Маркировка диодов анод катод – Светодиод анод катод схема. Диод. Полупроводниковый диод. Подключение диода. Маркировка диодов. Работа диода

Содержание

Обозначение диодов. Виды, маркировка и назначение диодов :: SYL.ru

Обозначение диодов графическими элементами является условным показателем характеристик, которыми обладает устройство. На данный момент элементов довольно много, их база разнообразна. Поэтому между собой сокращения отличаются максимально.

Сложные графические обозначения имеют разные диоды, в том числе тоннельные, стабилитроны и другие. На данный момент имеются разновидности, которые могут напоминать газоразрядную лампочку. Более того, такие светодиоды горят, что помогает человеку запутаться еще больше в их применении.

Диоды полупроводниковые

Такие устройства являются максимально простыми, они известны большому количеству радиолюбителей. Имеется цилиндрическое основание, дисковая форма, на ножках нанесены обозначения диодов. Метки максимально понятны и заметны. То, каким цветом оформлен корпус, совершенно не играет никакой роли. На низкую мощность будет указывать небольшой размер.

Если говорить о довольно мощном диоде, то идет речь о наличии резьбы под гайку. Как правило, это нужно для крепления радиатора. Для осуществления работы системы охлаждения используются навесные элементы. На данный момент потребляемая мощность последовательно падает, соответственно, размеры корпусов любого прибора уменьшаются. Благодаря этому можно использовать стекло. Такой материал будет дешевле, прочнее и намного безопаснее при использовании.

Маркировка

Если говорить об обозначении диодов, то следует сказать, что на первом месте будет стоять буква или цифра, которая характеризует материал. В качестве такого может выступать галлий, кремний, германий и индий. Соответственно, на корпусе будут нанесены такие буквы (цифры): А (3), К (2), Г (1), И (4). На втором месте будет стоять характеристика диода. Нужно сказать, что, как правило, ее расшифровку следует смотреть в инструкции. Наиболее популярным является обозначение Д. Это означает, что устройство выпрямительное либо импульсивного типа. На третьем месте будет находиться цифра, которая охарактеризует сферу применения диода. Здесь используются числа от 1 до 9. Минимальной характеристикой является 1 – низкочастотные, которые имеют ток ниже 0,3. Девятка же означает импульсивность, при которой время жизни носителей будет намного ниже, чем показатель 1 нс. Номер разработки может либо быть указан, либо нет.

Нужно заметить, что номинал, который имеет однозначное число, всегда впереди дополняется нулем. К примеру, партия 7 будет записываться как 07. Номер группы производители, как правило, обозначают буквой. Благодаря ей можно узнать различные свойства и параметры устройства. Она также указывает на напряжение, подаваемый ток и так далее.

Нюансы

В дополнение к таким обозначениям диодов используются также некоторые графические показатели. Благодаря им, можно решить задачу и понять, насколько высокой является рабочая точка устройства. Иногда на диоды наносятся данные о том, какая техника производства выбрана, какой имеется материал корпуса, масса устройства. В принципе, такая информация будет полезна тому, кто создает аппаратуру, любителям такие данные не нужны.

Нужно заметить, что импортные производители работают по другой схеме. Маркировка диода такого типа будет довольно простой, ее значение можно посмотреть в специальной таблице. Именно поэтому аналоги будет отыскать очень легко.

Цветовая маркировка

Многие радиолюбители знают, что большинство диодов, к сожалению, на одно лицо. Однако нужно заметить, что на некоторые устройства все же наносится специальная цветовая маркировка, которая позволяет сразу опознать такие устройства. Если смотреть на таблицу маркировки диодов, то можно сказать, что делятся они на 2 основных типа. Речь идет об обозначении анода и катода, а также нередко производители цвет корпуса заменяют обычной цветной точкой.

С первого взгляда можно отличить любые цветные диоды, о которых пойдет речь ниже.

Например, диоды семейства КД410 отличаются тем, что имеют точку в районе расположения анода. Корпус прозрачный у диодов КД102. У устройства КД274 возле катода можно заметить два цветных кольца. Нужно заметить, что существуют еще и другие различимые метки, которые позволят с легкостью отличить устройства друг от друга.

Многие новички, рассматривая виды диодов, к сожалению, не могут определить, где находится анод, где катод. Нужно заметить, что новые устройства, которые создаются в современное время, работают таким образом, что анод имеет усик немного длиннее, чем катод. Также, если человек умеет использовать мультиметр, он сможет с легкостью отличить анод от катода. Катод можно также найти по темной полосе, если рассматривать боковину цилиндра. Это также является цветной маркировкой.

У иностранных производителей есть своя система обозначений. Если необходимо выбрать аналог, то следует использовать таблицы соответствий. В остальном характеристики устройств от отечественных не отличаются. Цветная маркировка, а также многие другие обозначения параметров диодов, как правило, соответствует либо стандартам США, либо европейской системе.

SMD-диоды

К сожалению, при создании SMD-устройств они получаются настолько маленькими, что маркировка нередко не наносится. Нужно заметить, что характеристики таких устройств от габаритов практически не зависят.

Единственное, что необходимо указать: габариты влияют на рассеиваемую мощность. Для того чтобы большой ток мог пройти по цепи, необходимо, чтобы диод имел большие размеры.

Нюансы маркировки SMD-диодов

Если все же рассматривать устройства, которые имеют цветовое обозначение, у диодов следует выделить следующие виды маркировки:

  • полная;
  • сокращенная.

В электронике, к сожалению, SMD-элементы занимают около 80 % всех приспособлений. Их можно поверхностно устанавливать. Особенно, если говорить об автоматизированных сборках, эти устройства максимально удобны.

Следует заметить, что нередко маркировка не соответствует действительным наполнениям корпуса. Когда создается огромный объем партии, производитель иногда начинает хитрить: характеристики указываются одни, а диод работает совершенно по-другому. Из-за таких несоответствий может быть путаница, если говорить об использовании устройства в микросхемах.

Корпус

Что касается корпуса, то здесь обозначение полупроводниковых диодов, точно так же, как и других, является уникальным. Указывается четыре цифры, которые обозначают типоразмер. В целом они никак не соответствуют габаритам. Если хочется об этом узнать более подробно, то необходимо обратиться к ГОСТам. Люди, которые не имеют возможности работать с нормативными актами в следствии каких-либо нюансов, могут использовать обычные справочные таблицы.

Следует заметить, что корпуса SMD-устройств от производителя к производителю могут между собой отличаться по мелочам. Дело в том, что любой производитель создает базу под свою технику, соответственно, некоторые детали приходится менять.

