На кт315 индикатор – Russian HamRadio — Низковольтовый индикатор напряжения для аккумуляторов и гальванических элементов питания.

Собрать пиковый индикатор выходной мощности усилителя на КТ315

Пиковый индикатор выходной мощности

Пиковый индикатор выходной мощности можно конечно использовать в качестве основного компонента и микросхему вместо транзисторов, но на мой взгляд устройство выполненное на чипе имеет меньший диапазон творческой мысли, то есть не сделаешь таких тонких настроек, которые можно установить в транзисторном варианте. Транзисторная топология дает возможность гибко настраивать различные параметры с необходимым диапазоном индикации, мягкое реагирование сигнала на светодиоды и такое же плавное затухание. Индикаторную цепочку можно собрать практически с любым количеством светодиодов, лишь бы было желание и необходимость в этом. p>

Хотя справедливости ради нужно отметить, что транзисторные схемы с большим количеством установленных светодиодов, требуют много времени на их отладку и регулировку. Но зато с такой конструкцией приятно работать в последствии, ее очень трудно вывести из строя. Но даже в случае нештатной ситуации с какой либо из ячеек, можно все без проблем починить. Клиповый индикатор выходной мощности не требует больших финансовых затрат на его изготовление, используются самые ходовые кремневые транзисторы типа КТ315. Любой радиолюбитель хорошо знаком с такими полупроводниками, многие начинали свой путь в электронике именно с использования таких транзисторов.

Представленная здесь схема индикатора выходной мощности усилителя имеет логарифмическую шкалу, учитывая то, что мощность на выходе будет составлять более 110 Вт. Если бы для упрощения сделать шкалу линейного типа, то тогда например при 4-6 Вт светодиоды не в состоянии были бы открыться, либо пришлось бы делать линейку порядка 120 ячеек. Поэтому устройство индикации предназначенное для мощных усилителей нужно собирать с таким условием, чтобы существовала логарифмическая зависимость относительно выходной мощности усилителя и количеством установленных светодиодов.

Принципиальная схема пикового индикатора

Пиковый индикатор выходной мощности и его представленная схема абсолютно простая, и изготовлена с идентичными ячейками отображающие визуальную индикацию, каждая из которых показывает свой уровень выходного напряжения усилителя. Здесь схема на 5 точек индикации:

Схема пикового индикатора выходной мощности усилителя на транзисторах КТ315

По принципу показанной выше схеме можно легко изготовить индикацию и на десять точек.

Схема пикового индикатора выходной мощности усилителя для 10 ячеек

Номинальные значения элементов в этой схеме предназначены под питающее напряжение 12 v, не учитывая постоянных резисторов Rx — их необходимо подбирать.

Немного поясню принцип работы схемы: сигнал с выходного тракта усилителя подается на резистор Rвх, затем диод D6 убирает полу-волну, а далее постоянное напряжение поступает на каждый узел ключа. Управляющий узел индикации состоит из делителя напряжения, образованного двумя резисторами, транзистора и гасящего резистора. При достижении определенного уровня сигнала на выходе ключ открывается и светодиод начинает свечение.

Конденсатор С1 обеспечивает плавное включение транзисторных ключей в случае большого размаха амплитуды, а емкость С2 создает кратковременную задержку открытия последнего в схеме светодиода, тем самым сообщается о достижении максимального значения выходного сигнала, то есть — пикового. Светодиод установленный вначале шкалы, выполняет функцию постоянного свечения.

Набор электронных компонентов пикового индикатора

Необходимые радиодетали: емкости С1 и С2 можно подбирать на свое усмотрение, в этой схеме были использованы конденсаторы номиналом 22μF каждый и напряжением 63v, устанавливать электролиты с меньшим номинальным напряжением не желательно, все таки выходная мощность усилителя более 100Вт. Постоянные резисторы все пленочные МЛТ-0.25, можно взять и меньшей мощности — 0.125 Вт. Биполярные транзисторы — КТ315, желательно с буквенным индексом «Б», а еще лучше «Г». Светодиоды подойдут практически любые, которые вам обойдутся недорого.

