автор:


Иван Иванов

Поделись статьей:

Оцените статью:

Загрузка…

Похожие статьи

masterinstrumenta.ru

Лабараторный ЛАТР своими руками: схема и сборка

Трансформатор имеющий электрическую связь между обмотками называют лабораторным автотрансформатором, или ЛАТРом. Вольтаж цепи нагрузки прямо пропорционален обмотке вторичной цепи. В зависимости от конструкции, получение нужного выходного напряжения производиться подключением к соответствующим выводам или вращением ручного регулятора (рис. 1). В этой статье описывается как сделать ЛАТР в домашних условиях.

Подготовка материала

Для сборки ЛАТРа понадобятся следующие материалы и устройства:

  • Медная обмотка;
  • Тороидальный или стержневой магнитопровод. Можно приобрести в специализированном магазине или извлечь из испорченной техники;
  • Термоустойчивый лак;
  • Тряпичная изолента;
  • Корпус с закрепленными разъемами для подключения нагрузки и питания.

Для лабораторного ЛАТРа с переменным коэффициентом трансформации могут дополнительно понадобиться:

  1. Цифровой или аналоговый вольтметр.
  2. Поворотный механизм, включающий в себя ручку и ползунок с угольной щеткой. Он будет регулировать напряжение.

Расчет провода

Автотрансформатор нецелесообразно использовать для больших трансформаций по следующим причинам:

  • Большой риск получить токи, близкие к короткому замыканию. Это компенсируется специальными электронными схемами или дополнительным сопротивлением. Для маленьких нагрузок выгоднее использовать электронный ЛАТР.
  • Теряются преимущества перед трансформаторами: высокий КПД, экономия проводника и стали, малые габариты и вес, стоимость.

Определяемся в каких пределах будет работать ЛАТР. Питание сети выбираем 220 В. В качестве вторичных напряжений выбираем 127, 180 и 250 В. Мощность ограничиваем в 300 Вт. Можете выбрать свои значения и произвести аналогичные расчеты на примере этой статьи.

Обмотка рассчитывается по большему току. Наибольший ток будет при преобразовании напряжения 220 в 127 В. Автотрансформатор в этом случае является понижающим, и к нему подходит схема 1. Исходя из предоставленной схемы, рассчитываем максимальный ток I проходящий в обмотке обеих цепей:

I = I2 – I1 = P / U2  –  P / U1 = 300 / 127  –  300 / 220  = 1 А

  • где  I, I2, I3 – токи в соответствующих участках цепи, А;
  • P – мощность, Вт;
  • U1, U2 – напряжения первичной и вторичной цепи, В.

Диаметр провода рассчитываем по формуле:

d = 0,8 * √I = 1 мм.

Из таблицы 1 выбираем тип провода и сечение. Выбор делаем с учетом расчетного тока и среднего значения плотности тока для трансформаторов – 2 А/мм².

Коэффициент трансформации ЛАТРа n вычисляем по формуле:

n = U1 / U2 = 220 / 127 = 1,73

Для дальнейшего расчета вычисляем расчетную мощность Pр:

Pр = P * k * (1 – 1/n) = 300 * 1,2 * (1 – 1/1,73) = 151,92 Вт

где  к – коэффициент, учитывающий КПД автотрансформатора.

Для определения количества витков приходящихся на 1 вольт, необходимо посчитать площадь поперечного сечения сердечника S и определиться с типом магнитопровода:

S = √ Pр = √ 151,92 = 12,325 см²

W0 = m / S = 35 / 12,325 = 2,839

  • где  W0 – количество витков, приходящихся на 1 вольт;
  • m – 50 для стержневого и 35 для тороидального магнитопроводов.

Если сталь не очень высокого качества стоит увеличить значение W0 на 20-30 %. Так же при расчете витков следует увеличить их количество на 5-10 %, чтобы избежать просадки напряжения. Рассчитываем количество витков для выбранных напряжений 127, 180, 220 и 250 В:

w = W0 * U

Получаем 360, 511, 624 и 710 витков.

Для расчета длины провода обматываем один виток на магнитопровод и измеряем его длину. Затем умножаем на максимальное количество витков и прибавляем по 25-30 сантиметров для каждого вывода к клемме.

Процесс сборки

Для сборки регулируемого ЛАТРа выбираем тороидальный магнитопровод (рис. 2). Место наложения обмотки изолируем тряпичной изолентой.  Выводим провод для первой клеммы питания. Все последующие провода выводим не разрывая. Закрепляем первый виток на магнитопроводе и начинаем накручивать рассчитанное количество. При достижении витка соответствующего одному из выбранных напряжений, выводим петлю, и продолжаем наматывать провод. На рисунке 3 изображен процесс намотки на деревянном каркасе.

После наложения обмотки лакируем ЛАТР. Наполняем емкость выбранным лаком, и окунаем в него автотрансформатор. Оставляем на длительную просушку.

После просушки помещаем автотрансформатор в корпус. Первый выведенный провод присоединяем к разъему питания. Этот разъем должен быть электрически связан с общей клеммой нагрузки, поэтому соединяем их между собой каким-нибудь проводником. Петлю выведенную для 220 В, соединяем со второй клеммой питания. Остальные провода подключаем к соответствующим клеммам вторичной цепи. На “схеме” 2 изображены выводы проводов.

Для лабораторного автотрансформатора с переменным коэффициентом трансформации добавляем корпус, и делаем крепление для ручки регулятора. К ручке прикрепляем ползунок с угольной щеткой. Щетка должна плотно касаться верхней части обмотки. Помечаем область по которой будет передвигаться щетка, и в этом месте избавляемся от изоляции. Так щетка будет иметь прямой электрический контакт с вторичной обмоткой. Клеммы вторичных напряжений, кроме общей, заменяем одной, соединенной с угольной щеткой (схема 3). При подсоединяем закрепляем вольтметр.

Если следовать написанной статье, то ЛАТР можно с легкостью сделать своими руками.

Проверка

Что бы убедиться в бесперебойной и надежной работе устройства, выполняем следующие пункты:

  1. Подключаем автотрансформатор к сети 220 В;
  2. Проверяем на отсутствие задымления, запаха гари, сильных шумов;
  3. Вольтметром проверяем соответствие выходных значений;
  4. Через 10 — 20 минут работы отключаем ЛАТР. Проверяем не перегрелась ли обмотка.
  5. Снова включаем ЛАТР в сеть и подключаем нагрузку на длительное время.

При отсутствии проблем автотрансформатор готов к работе.

protransformatory.ru