Соответственно, также габариты корпусов вышеописанных приборов SMD нужны разные, они также должны выполнять другие требования для корректной работы, такие как условие отвода тепла и так далее. Поэтому перед покупкой следует не только руководствоваться цифрами справочника, но и сделать замеры. Особенно если речь идет о ремонте какой-либо техники. Иначе такие диоды могут попросту не установиться в те места, где они необходимы.

Дополнительная информация

Устройство SMD довольно сложное в монтаже, поэтому многие новички не рискуют с ними работать. Однако мастера должны отлично уметь руководить такой электроникой, так как на данный момент подобные устройства является одними из самых популярных среди других видов диодов. Также следует принять во внимание то, что при выборе приборов необходимо смотреть на их характеристики и внешние отличия. Иногда корпуса по сути одни и те же, а маркировка другая. В некоторых обозначениях могут отсутствовать буквы или цифры. Соответственно, необходимо иметь под рукой таблицы, которые позволяют максимально ориентироваться в подобном вопросе. Обозначение выпрямительного диода также можно найти в аналогичной справочной таблице.

www.syl.ru

где анод, где катод? Проверка светодиодов » Журнал практической электроники Датагор (Datagor Practical Electronics Magazine)


Обычно SMT-светодиоды имеют маркировку со стороны катода, например, точку или тонкую зеленую линию. Однако бывают и исключения.
Кроме того, иногда трудно вспомнить, помечен катод или анод…

Простой, а главное, быстрый способ всё прояснить – использовать мультиметр в режиме «прозвонки».
В этом режиме мультиметр отдает некоторое малое напряжение (чтобы детектировать целостность цепи), которого будет достаточно, чтобы зажечь светодиод в правильной полярности. Просто прикоснитесь щупами прибора к контактам светодиода.

При верном расположении щупов (красный щуп «+» к аноду, чёрный щуп «-» к катоду), светодиод начнёт светиться более или менее ярко.

В режиме прозвонки тестер выдает на щупы стабилизированный ток номиналом ок. 1 мА. Максимальное напряжение при этом ограничивается 2-4 Вольтами. На экране прибор показывает падение напряжения на исследуемом участке цепи (на светодиоде) при данном токе.

Если падение напряжения меньше 30-50 мВ (у разных моделей тестеров по разному), то дополнительно к показаниям включается пищалка («прозвонка»), сигнализируя о низком сопротивлении участка.

Так что цифровыми тестерами «звонить» светодиоды и обычные диоды можно смело. Ничего не спалите.

Исключение составляют полупроводниковые лазеры. Они очень не любят подачи на них обратного напряжения, даже такого маленького как 3 Вольта и могут выйти из строя.

Игорь Котов (Datagor)

Россия, Сибирь, г.Новокузнецк

Основатель, владелец и главный редактор Журнала практической электроники datagor.ru.
Founder, owner and chief editor of datagor.ru.

 

datagor.ru

Как определить катод и анод у светодиода

Электрика для начинающих

Начинающим радиолюбителям наверняка интересен вопрос изоляции транзистора (одного или группы) на радиаторе. Если рассматривать

Интересное

Для изготовления приспособления, которое позволит бесконтактно включать и выключать свет в комнате, потребуется не

Своими руками

                Карманный автономный паяльник, работающий от одной литий ионной батарее,  удобное решение, как говорится,

Мужик в доме

Содержание1 Двигаемся навстречу воде 2 Рециркуляция 3 Высокое давление в скважине 4 Тандем водокачек

Аккумуляторы и батареи

Всем привет, мы давно не делали индикаторы разряда автомобильного аккумулятора. Но в этой статье

Аккумуляторы и батареи

Содержание1 Вариант 12 Вариант 23 Вариант 34 Итог Многие самодельные блоки имеют такой недостаток,

volt-index.ru

Анод и катод на схеме диода. Катод и анод

Катод и анод — это плюс или минус?

Изучение таких отраслей, как электрохимия и цветная металлургия, невозможно без понимания в полной мере терминов катод и анод. В то же время эти термины являются неотъемлемой частью вакуумных и полупроводниковых электронных приборов.

Вакуумные и полупроводниковые компоненты

Катод и анод в электрохимии

Под электрохимией следует понимать раздел физической химии, изучающий химические процессы, вызываемые воздействием электрического тока, а также электрические явления, вызываемые химическими процессами. Существует два основных вида электрохимических операций:

  • Процедура преобразования электрического воздействия в химическую реакцию, называемая электролизом;
  • Процедура преобразования химической реакции в электрический ток, называемая гальваническим процессом.

Гальванический элемент в электрохимии

В электрохимии под терминами анод и катод понимают следующее:

  1. Электрод, на котором проходит окислительная реакция, называется анодом;
  2. Электрод, на котором осуществляется процедура восстановления, называется катодом.

Под процессами окисления стоит понимать процедуру, при которой частица отдает электроны. Восстановительный процесс подразумевает процедуру принятия электронов частицей. Соответственно, частицы, которые отдают электроны, именуются «восстановителями», и они подвержены окислению. Частицы, которые принимают электроны, именуются «окислителями», они восстанавливаются.

Цветная металлургия широко использует процесс электролиза для выделения металлов из добытых руд и дальнейшей очистки. В процедуре электролиза применяются растворимые и нерастворимые аноды, а сами процессы называются электрорафинированием и электроэкстракцией, соответственно.

Катод в вакуумных приборах

Одной из разновидностей электровакуумных приборов является электронная лампа. Предназначение электроламп – регулирование потока электронов, дрейфующих в вакууме между другими электродами. Конструктивно электролампа выглядит как герметичный сосуд-баллон, с помещенными в середине мелкими металлическими выводами. Численность выводов зависит от вида радиолампы.

Устройство электронной лампы

В составе любой радиолампы такие элементы:

  • Катод;
  • Анод;
  • Сетка.

Катодом электролампы подразумевается разогретый электрод, подключенный к «минусу» блока питания и испускающий электроны, будучи накаленным. Эти электроны движутся к аноду, подключенному к «плюсу». Процесс испускания электронов разогретым катодом называется термоэмиссией, а возникший при этом ток именуется током термоэмиссии. Метод нагрева обуславливает разновидности катодов:

  • Катод прямого разогрева;
  • Катод непрямого разогрева.

Катодом непосредственного накала является прочный вольфрамовый проводник большого сопротивления. Прогревание катода проходит путем подвода к нему напряжения.