Настройка пикового индикатора

Первым делом нужно заняться настройкой яркости свечения светодиодов. Вычисляем сопротивление постоянных резисторов, необходимое для нормального свечения светодиодов. Затем в цепь светодиода последовательно подключить подстроечный резистор с номиналом от 1 до 6 кОм. Далее подключаем к этой цепи постоянное напряжение 12v, этим напряжением запитана вся схема. Подключаем последовательно к светодиоду переменный резистор на 1-6кОм и подаем на эту цепочку питания с таким напряжением, от которого будет питаться вся схема, у меня — 12В.

Теперь нужно вращением подстроечника установить постоянное и нормальное свечение, которое визуально удовлетворяло бы вас. Затем все следует отключить и мультиметром измерить сопротивление образовавшееся на подстроечном резисторе, полученные данные и будут означать номинал для постоянных резисторов, которые должны быть установлены в цепи коллектора транзистора КТ315 — R19, R2, R4, R6, R8… Данный метод приведен в качестве эксперимента, можно по справочнику узнать максимально потребляемый ток светодиода и рассчитать номинальное рабочее сопротивление.

Теперь приступаем к настройке порогов срабатывания индикации относительно каждого ключа. Настройка заключается в подборе сопротивления Rx индивидуально для каждой ячейки ключа. Устанавливаем вместо Rx в первой ключе подстроеный резистор с номинальным значением 68кОм — 33кОм и подключаем схему к усилителю мощности, желательно не самопальному, промышленного изготовления, где имеется свой блок индикации. После этого нужно подключить питающее напряжение на схему, а затем включить какую либо музыкальную композицию на маленькой громкости.

Подстроечным резистором устанавливаем красивое мигание светодиода, затем нужно будет отключить напряжение питание схемы и замерить образовавшееся на подстроечнике сопротивление. После этого убираем подстроеный резистор и на его место устанавливаем в первую ячейку постоянный Rx, того номинала который определили на подстроеном. Теперь проделываем тоже самое с последней ячейкой предварительно нагрузив усилитель на полную мощность. На последней ячейки тоже самое, нужно добиться подстроечным резистором стабильного, красивого свечения светодиода.

Вот здесь есть печатная плата в формате SprintLayout: Скачать Пиковый индикатор выходной мощности

usilitelstabo.ru

Простые схемы на КТ315.

Подробности
Категория: Разное

   Цель этой статьи — отдать дань одному из самых популярных транзисторов 70 — 90 годов — КТ315. Доступность, маленький размер и довольно неплохие параметры позволяли радиолюбителям использовать транзистор КТ315 в различных схемах, от простых до микро ЭВМ. В таблицах ниже указаны основные параметры линейки КТ315.

  Предельные параметры транзисторов КТ315 при Т=25°C










  IК, max мА UКЭR max (UКЭ0 max), В UЭБ0 max, В PК max, (Pmax), мВт T, °C Tп max, °C Tmax, °C
КТ315 А 100 25 6 150 25 120 100
КТ315 Б 100 20 6 150 25 120 100
КТ315 В 100 40 6 150 25 120 100
КТ315 Г 100 35 6 150 25 120 100
КТ315 Д 100 40 6 150 25 120 100
КТ315 Е 100 35 6 150 25 120 100
КТ315 Ж 50 15 6 100 25 120 100
КТ315 И 50 60 6 100 25 120 100

Параметры транзисторов КТ315 при Т=25°C










  h21Э (h21э) UКБ (UКЭ), В IЭ (IК), мА UКЭ нас, В IКБ0, (IКЭR), мкА fгр (fh31), МГц CК, пФ
КТ315 А 20…90 (10) 1 0,4 1 250 7
КТ315 Б 50…350 (10) 1 0,4 1 250 7
КТ315 В 20…90 (10) 1 0,4 1 250 7
КТ315 Г 50…350 (10) 1 0,4 1 250 7
КТ315 Д 20…90 (10) (1) 1 1 250 7
КТ315 Е 50…350 (10) (1) 1 1 250 7
КТ315 Ж 30…250 (10) (1) 0,5 1 150 10
КТ315 И 30 (10) (1)   1 250 7

