Напряжение высоковольтное – Особенности эксплуатации трансформаторов напряжения с литой изоляцией классов напряжения 6–35 кВ. Трансформаторы напряжения высоковольтные

Содержание

Высоковольтное напряжение — Большая Энциклопедия Нефти и Газа, статья, страница 1

Высоковольтное напряжение

Cтраница 1

Высоковольтное напряжение на фотосопротивление подается от специального выпрямителя ВС.
 [1]

Высоковольтное напряжение для питания ФЭУ ( 1800 в), а также низковольтные напряжения для питания остальных частей схемы вырабатываются специальными преобразователями, на вход которых подается стабилизированное напряжение — 6 в. В схеме предусмотрено также контрольное устройство, с помощью которого производится проверка работы измерительной схемы.
 [2]

Высоковольтное напряжение от источника питания Uu подается на катод К, анод А и эмиттеры с помощью делителя напряжения. Нагрузочное сопротивление Rs включается в анодную цепь.
 [3]

Высоковольтное напряжение подается от высоковольтного трансформатора. Выпрямленное однополупериодное пульсирующее напряжение получается с помощью кенотронного и селенового выпрямителей.
 [4]

Если высоковольтное напряжение отсутствует, то возможна неисправность в схеме высоковольтных выпрямителей блока питания.
 [5]

Стабилизированное высоковольтное напряжение 25 кВ для питания второго анода кинескопа получается при суммировании напряжений двух высоковольтных выпрямителей.
 [6]

Если высоковольтное напряжение на втором аноде отсутствует, следует установить, находится ли неисправность в схеме до выпрямителя или после него. При большой нагрузке на выпрямитель, например из-за неисправности кинескопа или короткого замыкания в схеме выпрямителя, высоковольтного напряжения может не быть. В этом случае необходимо отсоединить провод, подводящий высоковольтное напряжение к кинескопу, и проверить на нем наличие напряжения. Если напряжение отсутствует, следует проверить наличие напряжения на аноде высоковольтного кенотрона. Проверку путем короткого замыкания цепи на шасси производить нельзя, так как получается короткозамкнутая цепь между анодом выходной лампы и шасси, в результате чего выходной трансформатор или демпфирующая лампа могут выйти из строя. Необходимо проверить также лампу выходного каскада. Если она исправна, то с помощью вольтметра переменного тока проверяется наличие напряжения на ее управляющей сетке. При отсутствии этого напряжения следует проверить режим работы лампы задающего генератора. Если он не работает, то на / управляющей сетке его лампы не будет отрицательного напряжения. В этом случае проверяются лампа и элементы схемы. Следует проверить в телевизоре УЛПЦТ-59-П величину напряжения на управляющей сетке лампы выходного каскада если она превышает — ( 70 — 80) В, то это может быть из-за неисправности элементов делителя 4R4 4R15 или цепей защиты лампы выходного каскада от перегрузки. В этом случае необходимо проверить исправность элементов ЗДЗ, 3R29, 3R28, ЗС23 схемы компенсации отрицательного напряжения.
 [7]

Для бесконтактного распределения высоковольтного напряжения применяются две катушки зажигания высокой энергии типа 29.370 5 с двумя высоковольтными выводами, разомкнутым магнитопроводом, опрессованные в пластмассу. Одна из них генерирует высоковольтные импульсы на свечи зажигания 1-го и 4-го цилиндров, а другая на свечи зажигания 2-го и 3-го цилиндров, причем искровой разряд происходит одновременно на двух свечах зажигания. Поэтому за время рабочего цикла ( 2 оборота коленчатого вала) в каждом цилиндре происходит 2 искровых разряда. Один ( рабочий) происходит в конце такта сжатия, а второй ( холостой) приходится на конец выпуска отработавших газов.
 [8]

Для бесконтактного распределения высоковольтного напряжения применяются две катушки зажигания. Одна из них генерирует высоковольтные импульсы на свечи зажигания 1-го и 4-го цилиндров, а другая — на свечи зажигания 2-го и 3-го цилиндров, причем искровой разряд происходит одновременно на двух свечах зажигания. Поэтому за время рабочего цикла ( 2 оборота коленчатого вала) в каждом цилиндре происходит 2 искровых разряда. Один ( рабочий) происходит в конце такта сжатия, а второй ( холостой) приходится на конец выпуска отработавших газов.
 [10]