Важно! К особенностям электронных ламп непосредственного нагрева относятся быстрый запуск лампы в работу при меньшем потреблении мощности, хотя за счет срока службы. Поскольку питающий ток таких ламп является постоянным, то ограничено их применение в среде переменного тока.

Электролампы, у которых внутри катода, выполненного в виде цилиндра, размещена нагревающая нить, называются радиолампами косвенного нагрева.

Конструктивно анод выглядит в виде пластины либо коробочки, размещенной вокруг катода с сеткой и имеющей потенциал, обратный катоду. Дополнительные электроды, размещенные между анодом и катодом, называются сеткой и применяются для регулировки потока электронов.

Катод у полупроводниковых приборов

К полупроводниковым приборам относятся устройства, состоящие из вещества, удельное электрическое сопротивление которого больше сопротивления проводника, но меньше сопротивления диэлектрика. К особенностям таких приборов относится большая зависимость электропроводимости от концентрации добавок и влияния электрическим током. Свойства p-n перехода определяют принципы работы большей части полупроводниковых компонентов.

Наиболее простым представителем полупроводниковых компонентов является диод. Это элемент, имеющий два вывода и один p-n переход, отличительной особенностью которого выступает протекание тока в одном направлении.

Диод полупроводниковый

Отводы компонента называются анод и катод. Протекание тока по элементу возможно при подключении «плюса» к аноду и «минуса» – к катоду. При противоположном подсоединении элемент запирается, и ток не протекает.

Такие словосочетания, как анод и катод, в полной мере применяются в приборостроении и индустрии, будь то электрохимия, вакуумные приборы или полупроводниковые приборы. Усвоение многих процессов затруднительно или невозможно без понимания терминов анод и катод.

Видео

Оцените статью:

elquanta.ru

Катод и анод — единство и борьба противоположностей

Катод и анод – это две составляющие одного процесса: протекания электрического тока. Все материалы можно разделить на два типа – это проводники, в структуре которых большой избыток свободных электронов, и диэлектрики (в них свободных электронов практически нет).

Понятие электрического тока

Электрический ток – это упорядоченное перемещение заряженных элементарных частиц в структуре вещества под воздействием электромагнитного напряжения. Если приложить к проводнику постоянное напряжение, то свободные электроны, имеющие отрицательный заряд, начнут упорядоченно двигаться в сторону анода (положительно заряженного электрода) от катода (отрицательно заряженного электрода). Ток же, соответственно, будет течь в обратном направлении. А катод и анод – это два электрода, между которыми образовался перепад (разница) электромагнитного напряжения.

Проводники и диэлектрики

Проводники и диэлектрики могут быть твердыми, жидкими и газообразными веществами. Это для протекания электрического тока совсем не принципиально. При длительном приложении электромагнитного напряжении к материалу на катоде будет образовываться избыток электронов, а на аноде – его недостача. Если напряжение прилагается достаточно долго, то из структуры материала, из которого сделан анод, будут вырываться связанные электроны вместе с атомами, а сам материал начнет вступать в химическую реакцию с химически активными веществами из окружающей среды. Такой процесс носит название электролиза.

Электролиз

Катод и анод в электрохимии являются двумя полюсами приложенного к солевым растворам или расплавам постоянного электромагнитного напряжения. При возникновении ток

xn—-7sbeb3bupph.xn--p1ai

Урок-7. ДИОДЫ И ИХ ПРИМЕНЕНИЕ

ДИОДЫ И ИХ ПРИМЕНЕНИЕ

Продолжаем изучать полупроводниковые приборы, им хочется уделить более пристальное внимание, потому как их значимость в радиоэлектронике трудно переоценить. В этом уроке будет предложена несложная практическая работа для закрепления материала. Во всем остальном этот урок по значимости ни чем не отличается от предыдущих. Если вы заметили во всех уроках, я стараюсь выкладывать основные мысли по теме, чтобы не перегружать юных радиолюбителей непонятными математическими выкладками и т.д., за исключением подробных пояснений, если это необходимо. И так; как и в предыдущих уроках, что выделено красным курсивом, зазубриваем, — черным, — принимаем к сведению. Приступайте!

Сегодня в «семейство» диодов входит не один десяток полупроводниковых приборов, носящих название «диод». Здесь речь пойдет лишь о некоторых приборах, с которыми вам в первую очередь придется иметь дело. Схематично диод можно представить, как две пластинки полупроводника, одна из которых обладает электропроводностью типа р, а другая — n типа. На (рис. 1, а) дырки, преобладающие в пластинке типа р, условно изображены кружками, а электроны, преобладающие в пластинке типа n — черными шариками таких же размеров. Эти две области — два электрода диода: анод и катод. Анодом, т.е. положительным электродом, является область типа р, а катодом, т.е. отрицательным электродом,- область типа n. На внешние поверхности пластин нанесены контактные металлические слои, к которым припаяны проволочные выводы электродов диода. Такой полупроводниковый прибор может находиться в одном из двух состояний: открытом, когда он хорошо проводит ток, и закрытом, когда он плохо проводит ток. Если к его электродам подключить источник постоянного тока, например, гальванический элемент, но так, чтобы его положительный полюс был соединен с анодом диода, т.е. с областью типа р, а отрицательный — с катодом, т.е. с областью типа, n (рис. 1, б), то диод окажется в открытом состоянии и в образовавшейся цепи потечет ток, значение которого зависит от приложенного к нему напряжения и свойств диода. При такой полярности подключения батареи электроны в области типа n перемещаются от минуса к плюсу, т. е. в сторону области типа р, а дырки в области типа р движутся навстречу электронам — от плюса к минусу. Встречаясь на границе областей, называемой электронно — дырочным переходом или, короче, р — n переходом, электроны как бы «впрыгивают» в дырки, в результате и те, и другие при встрече прекращают свое существование. Металлический контакт, соединенный с отрицательным полюсом элемента, может отдать области типа n практически неограниченное количество электронов, пополняя недостаток электронов в этой области, а контакт, соединенный с положительным полюсом элемента, может принять из области типа р такое же количество электронов, что равнозначно введению в него соответствующего количества дырок.



Рис. 1 Схематическое устройство и работа полупроводникового диода.