   Немножко предистории: КТ315 — первый планарно — эпитаксиальной транзистор конца 60-х годов, т.е когда в процессе изготовления эмиттер, коллектор и база изготовляются последовательно на одной пластине кремния. Для этого необходимо пластину кремния, легированную в тип n (колектор), легировать на некоторую глубину в тип p (база), и сверху еще раз легировать на меньшую глубину в тип n (эмиттер). Далее с помощью скрайбера пластину необходимо разрезать на части, и каждую часть упаковать в пластиковый корпус.
   Такой процесс изготовления был намного дешевле сплавной технологии, и позволял получать немыслимые ранее параметры транзистора (в частности, рабочую частоту до 300 МГц).
   И конечно монтаж кристалла не в металлический корпус, а на металлическую ленту с выводами привело к удешевлению производства —  кристалл, на нижней стороне которого коллектор припаивался к центральному выводу, а база и эмиттер — подключались привариваемой проволокой, заливалось пластиком, лишние детали ленты отрезались — и получался КТ315 таким.

Приведем пару примеров схем на транзисторе КТ315.

 1. Усилитель для наушников.

2. Охранное устройство.

   Пока петля целая, база транзистора соединена с землей и транзистор закрыт.   При проникновении на охраняемую территорию, злоумышленник обрывает проволоку, на базу транзистора поступает положительное смещение и транзистор открывается, что приводит в итоге к срабатыванию электромагнитного реле.  В цепи контактов реле может быть сирена, радиопередатчик или другое.

 

3. Индикатор выходной мощности УНЧ.

С1, С2 —  10 мкф х 16B

D11 — КД510А

Rx — 300 Ом — 100 Ком (для каждого каскада необходимо подбирать.)

D1 — D10 — светодиоды разных цветов.

Добавить комментарий

radiofanatic.ru

4 схемы индикатора напряжения (фазы) на светодиодах своими руками

В любой технике в качестве отображения режимов работы используют светодиоды. Причины очевидны – низкая стоимость, сверхмалое энергопотребление, высокая надёжность. Поскольку схемы индикаторов очень просты, нет необходимости в покупке фабричных изделий. 

Из обилия схем, для изготовления указателя напряжения на светодиодах своими руками, можно подобрать наиболее оптимальный вариант. Индикатор можно собрать за пару минут из самых распространённых радиоэлементов.

Все подобные схемы по назначению делят на индикаторы напряжения и индикаторы тока.

Работа с сетью 220В

Рассмотрим простейший вариант – проверка фазы.

Эта схема представляет собой световой индикатор тока, которым оснащают некоторые отвёртки. Такое устройство даже не требует внешнего питания, поскольку разность потенциала между фазовым проводом и воздухом или рукой достаточна для свечения диода.

Для отображения сетевого напряжения, например, проверки наличия тока в разъёме розетки, схема ещё проще.

Простейший индикатор тока на светодиодах 220В собирается на ёмкостном сопротивлении для ограничения тока светодиода и диода для защиты от обратной полуволны.

Проверка постоянного напряжения

Нередко возникает необходимость прозвонить низковольтную цепь бытовых приборов, либо проверить целостность соединения, например, провод от наушников.

В качестве ограничителя тока можно использовать маломощную лампу накаливания либо резистор на 50-100 Ом. В зависимости от полярности подключения загорается соответствующий диод. Этот вариант подходит для цепей до 12В. Для более высокого напряжения потребуется увеличить сопротивления ограничивающего резистора.