В качестве источника высоковольтного напряжения служил генератор постоянного тока.
 [12]

Жужжание, создаваемое высоковольтным напряжением. Так как ток луча кинескопа протекает через высоковольтный выпрямитель, то в высоковольтном напряжении, подаваемом на второй анод кинескопа, происходят значительные изменения с низкой частотой. Наибольшее напряжение на аноде кинескопа наблюдается в моменты, когда луч заперт кадровыми гасящими импульсами, и наименьшее, когда ток луча наибольший, что соответствует моментам воспроизведения бельц участков в изображении.
 [13]

Высоковольтный выпрямитель питается импульсным высоковольтным напряжением, образуемым на дополнительной и основной обмотках выходного строчного трансформатора 5Тр1 во время обратного хода строчной развертки.
 [14]

Прибор имеет два выхода высоковольтного напряжения.
 [15]

Страницы:  

   1

   2

   3

   4

   5




www.ngpedia.ru

Как узнать напряжение ЛЭП по её внешнему виду: ammo1

Полезно знать, какое напряжение передаётся по линии электропередач (ЛЭП), так как для каждого напряжения существует своя безопасная зона от проводов.

Минимальное напряжение ЛЭП — 0.4 кВ (напряжение между каждым фазным проводом и нолём — 220 вольт). Такие линии обычно используются в дачных посёлках, они выглядят так.

Характерный признак — маленькие белые или прозрачные изоляторы и пять проводов (три фазы, ноль, фаза к фонарям освещения).

Для подвода напряжения к трансформаторам тех же дачных посёлков используются линии 6 и 10 кВ. 6-киловольтные линии используются всё реже.

Отличие от низковольтной линии в размере изоляторов. Здесь они гораздо больше. Для каждого провода используется один или два изолятора. Проводов всегда три.

Очень важно не путать эти линии. Я читал грустную историю про горе-строителей, которые хотели подключить бетономешалку напрямую к проводам ЛЭП и сдуру накинули крючки на 10-киловольтные провода вместо 220-вольтных.

Следующий стандартный номинал напряжения ЛЭП — 35 кВ.

Такую ЛЭП легко распознать по трём изоляторам, на которых закрепляется каждый провод.

У линии 110 кВ (110 тысяч вольт) изоляторов на каждом проводе шесть.

У линии 150 кВ изоляторов на каждом проводе 8-9.

Линии 220 кВ чаще всего используются для подвода электричества к подстанциям. В гирлянде от 10 изоляторов. ЛЭП 220 кВ могут значительно отличаться друг от друга, количество изоляторов может доходить до 40 (две группы по 20), но одна фаза у них всегда передаётся по одному проводу.

Недавно в Москве на пересечении Калужского шоссе и МКАД поставили две опоры ЛЭП 220 кВ необычного вида. О них подробно рассказала neferjournal: http://neferjournal.livejournal.com/4207780.html. Это фото из её поста.

ЛЭП 330 кВ, 500 кВ и 750 кВ можно распознать по количеству проводов каждой фазы.
330 кВ — по два провода в каждой фазе и от 14 изоляторов.

ЛЭП 500 кВ — по три провода, расположенных треугольником, на фазу и от 20 изоляторов в гирлянде.

ЛЭП 750 кВ — 4 или 5 проводов, расположенных квадратом или кольцом, на каждую фазу и от 20 изоляторов в гирлянде.

Убедиться в точности определения напряжения можно, посмотрев, что написано на опоре ЛЭП. Во второй строке указан номер опоры ЛЭП, а в первой строке указана буква и цифра через тире. Цифра — это номер высоковольтной линии, а буква — напряжение. Буква Т означает 35 кВ, С — 110 кВ, Д — 220 кВ.

Допустимые расстояния до токоведущих частей для разных типов ЛЭП.

Информация и часть фотографий для этого поста во многом почёрпнута из статьи Как по изоляторам определить напряжение ВЛ.

© 2016, Алексей Надёжин


Основная тема моего блога — техника в жизни человека. Я пишу обзоры, делюсь опытом, рассказываю о всяких интересных штуках. А ещё я делаю репортажи из интересных мест и рассказываю об интересных событиях.
Добавьте меня в друзья здесь. Запомните короткие адреса моего блога: Блог1.рф и Blog1rf.ru.