В этом случае сопротивление р — n перехода мало, вследствие чего через диод течет ток, называемый прямым током. Чем больше площадь р — n перехода и напряжение источника питания, тем больше этот прямой ток. Если полюсы элемента поменять местами, как это показано на (рис. 1, в), диод окажется в закрытом состоянии. В этом случае электрические заряды на диоде поведут себя иначе. Теперь, удаляясь от р — n перехода, электроны в области типа n будут перемещаться к положительному, а дырки в области типа р — к отрицательному контактам диода. В результате граница областей с различными типами электропроводности как бы расширится, образуя зону, обедненную электронами и дырками (на рис. 1, (в) она заштрихована и, следовательно, оказывающую току очень большое сопротивление. Однако в этой зоне небольшой обмен носителями тока между областями диода все же будет происходить. Поэтому через диод пойдет ток, но во много раз меньший, чем прямой. Этот ток называют обратным током диода. На графиках, характеризующих работу диода, прямой ток обозначают Iпр., а обратный Iобр. А если диод включить в цепь с переменным током? Он будет открываться при положительных полупериодах на аноде, свободно пропуская ток одного направления — прямой ток Iпр., и закрываться при отрицательных полупериодах на аноде, почти не пропуская ток противоположного направления — обратный ток Iобр. — Эти свойства диодов и используют в выпрямителях для преобразования переменного тока в постоянный. Напряжение, при котором диод открывается и через него идет прямой ток, называют прямым (пишут Uпp.) или пропускным, а напряжение обратной полярности, при котором диод закрывается и через него идет обратный ток, называют обратным (пишут Uобр.) или непропускным. При прямом напряжении сопротивление диода хорошего качества не превышает нескольких десятков ом, при обратном же напряжении его сопротивление достигнет десятков, сотен килоом и даже мегаом. В этом нетрудно убедиться, если обратное сопротивление диода измерить омметром. Внутреннее сопротивление открытого диода — величина непостоянная и зависит от прямого напряжения, приложенного к диоду: чем больше это напряжение, тем больше прямой ток через диод, тем меньше его пропускное сопротивление. Судить о сопротивлении диода можно по падению напряжения на нем и току через него. Так, например, если через диод идет прямой ток Iпр. = 100 мА (0,1 А) и при этом на нем падает напряжение 1В, то (по закону Ома) прямое сопротивление диода будет: R = 1 / 0,1 = 10 Ом. В закрытом состоянии на диоде падает почти все прикладываемое к нему напряжение, обратный ток через него чрезвычайно мал, а сопротивление, следовательно, велико. Зависимость тока через диод от значения и полярности приложенного к нему напряжения изображают в виде кривой, называемой вольт — амперной характеристикой диода (ВАХ). Такую характеристику вы видите на (рис. 2). Здесь по вертикальной оси вверх отложены значения прямого тока Iпр., а внизу — обратного тока Iобр. По горизонтальной оси вправо обозначены значения прямого напряжения Uпp., влево — обратного напряжения. На такой вольт — амперной характеристике различают прямую ветвь (в правой верхней части), соответствующую прямому току через диод, и обратную ветвь вольт — амперной характеристики, соответствующую обратному току. Из нее видно, что ток Iпр. диода в сотни раз больше тока Iобр. Так, например, уже при прямом напряжении Uпp. = 0,5 В ток Iпр. равен 50 мА (точка (а) на характеристике), при Uпp. = 1 В он возрастает до 150 мА (точка (б) на характеристике), а при обратном напряжении Uобр. = 100 В обратный ток Iобр. не превышает 0,5 мА (500 мкА). Подсчитайте, во сколько раз при одном и том же прямом и обратном напряжении прямой ток больше обратного.



Рис. 2 Вольт — амперная характеристика полупроводникового диода.



Рис. 3 Схематическое устройство (а) и внешний вид некоторых плоскостных диодов (б).