Индикатор для микросхем (логический пробник)

Если возникает необходимость проверить работоспособность микросхемы, поможет в этом простейший пробник с тремя устойчивыми состояниями. При отсутствии сигнала (обрыв цепи) диоды не горят. При наличии логического ноля на контакте возникает напряжение около 0,5 В, которое открывает транзистор Т1, при логической единице (около 2,4В) открывается транзистор Т2.

Такая селективность достигается, благодаря различным параметрам используемых транзисторов. У КТ315Б напряжение открытия 0,4-0,5В, у КТ203Б – 1В. При необходимости можно заменить транзисторы другими с аналогичными параметрами.

Вариант для автомобиля

Простая схема для индикации напряжения бортовой сети автомобиля и заряда аккумулятора. Стабилитрон ограничивает ток аккумулятора до 5В для питания микросхемой логики.

Переменные резисторы позволяют выставить уровень напряжения для срабатывания светодиодов. Настройку лучше проводить от сетевого стабилизированного источника питания.

Понравилась статья? Расскажите о ней! Вы нам очень поможете:)

svetodiodinfo.ru

КТ315 цоколевка, КТ315 параметры, КТ315 характеристики

Транзистор КТ315 — один из самых массовых отечественных транзисторов, был запущен в производство в 1967 году. Первоначально выпускался в пластиковом корпусе КТ-13.

КТ315 цоколевка

Если расположить КТ315 маркировкой к себе выводами вниз, то левый вывод это эмиттер, центральный — коллектор, а правый — база.

В последствии КТ315 стал выпускаться и в корпусе КТ-26 (зарубежный аналог TO92), транзисторы в этом корпусе получили дополнительную ”1” в обозначении, например КТ315Г1. Цоколевка КТ315 в этом копусе такая же как и в КТ-13.

КТ315 параметры

КТ315 это маломощный кремниевый высокочастотный биполярный транзистор с n-p-n структурой. Имеет комплементарный аналог КТ361 c p-n-p структурой.
Оба этих транзистора предназначались для работы в схемах усилителей как звуковой так промежуточной и высокой частоты.
Но благодаря тому, что характеристики этого транзистора были прорывными, а стоимость ниже существующих германиевых аналогов КТ315 нашел самое широкое применение в отечественной электронной технике.

Граничная частота коэффициента передачи тока в схеме с общим эмиттером (fгр.) – 250 МГц.

Максимально допустимая постоянная рассеиваемая мощность коллектора без теплоотвода (Pкmax)

  • Для КТ315А, Б, В, Г, Д, Е – 0,15 Вт;
  • Для КТ315Ж, И, Н, Р – 0,1 Вт.

Максимально допустимый постоянный ток коллектора (Iкmax)

  • Для КТ315А, Б, В, Г, Д, Е, Н, Р – 100 мА;
  • Для КТ315Ж, И – 50 мА.

Постоянное напряжение база-эмиттер — 6 В.

Основные электрические параметры КТ315 которые зависят от буквы приведены в таблице.

  • Uкбо — Максимально допустимое напряжение коллектор-база,
  • Uкэо — Максимально допустимое напряжение коллектор-эмиттер,
  • h21э — Статический коэффициент передачи тока биполярного транзистора в схеме с общим эмиттером,
  • Iкбо — Обратный ток коллектора.
Наимен. Uкбо и Uкэо, В h21э Iкбо, мкА
КТ315А 25 30-120 ≤0,5
КТ315Б 20 50-350 ≤0,5
КТ315В 40 30-120 ≤0,5
КТ315Г 35 50-350 ≤0,5
КТ315Г1 35 100-350 ≤0,5
КТ315Д 40 20-90 ≤0,6
КТ315Е 35 50-350 ≤0,6
КТ315Ж 20 30-250 ≤0,01
КТ315И 60 ≥30 ≤0,1
КТ315Н 20 50-350 ≤0,6
КТ315Р 35 150-350 ≤0,5

Маркировка транзисторов КТ315 и КТ361

Именно с КТ315 началось кодированное обозначение отечественных транзисторов. Мне попадались КТ315 с полной маркировкой, но гораздо чаще с единственной буквой из названия смещенной чуть левее от центра, справа от буквы был логотип завода выпустившего транзистор. Транзисторы КТ361 тоже маркировались одной буквой, но буква располагалась по центру и слева и справа от неё были тире.