Второй мой проект — lamptest.ru. Я тестирую светодиодные лампы и помогаю разобраться, какие из них хорошие, а какие не очень.

ammo1.livejournal.com

Различия сетей напряжением до и выше 1000 вольт

Все электрические сети переменного тока в стране классифицируются по различным параметрам и прежде по величине в них напряжения, а именно сети до 1000 вольт и более 1000 вольт, другими словами низковольтные и высоковольтные сети.  Естественно, что чем выше напряжение в электрической сети, тем более оно опасно для работающих с ними и вообще для человека.

Граница напряжения в сетях именно в 1000 вольт сложилась исторически и в настоящее время жестко зафиксирована в Правилах устройства электроустановок (ПУЭ).  Именно такое разграничение напряжения  указывается в допусках специалистов электромонтажных работ, дающих право работы одним с электроустановками напряжением до 1000, а другим свыше 1000 вольт.  Основное принципиальное различие в устройстве обоих видов сетей заключается в том, что высоковольтные сети выполняются с изолированной нейтралью, а низковольтные (до 1000 вольт) – с глухо заземленной нейтралью. 

То есть нейтраль питающего трансформатора напряжением до 1000 вольт имеет электрическое соединение с землей для того, чтобы все электрические однофазные потребители при всех условиях получали электрический ток одного устойчивого нормативного напряжения, равное в быту 220 В.  Если в подобных сетях произойдет короткое замыкание на землю, то электрический ток в сети мгновенно возрастет, в результате чего сработает защита от максимально токовой нагрузки.  В целях безопасности пользования электроприборами и электрооборудованием, рассчитанными на напряжение до 1000 вольт, их корпуса должны в обязательном порядке быть заземлены.  В этом случае при неисправности прибора, в результате чего его корпус может быть под напряжением, то при прикосновении человека электрический ток устремится к земле, не причиняя вреда человеку.

Опасность травматизма человека в быту от поражения электрическим током продолжает и в наше время оставаться достаточно высокой.  Основными источниками опасности в основном являются неисправность бытовой электрической сети, неисправность бытовых электрических приборов, отсутствие приборов электрической защиты и многие другие причины.

Высоковольтные сети, как правило, достаточно большой протяженности и при их симметричной нагрузки нейтраль изолируется от земли и при коротких замыканиях на землю, электрический ток возрастает незначительно.  Небольшое увеличение тока в высоковольтных сетях к сожалению не всегда улавливаются приборами защиты и не всегда отключают сеть, в связи с чем сети напряжением выше 1000 вольт более опасны для человека.  Именно в связи с повышенной опасностью работы с электрооборудованием высокого напряжения, к работе с ним допускаются специалисты высокой квалификации, имеющие соответствующий допуск. 

Работа с высоковольтными сетями осложняется еще и потому, что утечки электрического тока случаются в них достаточно часто, в результате чего еще более повышается степень опасности.  По этой причине работы с высоковольтными сетями и оборудованием выполняются в строгом соответствии с требованиями ПУЭ и обязательных регламентов.

Только выполнение всех требований Правил устройства электроустановок, выполнение в установленные сроки регламентных работ по обслуживанию электрических сетей независимо от напряжения и электрооборудования является основным залогом электрической безопасности в быту и на производстве.

 

 

www.szenergo.ru

Низковольтная и высоковольтная передача — как до нас доходит электричесвто



Низковольтное и высоковольтное энергоснабжение — это два принципиально разных способа передачи электрического монстра. Но, как ложка хороша к обеду, также и напряжение желательно использовать по назначению. Начнём с того, что такое низковольтное напряжение. И наконец, я расскажу ответ на самый волнительный вопрос: какую дорогу и как проходит электрический монстр прежде чем попасть к нам домой? Но обо всем по порядку.


Итак, низковольтное напряжение — это то, что трещит в наших с вами розетках. Низковольтное напряжение очень полезно, так как даёт максимальную мощность при минимальных затратах на проводники. Чтобы передавать электричество напряжением 220 В и силой тока 16 А, достаточно двужильного провода сечением 1,5 – 2,5мм. Это общепринятый стандарт, под который делают все электроприборы на территории Европы и Азии. В Америке и Канаде стандарт напряжения — 110 В, там свои электроприборы, имеющие специальные вилки. Разница в напряжении в данном случае не так важна, ведь оба стандарта являются низковольтными. И оба достаточно опасны для человека, но удар электрическим током от розетки едва ли способен покалечить взрослого человека. Если только мы не говорим про продолжительный контакт с проводами, в этом случае последствия наверняка будут серьезнее. Так вот, если подвести черту под все, о чем мы только что говорили, получится, что такой ток не нуждается в дорогостоящем электропроводе, также он не требует специальных электроприборов и по сути своей практически безопасен. Он отлично подходит для жилых помещений, офисов и производств. Не стоит забывать, что для низковольтного напряжения значения обычно находятся между 12 В и 380 В, так что даже некоторые производства могут работать от низковольтной сети.