Прямая ветвь идет круто вверх, как бы прижимаясь к вертикальной оси. Она характеризует быстрый рост прямого тока через диод с увеличением прямого напряжения. Обратная же ветвь, как видите, идет почти параллельно горизонтальной оси, характеризуя медленный рост обратного тока. Наличие заметного обратного тока — недостаток диодов. Примерно такие вольт — амперные характеристики имеют все германиевые диоды. Вольт — амперные характеристики кремниевых диодов чуть сдвинуты вправо. Объясняется это тем, что германиевый диод открывается и начинает проводить ток при прямом напряжении 0,1-0,2 В, а кремниевый при 0,5-0,6 В. Прибор, на примере которого я рассказал вам о свойствах диода, состоял из двух пластин полупроводников разной электропроводности, соединенных между собой плоскостями. Подобные диоды называют плоскостными. В действительности же плоскостной диод представляет собой одну пластину полупроводника, в объеме которой созданы две области разной электропроводности. Технология изготовления таких диодов заключается в следующем. На поверхности квадратной пластины площадью 2 — 4 мм квадратных и толщиной в несколько долей миллиметра, вырезанной из кристалла полупроводника с электронной электропроводностью, расплавляют маленький кусочек индия. Индий крепко сплавляется с пластинкой. При этом атомы индия проникают (диффундируют) в толщу пластинки, образуя в ней область с преобладанием дырочной электропроводности (рис. 3, а). Получается полупроводниковый прибор с двумя областями различного типа электропроводности, а между ними р — n переход. Контактами электродов диода служат капелька индия и металлический диск или стержень с выводными проводниками. Так устроены наиболее распространенные плоскостные германиевые и кремниевые диоды. Внешний вид некоторых из них показан на (рис. 3, б). Приборы заключены в цельнометаллические или стеклянные корпуса со стеклянными изоляторами, что позволяет использовать их для работы в условиях повышенной влажности. Диоды, рассчитанные на значительные прямые токи, имеют винты с гайками для крепления их на монтажных панелях или шасси радиотехнических устройств. Плоскостные диоды маркируются буквами и цифрами, например: Д226А, Д242. Буква Д в маркировке прибора означает «диод», цифры, следующие за нею, заводской порядковый номер конструкции. Буквы, стоящие в конце обозначения диодов, указывают на разновидности групп приборов. Плоскостные диоды предназначены в основном для работы в выпрямителях переменного тока блоков питания радиоаппаратуры, поэтому их называют еще выпрямительными Диодами. Теперь познакомимся с принципом преобразования переменного тока в ток постоянный. Схему простейшего выпрямителя переменного тока вы видите на (рис. 4, а). На вход выпрямителя подается переменное напряжение электроосветительной сети. К выходу выпрямителя подключен резистор Rн, символизирующий нагрузку, питающуюся от выпрямителя. Функцию выпрямительного элемента выполняет диод V. Сущность работы такого выпрямителя иллюстрируют графики, помещенные на том же рисунке. При положительных полупериодах напряжения на аноде диод открывается. В эти моменты времени через диод, а значит, и через нагрузку, подключенную к выпрямителю, течет прямой ток диода Iпр. При отрицательных полупериодах напряжения на аноде диода закрывается и во всей цепи, в которую он включен, течет незначительный обратный ток диода Iобр. Диод как бы отсекает большую часть отрицательных полуволн переменного тока (на рис. 4, а показано штриховыми линиями). И вот результат: через нагрузку Rн, подключенную к сети через диод V, течет уже не переменный, а пульсирующий ток — ток одного направления, но изменяющийся по значению с частотой 50 Гц. Это и есть форма выпрямленного переменного тока. Таким образом, диод является прибором, обладающим резко выраженной односторонней проводимостью электрического тока. И если пренебречь малым обратным током (что и делают на практике), который у исправных диодов не превышает малые доли миллиампера, можно считать, что диод является односторонним проводником тока. Можно ли таким током питать нагрузку? Можно, он ведь выпрямленный. Но не каждую. Лампу накаливания, например, можно, если, конечно, выходное напряжение не будет превышать то напряжение, на которое лампа рассчитана. Ее нить будет накаливаться не постоянно, а импульсами, следующими с частотой 50 Гц. Из-за тепловой инертности нить не будет успевать остывать в промежутках между импульсами, поэтому мерцания света будут едва заметными. А вот приемник питать таким током нельзя. Потому что в цепях его усилителей ток тоже будет пульсировать с такой же частотой. В результате в телефонах или головке громкоговорителя на выходе приемника будет прослушиваться гул низкого тона с частотой 50 Гц, называемый фоном переменного тока. Этот недостаток можно частично устранить, если на выходе выпрямителя параллельно нагрузке подключить фильтрующий электролитический конденсатор (Сф) большой емкости, это показано на (рис. 4, б). Заряжаясь: от импульсов тока, конденсатор (Сф) в момент спадания тока или его исчезновения (между импульсами) разряжается через нагрузку Rн. Если конденсатор достаточно большой емкости, то за время между импульсами тока он не будет успевать полностью разряжаться и в нагрузке будет непрерывно поддерживаться ток. Ток, поддерживаемый за счет зарядки конденсатора, показан на (рис. 4, б) сплошной волнистой линией. Но и таким, несколько сглаженным током тоже нельзя питать приемник или усилитель: он будет «фонить», так как пульсации пока еще очень ощутимы. В выпрямителе, с работой которого мы сейчас разбираемся, полезно используется энергия только половины волн переменного тока. Такое выпрямление переменного тока называют однополупериодными, а выпрямители — однополупериодными выпрямителями. Однако выпрямителям, построенным по таким схемам, присущи два существенных недостатка. Первый из них заключается в том, что напряжение выпрямленного тока равно примерно напряжению сети, в то время как для питания транзисторных конструкций необходимо более низкое напряжение, а для ламповых часто более высокое напряжение. Второй недостаток — недопустимость присоединения заземления к приемнику, питаемому от такого выпрямителя. Если приемник заземлить, ток из электросети пойдет через приемник в землю — могут перегореть предохранители. Кроме того, приемник или усилитель, питаемые от такого выпрямителя и, таким образом, имеющие прямой контакт с электросетью, опасны — можно получить электрический удар.



Рис. 4 Схемы однополупериодного выпрямителя.



Рис. 5 Двухполупериодный выпрямитель с трансформатором.

Оба эти недостатка устранены в выпрямителе с трансформатором (рис. 5). Здесь выпрямляется не напряжение электросети, а напряжение вторичной (II) обмотки сетевого трансформатора Т. Поскольку эта обмотка изолирована от первичной сетевой обмотки I, радиоконструкция не имеет контакта с сетью и к ней можно подключать заземление. В выпрямителе на (рис. 5) четыре диода, включенные по так называемой мостовой схеме. Диоды являются плечами выпрямительного моста. Нагрузка Rн включена в диагональ 1 — 2 моста. В таком выпрямителе в течение каждого полупериода работают поочередно два диода противоположных плеч моста, включенных между собой последовательно, но встречно по отношению ко второй паре диодов. Постарайтесь вникнуть и запомнить классическую схему диодного моста! Когда на верхнем (по схеме) выводе вторичной обмотки положительный полупериод напряжения, ток идет через диод V2, нагрузку Rн, диод V3 к нижнему выводу обмотки II (график а). Диоды V1 и V4 в это время закрыты. В течение другого полупериода переменного напряжения, когда плюс на нижнем выводе обмотки II, ток идет через диод V4, нагрузку Rн, диод V1 к верхнему выводу обмотки (график б). В это время диоды V2 и V3 закрыты и, естественно, ток через себя не пропускают. И вот результаты: меняются знаки напряжения на выводах вторичной обмотки трансформатора, а через нагрузку выпрямителя идет ток одного направления (график в). В таком выпрямителе полезно используются оба полупериода переменного тока, поэтому подобные выпрямители называют двухполупериодными. Эффективность работы двухполупериодного выпрямителя по сравнению с однополупериодным налицо: частота пульсаций выпрямленного тока удвоилась, «провалы» между импульсами уменьшились. Среднее значение напряжения постоянного тока на выходе такого выпрямителя равно примерно переменному напряжению, действующему во всей вторичной обмотке трансформатора. А если выпрямитель дополнить фильтром, сглаживающим пульсации выпрямленного тока, выходное напряжение увеличится в 1,4 раза, т. е. примерно на 40%. Именно такой выпрямитель я позже буду рекомендовать вам для питания транзисторных конструкций. Теперь о точечном диоде. Внешний вид одного из таких приборов и его устройство (в значительно увеличенном виде) показаны на (рис. 6). Это диод серии Д9. Буква «Д» в его маркировке означает диод, а цифра 9 — порядковый заводской номер конструкции. Выпрямительным элементом диода служат тонкая и очень маленькая (площадью около 1 мм квадратных) пластина полупроводника германия или кремния типа n и вольфрамовая проволочка, упирающаяся острым концом в пластину. Они припаяны к отрезкам посеребренной проволоки длиной примерно по 50 мм, являющимися выводами диода. Вся конструкция находится внутри стеклянной трубочки диаметром около 3 и длиной меньше 10 мм, запаянной с концов. После сборки диод формуют — пропускают через контакт между пластиной полупроводника и острием вольфрамовой проволочки ток определенного значения. При этом под острием проволочки в кристалле полупроводника образуется небольшая область с дырочной электропроводностью. Получается электронно — дырочный переход, обладающий односторонней проводимостью тока. Пластина полупроводника является катодом, а вольфрамовая проволочка — анодом точечного диода.