И конечно у КТ315 есть зарубежные аналоги, например: 2N2476, BSX66, TP3961, 40218.

hardelectronics.ru

кт315 — Меандр — занимательная электроника

Многие радиолюбители «кому за 40» начинали свой творческий путь с транзис­торного радиоприемника на СВ-диапазон. Если в вашей местности еще есть прием на средних или длинных волнах, приемник по этой схеме будет хорошим поводом вспомнить школьные годы. На рисунке показана схема простого приемника на СВ или ДВ диапазон (в зависимости от числа витков катушки L1) с …

Читать далее

Постоянная ссылка на это сообщение: http://meandr.org/archives/36404

В Л.1 подробно рас­сказано, как подклю­чив кнопку, датчик или реле к кнопке гарни­туры сотового теле­фона можно сделать из него охранное устройство или радио­канал для охран­ного устройства. С точки зрения демон­страции простоты схемного решения все там верно, но только если кнопка гарни­туры будет замы­каться определенным образом, — кнопка гарнитуры должна оставаться замкнутой не менее нескольких секунд. …

Читать далее

Постоянная ссылка на это сообщение: http://meandr.org/archives/36193

Данное устройство реагирует на вклю­чение передатчика недалеко от него расположенного сотового телефона. При этом раздается звук высокой тональ­ности. Сигнал передатчика сотового телефона принимается антенной, представляющей собой спицу длиной 9 см (длина подобра­на экспериментально). От этой антенны сигнал поступает на детектор на диодах VD1 и VD2. На конденсаторе С1 выде­ляется некоторое постоянное напряжение, которое поступает на …

Читать далее

Постоянная ссылка на это сообщение: http://meandr.org/archives/36071

У многих радиолюбителей «со стажем» сохранились запасы морально устаревших, но вполне работоспособных микросхем и других деталей. Но прямая замена ими современных элементов зачастую не даёт положительных результатов. Автор рассказы­вает, как он решил возникающие проблемы при повторении известных конструкций сенсорных выключателей. Хочу вернуться к теме, которая уже не раз поднималась на страницах жур­нала. Это сенсорные выключатели, …

Читать далее

Постоянная ссылка на это сообщение: http://meandr.org/archives/35955



Этой конструкцией автор планирует завершить цикл своих статей [1-9] по расширению возможностей мультиметров серий М-83х, DT-83x. Приставка позволяет измерять напряжение стабилизации маломощных стабилитронов, а также прямое напряжение и напряжение пробоя диодов, светодиодов и p-n переходов транзисторов. Как и разработанные ранее, она питается от мультиметра и не требует его доработки. В настоящее время производители выпускают очень …

Читать далее

Постоянная ссылка на это сообщение: http://meandr.org/archives/35809

meandr.org

Индикатор уровня сигнала на светодиодах

Определить уровень сигнала на индикаторных светодиодах необходимо для решения нескольких задач (показатели тока и напряжения, смены фазы), но наиболее часто такая схема применяется именно для отображения уровня звука.

В современной электронике индикаторные светодиоды отчасти уступили место устройствам на ЖКИ и светодиодных матрицах. Но схема такого типа не только наглядно показывает уровень сигнала, она также проста в реализации и довольно наглядна.

Из чего собрать светодиодный индикатор уровня?

За основу могут быть взяты аналого-цифровые преобразователи (АЦП) LM3914-16. Эти микросхемы способны управлять как минимум 10 диодами, а при добавлении новых чипов количество лампочек может увеличиваться практически до бесконечности. Индикатор может иметь любой цвет, а над исполнением корпуса лучше подумать заблаговременно, чтобы потом это не стало неожиданностью.