Высоковольтные линии электропередач — это специальные трассы для передачи электричества огромной мощности на длительные расстояния. Напряжение таких сетей колоссально и может варьироваться от 1 кВ до 1150 кВ. Но у такого способа есть плюсы. Он предполагает меньшее количество потерь, нежели низковольтное, при передаче электричества на большое расстояние. Эти потери могут быть связаны с огромным количеством факторов. Первый из них — это сопротивление, постоянная величина для каждого материала, которая измеряется в Омах. Все помнят законы Ома? Сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению. Исходя из этого, понятно, что много мощности теряется для преодоления сопротивления в проводнике. Также колоссальные потери происходят при создании электромагнитного поля вокруг проводника и его нагрев. К сожалению, это те потери, с которыми сложно бороться, но есть решение — многократно увеличить мощность передаваемого тока. Тогда в процентном соотношении потери в том же самом проводнике, будут в несколько раз меньше. Вот для этого и нужно высокое напряжение.


В завершении немного о том, как электрический монстр с электростанции попадает к нам домой. Представим, что мы берем электричество на теплоэлектростанции. Я вас могу шокировать, но пока электричество попадет в ваш дом с напряжением 220 В и 50 Гц, ему нужно пройти семь технологических этапов. Итак, первым этапом при движении электричества будет тепловая электростанция. С нее подается ток определенного напряжения — как правило, оно равно 12 кВ. С теплоэлектростанции электричество попадет на подстанцию с повышающими трансформаторами, которые повышают напряжение с 12кВ до 400 кВ. Таким образом мы преодолеваем максимальное количество потерь и получаем магистральную линию электропередач. Кстати, напряжение таких линий электропередач может быть колоссальным и достигать 1150 кВ киловольт или 1,15 МВ (мегавольта). Далее, как вы уже догадываетесь, магистральная линия электропередач заканчивается подстанцией, на которой стоит понижающий трансформатор, который возвращает напряжение 12 кВ. Зачем? Дело в том, что очень сложно до каждого поселка или деревни построить мощную ветку электроснабжения, а вот 12-киловаттную — пожалуйста. Движемся дальше, пункт шестой: снова понижающий трансформатор, после которого мы получаем электричество с уже знакомым напряжением в 220 В. Вот такой нелегкий путь, но он выходит намного дешевле при передаче тока на большие расстояния.


В следующей статье, мы расскажем про трансформаторы и их принцип действия.

fixup.ru

Высоковольтные линии постоянного и переменного тока


В 1919 г. инженер Михаил Осипович Доливо-Добровольский написал работу «О пределах применимости трехфазного переменного тока для передачи электроэнергии на расстояние». Проведя исследования, он доказал, что при электропередачах большой мощности и на очень дальнее расстояние произойдет обратный переход от переменного тока к постоянному. [30]

 

Считается, что ушли в прошлое времена, когда решался вопрос, каким быть электросетям в мире – сетям постоянного или переменного тока (так называемая «война токов или напряжений», имевшая место на рубеже 19-20 веков). В настоящее время большинство сетей – это сети переменного напряжения с частотой 50 / 60 Гц. Тем не менее, последние события в энергетике показывают, что старая дискуссия может вернуться.

 

В настоящее время идут процессы, которые могут потеснить монополию переменного тока

 

1) Развитие высоковольтных систем постоянного тока (ЛПТ / HVDC систем) в системах электропередачи продолжается благодаря следующим преимуществам [1]:
  • Отсутствуют потери на излучение, так электромагнитные волны излучает только проводник с переменным током.
  • В сети нет реактивной (паразитной) мощности и, следовательно, затрат на борьбу с ней, т.е. нет коэффициента мощности и необходимости его улучшения.
  • Экономия на материалах опор ЛЭП, проводов.