Рис. 6 Схематическое устройство и внешний вид точечного диода серии Д9.

Вывод анода диодов серии Д9 обозначают цветными метками на их корпусах. Электроды точечного диода серии Д2 обозначают символом диода на одном из его ленточных выводов. У точечного диода площадь соприкосновения острия проволочки с поверхностью пластины полупроводника чрезвычайно мала — не более 50мкм. Поэтому токи, которые точечные диоды могут выпрямлять в течение продолжительного времени, малы. Точечные диоды радиолюбители используют в основном для детектирования модулированных колебаний высокой частоты, поэтому их часто называют высокочастотными диодами. Как для плоскостных, так и для точечных диодов существуют максимально допустимые значения прямого и обратного токов, зависящие от прямого и обратного напряжений и определяющие их выпрямительные свойства и электрическую прочность. Это их основные параметры. Плоскостной диод Д226В, например, может продолжительное время выпрямлять ток до 300 мА. Но если его включить в цепь, потребляющую ток более 300 мА, он будет нагреваться, что неизбежно приведет к тепловому пробою р — n перехода и выходу диода из строя. Диод будет пробит и в том случае, если он окажется в цепи, в которой на него будет подаваться обратное напряжение более чем 400 В. Допустимый выпрямленный ток для точечного диода Д9А 65 мА, а допустимое обратное напряжение 10 В. Основные параметры полупроводниковых диодов указывают в их паспортах и справочных таблицах. Превышение предельных значений приводит к выходу приборов из строя. Основные параметры наиболее распространенных точечных и плоскостных полупроводниковых диодов можно найти здесь.

Стабилитрон и его применение

Стабилитрон это тоже диод, но предназначен он не для выпрямления переменного тока, хотя и может выполнять такую функцию, а для стабилизации, т.е. поддержания постоянства напряжения в цепях питания радиоэлектронной аппаратуры. Внешний вид одной из конструкций наиболее распространенных среди радиолюбителей стабилитронов и его графическое обозначение показаны на (рис. 8). По устройству и принципу работы кремниевые стабилитроны широкого применения аналогичны плоскостным выпрямительным диодам. Но работает стабилитрон не на прямом участке вольт — амперной характеристики, как выпрямительные или высокочастотные диоды, а на обратной ветви вольт — амперной характеристики, где незначительное обратное напряжение вызывает значительное увеличение обратного тока через прибор. Разобраться в сущности действия стабилитрона вам поможет его вольт — амперная характеристика, показанная на (рис. 8, а). Здесь (как и на рис. 2) по горизонтальной оси отложены в некотором масштабе обратное напряжение Uобр., а по вертикальной оси вниз — обратный ток Iобр. Напряжение на стабилитрон подают в обратной полярности, т. е. включают так, чтобы его анод был соединен с отрицательным полюсом источника питания. При таком включении через стабилитрон течет обратный ток Iобр. По мере увеличения обратного напряжения обратный ток растет очень медленно — характеристика идет почти параллельно оси Uобр. Но при некотором напряжении Uобр. (на рис. 8, а — около 8 В) р — n переход стабилитрона пробивается и через него начинает течь значительный обратный ток. Теперь вольт — амперная характеристика резко поворачивает и идет вниз почти параллельно оси Iобр. Этот участок и является для стабилитрона рабочим. Пробой же р — n перехода не ведет к порче прибора, если ток через него не превышает некоторого допустимого значения.



Рис. 8 Стабилитрон и его графическое обозначение на схемах.



Рис. 9 Вольт — амперная характеристика стабилитрона (а) и схема параметрического стабилизатора напряжения (б).

На (рис. 8 ,б) приведена схема возможного практического применения стабилитрона. Это так называемый параметрический стабилизатор напряжения. При таком включении через стабилизатор V течет обратный ток Iобр., создающийся источником питания, напряжение которого может изменяться в значительных пределах. Под действием этого напряжения ток Iобр., текущий через стабилитрон, тоже изменяется, а напряжение на нем, а значит, и на подключенной к нему нагрузке Rн остается практически неизменным — стабильным. Резистор R ограничивает максимально допустимый ток, текущий через стабилитрон. Со стабилизаторами напряжения вам неоднократно придется иметь дело на практике. Вот наиболее важные параметры стабилитрона: напряжение стабилизации Uст., ток стабилизации Iст., минимальный ток стабилизации Icт.min и максимальный ток стабилизации Icт.max. Параметр Uст. — это то напряжение, которое создается между выводами стабилизатора в рабочем режиме. Наша промышленность выпускает кремниевые стабилитроны на напряжение стабилизации от нескольких вольт до 180 В. Минимальный ток стабилизации Iст. min — это наименьший ток через прибор, при котором начинается устойчивая работа в режиме пробоя (на рис. 8, а — штриховая линия Iст.min), с уменьшением этого тока прибор перестает стабилизировать напряжение. Максимально допустимый ток стабилизации Iст.max — это наибольший ток через прибор (не путайте с током, текущим в цепи, питающейся от стабилизатора напряжения), при котором температура его р — n перехода не превышает допустимой (на рис. 8, а — штриховая линия Icт.max) — Превышение тока Iст.max ведёт к тепловому пробою р — n перехода и, естественно, к выходу прибора из строя.

Для лучшего понимания материала данного урока и чтобы лучше закрепить в памяти ваше представление о свойствах диодов, предлагаю провести такой опыт. В электрическую цепь, составленную из батареи 3336Л (в народе называю квадратной батареей) или кроны, лампочки накаливания, рассчитанной на напряжение 3,5 В или 6.3 В если это крона и ток накала 0,28 А, включите любой Диод из серии Д7, Д226, КД226, КД220, и др. так, чтобы анод диода был соединен непосредственно или через лампочку с положительным выводом батареи, а катод — с отрицательным выводом (рис. а). Лампочка должна гореть почти так же, как если бы диода небыло в цепи. Измените порядок включения электродов диода в цепь на обратный (рис. б). Теперь лампочка гореть не должна. А если горит, значит, диод оказался с пробитым р — n переходом. Такой диод можно разломать, чтобы посмотреть, как он устроен, — для работы как выпрямитель он все равно непригоден. Но, надеюсь, диод был хорошим и опыт удался. Почему при первом включении диода в цепь лампочка горела, а при втором не горела? В первом случае диод был открыт, так как на него подавалось прямое напряжение Uпp., сопротивление диода было мало и через него протекал прямой ток Iпр., значение которого определялось нагрузкой цепи — лампочкой. Во втором случае диод был закрыт, так как к нему прикладывалось обратное напряжение Uобр., равное напряжению батареи. Сопротивление диода было очень большое, и в цепи тек лишь незначительный обратный ток Iобр., который не мог накалить нить лампочки. В этом опыте лампочка выполняла двоякую функцию. Она, во — первых, была индикатором наличия тока в цепи, а во — вторых, ограничивала ток в цепи до 0,28 А и таким образом защищала диод от перегрузки.