LM3914 имеет линейную шкалу, которая может также использоваться для измерения напряжения, а 15 и 16 – логарифмическую, но при этом цоколевка у микросхем ничем не отличается.

Светодиоды при этом могут быть любыми, импортными или отечественными, главное, чтобы они подходили для выполнения поставленной задаче. Например, можно использовать простейшие диоды АЛ307, но можно и более сложные.

Расчет схемы индикатора

Составление данного устройства не требует никаких специальных навыков. Расчет показателей тока и напряжения можно произвести в любой программе, как и чертеж.

Одна из «ножек» (9) микросхемы подключается к положительному входу подачи напряжения. Таким образом светодиоды будут управляться как единый столбец. Для того чтобы иметь возможность самостоятельно регулировать режимы при смене фазы, схема должна включать в себя переключатель, но может спокойно обойтись и без него, если эта опция не нужна.
Ток, проходящий через светодиоды для заданного напряжения и фазы можно рассчитать так:

Ic = 12,5/R

R – сопротивление на 7 и 8 «ножках»

Для тока в 1 мА R=12,5 / 0,001 А = 12,5 кОм.

А для тока в 20мА  R=625 Ом.

Внедрение подстроечного резистора даст возможность регулировать яркость свечения, при отсутствии такой необходимости можно поставить обычный. Номиналы для них будут 10 кОм и 1 кОм соответственно.

Конечная схема светодиодного индикатора уровня получится приблизительно такой.

Она идеально подходит для моно-сигнала, но для стерео- придется составить ещё одну на второй канал. Они могут объединяться через обычный сетевой кабель с учетом фазы. Отменный вариант – сделать две одинаковые схемы, выполненные в разных цветах для демонстрации уровня каждого из каналов. Устройства также могут менять свой цветовой диапазон, но такая реализация будет несколько сложнее.

Величина C3 может быть равной 1 мкф при условии, что R4=100 кОм. Номинал R2 можно подбирать из диапазона 47-100 кОм.

В данной схеме используется транзистор КТ 315, но его можно заменить любым другим с подходящими параметрами (фазы сигнала, тока, вел-на напряжения, p-n переход).

Совет: Все необходимые элементы можно приобрести на радиорынке или в магазине, стоит учесть, что чипы LM3915-16 несколько дороже, чем LM3914. Менее затратный вариант – выпаять комплектующие с уже существующих плат.

В итоге получится приблизительно такое устройство:

Собрать индикатор  уровня сигнала своими силами – вполне решаемая задача. Главное – найти из чего будет составляться схема, а после – уделить немного времени проверке и отладке устройства.

le-diod.ru

Пробник-индикатор — Радиолюбителям — Сборник — Познавательный Интернет-журнал «Умеха

Этот прибор очень удобен для поиска короткозамкнутых участков монтажных схем, а также для проверки целостности переходов полупроводниковых диодов и транзисторов. Особенно эффективно использование такого пробника при наладке схем, выполненных по технологии печатного монтажа. Как известно, в процессе травления печатных плат часто возникают невидимые для глаза микродефекты (замыкание соседних токонесущих дорожек или, наоборот, разрыв печатного проводника), обнаружение которых чрезвычайно затруднительно. Кроме того, в процессе распайки элементов схемы возможно затекание припоя между соседними проводниками и как следствие короткое замыкание между ними.

Предлагаемый пробник отличается от стандартных устройств для поиска коротких замыканий (омметр, индикаторная лампа накаливания и батарейка) тем, что позволяет проверять как пустые печатные платы, так и полностью смонтированные радиоэлектронные устройства. Заранее подчеркиваем: работа с прибором проводится при отключенном питании радиосхемы.

Принцип действия пробника заключается в следующем. Любая радиоэлектронная схема содержит определенное количество узлов, которые соединены между собой определенным образом посредством различных радиоэлементов: диодов, транзисторов, резисторов и т. д. При этом маломощные схемы редко содержат в своем составе постоянные резисторы с сопротивлением менее 10 Ом (в противном случае наш прибор, к сожалению, неприменим). Полупроводниковые переходы исправных транзисторов и диодов, установленных в схему, в прямом направлении имеют весьма высокое кажущееся сопротивление, если подаваемое на них испытательное напряжение не превышает 0,2—0,3 В. Да и при обратном включении сопротивление переходов будет весьма велико. Таким образом, любой исправный участок цепи, в который включены резисторы или полупроводниковые элементы, при подключении пробника с низким испытательным напряжением должен восприниматься как разрыв.

В случае, если в схеме имеются конденсаторы большой емкости, картина будет несколько иной: пробник должен показать кратковременное короткое замыкание, а затем разрыв цепи. Если этого не произошло — значит, либо произошло короткое замыкание между проводящими дорожками, либо дефект кроется в самих элементах схемы (пробой переходов транзисторов, короткое замыкание обкладок конденсаторов, дефект резисторов). Все сказанное выше остается справедливым и для схем, содержащих маломощные интегральные микросхемы.

Единственная разновидность электрических цепей, которые не удастся проверить нашим пробником, — это цепи с индуктивностями. Причина в том, что сопротивление обмоток катушек индуктивности постоянному току обычно бывает весьма низким (менее 10 Ом).

Иногда возникает задача проверить целостность токонесушей дорожки, выявить микротрещины, не воспринимаемые невооруженным глазом. В этом случае один из щупов пробника прикладывают к началу проверяемого проводника, а другим проводят по всей его длине. При этом влиянием остальной части схемы (при условии исправности ее элементов) можно пренебречь.

Для индикации в пробнике применен светоизлучающий диод. Его свечение означает короткое замыкание между щупами пробника, отсутствие свечения — разрыв цепи.

Прибор работает следующим образом. На транзисторах VT1, VT2 (см. рис. 1) собран простейший компаратор напряжения. Он включен в диагональ измерительного моста, образованного резисторами R1, R5, R6 и Rх (сопротивление проверяемого участка цепи). Диод VD1 служит для ограничения напряжения на разомкнутых концах пробника. Если измеряемое сопротивление Rх меньше 10 Ом, то транзистор компаратора VT1 откроется, VT2, наоборот, закроется и вызовет открывание транзистора VTЗ, управляющего свечением светодиода VD4. Если измеряемое сопротивление Rх больше 10 Ом, светодиод VD4 погашен (разрыв цепи).

Питается пробник от двух элементов типа «Уран», «Салют», РЦ или аккумуляторов Д-0,06. Ток потребления прибора при свечении светодиода не превышает 20 мА.

В пробнике могут быть применены резисторы типа МЛТ, транзисторы КТ315 с любым буквенным индексом, светодиод — из серии АЛ307, АЛ310. Наладка пробника сводится к подбору сопротивления резистора R7 для получения требуемой яркости свечения индикаторного светодиода.

Конструктивно пробник можно выполнить в корпусе стандартного электрического щупа-индикатора на лампе накаливания — такие приборы имеются в продаже. При этом портить покупной прибор не придется. Из корпуса щупа извлекают лампу, устанавливают на ее место индикаторный светодиод, а вместо батарей устанавливают плату с деталями и источники питания.

Схему пробника можно дополнить устройством звуковой сигнализации. Звуковой сигнал многие радиолюбители предпочитают световому, поскольку он меньше отвлекает внимание от проверяемой схемы.

Схема звукового сигнализатора приведена на рисунке 2. Она представляет собой простейший звуковой генератор, собранный на транзисторах разной структуры (p-n-p и n-p-n).

В качестве звукоизлучающего элемента использован миниатюрный головной телефон марки ТМ-2А или аналогичный ему. Телефон можно разместить в корпусе пробника или подключить через разъемный соединитель.