 



Опыт с диодом.

 

Переходим к следующему уроку !

www.radio-schemy.ru

Цветная маркировка диодов | Диоды

    Диод    Цветовая маркировка
2Д102А

  102Б

КД102А

  102Б
полярность обозначается желтой точкой со
стороны анода

полярность обозначается оранжевой точкой со стороны анода

полярность обозначается зеленой точкой со стороны анода

полярность обозначается синей точкой со стороны анода
2Д103А

КД103А

  103Б
полярность обозначается белой точкой со
стороны анода

полярность обозначается синей точкой со стороны анода

полярность обозначается желтой точкой со стороны анода
2Д104А

КД104А
полярность обозначается белой точкой со
стороны анода

полярность обозначается красной точкой со стороны анода
КД105Б

  105В

  105Г
полярность обозначается желтой точкой со
стороны анода

полярность обозначается зеленой точкой со стороны анода

полярность обозначается красной точкой со стороны анода
КД106Аобозначается белой точкой
ГД107А

  107Б
полярность обозначается черной точкой со
стороны анода

полярность обозначается серой точкой со стороны анода
КД109А

  109Б

  109В
обозначается белой точкой

обозначается желтой точкой

обозначается зеленой точкой
КДС111А

   111Б

   111В
маркируется красной точкой у первого вывода

маркируется зеленой точкой у первого вывода

маркируется желтой точкой у первого вывода
КД116Б1полярность обозначается красной точкой со
стороны анода
2Д118А1полярность обозначается цветной точкой со
стороны анода
КД208Аполярность обозначается зеленой полосой
со стороны анода
КД209А

  209Б

  209В
полярность обозначается красной полосой
со стороны анода

полярность обозначается зеленой полосой со стороны анода тип обозначается
зеленой точкой

полярность обозначается красной полосой со стороны анода тип обозначается
красной точкой
2Д215Аполярность обозначается красной точкой со
стороны анода
2Д216А

  216Б
полярность обозначается красной точкой со
стороны анода

полярность обозначается зеленой точкой со стороны анода
2Д217А

  217Б
полярность обозначается белой точкой со
стороны анода

полярность обозначается красной точкой со стороны анода
2Д218Амаркируются цветной точкой со стороны анода
КД221А

  221Б

  221В

  221Г
маркируются белой полосой со стороны анода

маркируются белой полосой со стороны анода и белой точкой

маркируются белой полосой со стороны анода и зеленой точкой

маркируются белой полосой со стороны анода и красной точкой
КД226А

  226Б

  226В

  226Г

  226Д
маркируются оранжевым кольцом со стороны
катода

маркируются красным кольцом со стороны катода

маркируются зеленым кольцом со стороны катода

маркируются желтым кольцом со стороны катода

маркируются белым кольцом со стороны катода
2Д228Амаркируются цветной точкой со стороны анода
2Д235А

  235Б
полярность обозначается белой полосой со
стороны анода

полярность обозначается красной полосой со стороны анода
2Д236А

  236Б
полярность обозначается цветной точкой со
стороны анода

полярность обозначается двумя цветными точками со стороны анода
2Д237А

  237Б
маркируются одной цветной точкой

маркируются двумя цветными точками
КД243А

  243Б

  243В

  243Г

  243Д

  243Е

  243Ж
полярность обозначается фиолетовой полосой
со стороны катода

полярность обозначается оранжевой полосой со стороны катода

полярность обозначается красной полосой со стороны катода

полярность обозначается зеленой полосой со стороны катода

полярность обозначается желтой полосой со стороны катода

полярность обозначается белой полосой со стороны катода

полярность обозначается голубой полосой со стороны катода
КД247А

  247Б

  247В

  247Г

  247Д

  247Е
маркируется двумя оранжевыми кольцами со
стороны катода

маркируется двумя красными кольцами со стороны катода

маркируется двумя зелеными кольцами со стороны катода

маркируется двумя желтыми кольцами со стороны катода

маркируется двумя белыми кольцами со стороны катода

маркируется двумя фиолетовыми кольцами со стороны катода
КД409Амаркируется желтой точкой на корпусе
КД410А

  410Б
полярность обозначается красной точкой со
стороны анода

полярность обозначается синей точкой со стороны катода?
2Д413А

  413Б

КД413А

  413Б
полярность обозначается зеленой точкой со
стороны анода

полярность обозначается зеленой и красной точкой со стороны анода

полярность обозначается белой точкой со стороны анода

полярность обозначается белой и красной точкой со стороны анода
КД417Аполярность обозначается белой точкой со
стороны анода
2Д422Атип диода обозначается продольной чертой
красного цвета и тире у анода
КД424А

  424В

  424Г
маркируется двумя голубыми кольцами со стороны
катода

маркируется двумя зелеными кольцами со стороны катода

маркируется двумя красными кольцами со стороны катода
КД427А

  427Б

  427В

  427Г

  427Д
маркируется красной точкой со стороны положительного
вывода

маркируется оранжевой точкой со стороны положительного вывода

маркируется зеленой точкой со стороны положительного вывода

маркируется желтой точкой со стороны положительного вывода

маркируется белой точкой со стороны положительного вывода
КД510А

2Д510А
маркируется одной широкой и двумя узкими
зелеными полосами со стороны катода

маркируется одной широкой и одной узкой зелеными полосами со стороны
катода
ГД511А

  511Б

  511В
маркируется двумя голубыми точками со стороны
анода

маркируется голубой и желтой точками со стороны анода

маркируется голубой и оранжевой точками со стороны анода
КД512Аполярность обозначается красной точкой со
стороны анода
КД514Аполярность обозначается желтой точкой со
стороны анода
КД519А

  519Б
маркируется белой точкой со стороны анода

маркируется красной точкой со стороны анода
КД520Амаркируется желтой точкой со стороны анода
КД521А

  521Б

  521В

  521Г

  521Д
маркируется одной широкой и двумя узкими
синими полосами со стороны анода?