Высоту звука можно регулировать, подбирая емкость конденсатора С1 в пределах 0,01—0,1 мкФ, громкость звука — подбором сопротивления резистора R2 в пределах 51—200 Ом.

Звуковой сигнализатор подключается к схеме пробника так, как показано на рисунке: к минусу питания и коллектору транзистора VTЗ. При этом индикаторный светодиод можно исключить из схемы.

В устройстве можно применить резисторы типа МЛТ с любым допускаемым отклонением сопротивления от номинала, конденсатор С1 — керамический типа КМ-5, КМ-6, бумажный типа БМ-2, К40П-2, К40У-9 или пленочный на любое рабочее напряжение. В схеме сигнализатора допускается применение транзисторов серий КТ315, КТ361 с любым буквенным индексом.

Если вы хотите питать пробник от одного гальванического элемента или миниатюрного аккумулятора (например, Д-0,06, или Д-0,1) с напряжением 1,3—1,5 В, для этого достаточно собрать простейший преобразователь напряжения на двух транзисторах по схеме на рисунке 3.

Как видно из схемы, основой преобразователя является транзисторный мультивибратор с индуктивной нагрузкой в коллекторной цепи одного из транзисторов. В отличие от распространенных трансформаторных преобразователей напряжения в предлагаемой схеме использован дроссельный индуктивный элемент, что значительно упрощает работу, поскольку он имеет всего одну обмотку. Упрощается подключение индуктивного элемента к схеме, поскольку отпадает необходимость в фазировании обмоток.

Режим работы преобразователя сильно зависит от частоты генерации, которая, в свою очередь определяется элементами С1, RЗ, R2, L1 и сопротивлением подключенной нагрузки. С уменьшением емкости С1 и сопротивления RЗ частота генерации возрастает, одновременно увеличивается и напряжение на нагрузке. Происходит это следующим образом. Высоковольтный импульс, возникающий каждый раз на обмотке дросселя L1 в момент закрывания транзистора VT2, проходит через выпрямительный диод VD1 и заряжает конденсатор С2. Количество циклов заряда в единицу времени определяется частотой генерации: чем выше частота, тем больший заряд перейдет на конденсатор, тем выше окажется напряжение на нагрузке. Настраивая преобразователь, рекомендуется подобрать оптимальное сопротивление резистора RЗ, при котором достигается желаемая яркость свечения светодиода пробника. Для этого резистор RЗ выпаивают из схемы и ставят на его место переменный резистор с максимальным сопротивлением 470— 1000 Ом. Вращая движок переменного резистора при подключенном пробнике, добиваются желаемой яркости свечения индикаторного светодиода, после чего переменный резистор выпаивают, измеряют его сопротивление и устанавливают соответствующий постоянный резистор.

При подключении пробника следует обращать особое внимание на полярность подключения — она указана на рисунке.

В схеме преобразователя напряжения использованы следующие элементы. Все постоянные резисторы типа МЛТ, конденсаторы С1, С2 типа КЛС, КЛГ, КМ-5, КМ-6, с любым рабочим напряжением и группой ТКЕ. Дроссель L1 выполнен на ферритовом кольце марки З000НН (подойдут также 2000НН, 1500НН, 1000НН, 600НН) с внешним диаметром порядка 8—12 мм, внутренним диаметром 5—6 мм и толщиной 4—6 мм. На кольцо наматывают провод ПЭВ диаметрои 0,17—0,23 мм до заполнения (ориентировочно 200—300 витков).

Вместо диода типа Д9Б можно применить любой точечный германиевый диод из серий Д2, Д9. Транзисторы типа КТ315 с любым буквенным индексом. Можно также использовать германиевые транзисторы серий МП21, МП41, МП42, ГТ108, но при этом необходимо изменить полярность подключения элемента питания GB и диода VD1 на противоположную. Соответственно изменится и полярность подключения преобразователя к пробнику. В качестве выключателя S можно применить микропереключатели типа МП-7 или МП-9, а также унифицированные переключатели типа П2К.

umeha.3dn.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о