маркируется одной широкой и двумя узкими серыми полосами со стороны
анода?

маркируется одной широкой и двумя узкими желтыми полосами со стороны
анода?

маркируется одной широкой и двумя узкими белыми полосами со стороны
анода

маркируется одной широкой и двумя узкими зелеными полосами со стороны
анода
КД522А

  522Б
маркируется одной широкой и одной узкой
черными полосами со стороны анода

маркируется одной широкой и двумя узкими черными полосами со стороны
анода
2Д706АС9маркируются буквами ЛС
2Д707АС9маркируются буквами МС
2Д708А

  708Б
маркируется белым кольцом со стороны катода

маркируется синим кольцом со стороны катода
2Д803АС9маркируются буквами НС
2Д806А

  806Б
маркируется двумя красными точками

маркируется красной и белой точками
КД808Амаркируется белым кольцом со стороны катода
2Д809А

  809Б
маркируется голубым кольцом

маркируется красным кольцом
2Д906А

  906Б

  906В
маркируется белой точкой и рельефным знаком
у 4-го вывода

маркируется красной точкой и рельефным знаком у 4-го вывода

маркируется двумя красными точками и рельефным знаком у 4-го вывода
2Д921А

  921Б
маркируется белой точкой

маркируется зеленой точкой
2Д922А

  922Б

  922В

КД922А

  922Б

  922В
маркируется белой точкой со стороны анода

маркируется зеленой точкой со стороны анода

маркируется желтой точкой со стороны анода

маркируется красной точкой со стороны анода

маркируется синей точкой со стороны анода

маркируется оранжевой точкой со стороны анода
КД923Амаркируется зеленым кольцом со стороны анода
2Д924Амаркируется двумя белыми точками
2Д925А

  925Б
маркируется двумя черными точками

маркируется белой и черной точками
2Д926Амаркируется красной полосой со стороны катода
2Д927Амаркируется синим кольцом со стороны катода
2Ц101Аплюс диода отмечен точкой на торце
КЦ103Аплюс диода отмечен точкой на торце
1Ц104АИмаркируется цветной точкой со стороны анода
КЦ106Аплюс диода отмечен точкой на торце
КЦ109Аплюс диода отмечен точкой на торце
КЦ111Аплюс диода отмечен точкой на торце
2Ц112Аплюс диода отмечен точкой на торце
2Ц113А1плюс диода отмечен точкой на торце
КЦ114Аплюс диода отмечен точкой на торце
2Ц116Аплюс диода отмечен точкой на торце
КЦ117А

  117Б
маркируется белой полосой со стороны анода

маркируется черной полосой со стороны анода
КЦ123А1

  123Б1

  123В1

  123Г1

  123Д1

  123Е1

  123Ж1

  123И1

  123К1

  123Л1

  123С1

  123Т1

  123У1
маркируется со стороны анодного вывода одной
полосой

маркируется со стороны анодного вывода двумя полосами

маркируется со стороны анодного вывода полосой и красной точкой

маркируется со стороны анодного вывода полосой и двумя красными
точками

маркируется со стороны анодного вывода полосой и белой точкой

маркируется со стороны анодного вывода полосой и двумя белыми точками

маркируется со стороны анодного вывода двумя полосами и красной
точкой

маркируется со стороны анодного вывода двумя полосами и белой точкой

маркируется со стороны анодного вывода полосой и синей точкой

маркируется со стороны анодного вывода двумя полосами и синей точкой

маркируется со стороны анодного вывода полосой и желтой точкой

маркируется со стороны анодного вывода двумя полосами и желтой
точкой

маркируется со стороны анодного вывода полосой и двумя желтыми
точками

www.eham.ru

как определить где плюс, а где минус

Упирается одним из своих углов. На диода
х, маркированных по новому стандарту, это обозначение дополнительно как бы перечеркнуто — суть от этого не меняется. Посмотрите, как именно ориентировано обозначение относительно выводов диода
: тому из них, который расположен ближе к треугольнику, соответствует анод, а тому, который расположен ближе к отрезку прямой — катод
.

Если точно известен тип диода
, а под рукой имеется справочник или даташит, определить полярность можно так. Посмотрите, около какого из выводов должна быть расположена точка (или несколько точек) либо окружность. Иногда по количеству или цвету точек можно дополнительно определить буквенный индекс диода
пределах серии, а по нему, в свою очередь — максимальное обратное напряжение .

Если на диоде нет вообще никаких обозначений и все, что вам о нем известно — это прямой ток и обратное напряжение, определите его полярность следующим образом. Возьмите омметр (или многофункциональный прибор, обладающий такой функцией). Определите полярность напряжения на его щупах в режиме измерения сопротивления , используя в качестве образцового другой диод, цоколевка которого известна. Затем, подключая щупы к испытуемому диоду различными способами, определите расположение его электродов по аналогии.

Очень удобно использовать для определения цоколевки диодов использовать специальный пробник. Возьмите две пальчиковые батарейки , светодиод, резистор на 1 килоом и два щупа. Все детали соедините последовательно, а полярность включения диода
определите экспериментально, чтобы при замыкании щупов он светился. Испытуемый диод подключите к щупам сначала в одной полярности, затем в другой. Когда светодиод светится, вывод диода
, обращенный к минусу источника питания, является катод
ным.

Любой диод меняет свою проводимость в зависимости от полярности приложенного к нему напряжения. Расположение же электродов на его корпусе указано не всегда. Если соответствующая маркировка отсутствует, определить, какой электрод подключен к какому выводу, можно и самостоятельно.

Инструкция

Первым делом, определите полярность
напряжения на щупах того измерительного прибора, которым вы пользуетесь. Если он многофункциональный, переведите его в режим омметра. Возьмите любой диод, на корпусе которого обозначено расположение электродов. На этом обозначении «треугольник » соответствует аноду , а «полосочка» — катоду. Попробуйте подключать щупы к диоду в различных полярностях. Если он проводит ток, значит , щуп с положительным потенциалом подключен к аноду, а с отрицательным — к катоду. Помните, что полярность
в режиме измерения сопротивления на стрелочных приборах может отличаться от той, которая указана для режимов измерения напряжения и тока. А вот на цифровых приборах она обычно одинакова во всех режимах, но осуществить проверку все равно не помешает.

Если проверяется вакуумный диод с прямым накалом, прежде всего, найдите у него сочетание штырьков, между которыми ток проходит независимо от полярности подключения измерительного прибора. Это — нить накала , она же является и катодом. По справочнику

tanders.ru