Основное преимущество HVDC – это возможность передать большее количество энергии на большое расстояние с меньшими капитальными затратами и меньшими потерями, чем в HVAC линиях [1]. В зависимости от уровня напряжения и конструкционных особенностей потери составляют около 3% на 1км [1]. HVDC позволяют более эффективно использовать энергетические источники удаленные от нагрузочных центров.

Основные примеры, где использование HVDC более эффективно, чем HVAC:

  • Подводные кабели (например, 250 км Балтийский кабель между Швецией и Германией [1], 600 км кабель NorNed между Норвегией и Голландией, 290 км связка Basslink между Австралийским материком и Тасманией [1]). В подводных кабелях линии переменного тока неэффективны по причине потерь на токи Фуко в солёной воде.
  • Дальнемагистральные мощные линии электропередачи типа «конечная точка – конечная точка» без промежуточных ответвлений, например, в удаленных (незаселенных) областях.
  • Увеличение мощности существующей силовой сети в ситуациях, где дополнительные провода устанавливать трудно или дорого.
  • Передача мощности и стабилизация между несинхронизированными распределительными системами переменного напряжения (Power transmission and stabilization between unsynchronised AC distribution systems).
  • Подключение удалённой генерирующей электростанции к главной сети, например: Nelson River DC Transmission System.
  • Стабилизация преобладающей AC сети за счет того, что HVDC не вносит вклад в общий ток КЗ системы (Stabilizing a predominantly AC power-grid, without increasing prospective short circuit current).
  • Снижение цены линии электропередачи. HVDC нуждается в меньшем количестве проводников так как нет необходимости поддержки многофазных систем. Так же, из-за отсутствия скин-эффекта могут использоваться более тонкие проводники.
  • Облегчение передачи (обмена) энергией между странами (районами, сетями), которые используют разные частоты промышленной сети.
  • Синхронизация сетей переменного напряжения, выработанного ВИЭ [1].

Преимущества и недостатки HVDC по другому источнику [2]:

A. Преимущества HVDC

  • Большая передаваемая мощность для проводника одного сечения (нет излучения, нет скин-эффекта и др.).
  • Более простая конструкция линии (нет реактивных компенсаторов и др.).
  • Может быть использован возврат через землю (ОЛВЗ). Имеется в виду, что меньше потери на токи Фуко и др., т.к. в HVAC линиях также используется ОЛВЗ / SWER.
  • В случае ОЛВЗ каждый проводник может работать как независимая цепь.
  • Нет зарядного тока, т.е. переменного тока идущего на подзаряд емкостей линии (No charging current. Additional current must flow in the cable to charge the cable capacitance). Это особенно важно в подземных / подводных кабелях. Поэтому в подводных ЛЭП HVDC используется уже несколько десятилетий.
  • Нет скин эффекта.
  • Кабели могут работать при более высоком градиенте напряжения (так как нет токов Фуко).
  • Коэффициент мощности линии всегда равен единице: реактивной мощности нет, линия не требует реактивной компенсации.
  • Меньше коронный разряд и радиопомехи, особенно в плохую погоду, для проводника с теми же самыми диаметром и RMS напряжением как в HVAC.
  • Синхронная работа не требуется.
  • Следовательно, дистанция линии не ограничена требованиями стабильности.
  • Может соединять системы переменного напряжения с разными частотами.
  • Низкий ток КЗ в линии с постоянным током (Low short-circuit current on DC line).
  • Не вносит вклад в ток КЗ AC линии (Does not contribute to short-circuit current of a A.C system).
  • Регулирование перетоков мощности легко осуществляется / контролируется (Tie-line power is easily controlled).

B. Недостатки HVDC

  • Конверторы дороги.
  • Конверторы сопряжения с HVAC сталкиваются с проблемой реактивной мощности.
  • Конверторы генерируют гармоники, требуются фильтры.
  • Мультитерминальную (сеть с множеством потребителей) систему построить нелегко (Multiterminal or network operation is not easy) [2].

Дальние дистанции технически недостижимы для линий HVAC без промежуточных станций компенсации реактивной мощности. Частота и промежуточные реактивные компоненты вызывают проблемы стабильности AC линии. С другой стороны HVDC линия электропередачи не имеет проблемы стабильности из-за отсутствия частоты, и следовательно, нет ограничения на длину линии. Цена на единицу длины для HVDC линии ниже, чем для HVAC при той же мощности и надёжности. Однако, цена терминального оборудования (оборудования конечных станций) HVDC линии значительно выше чем HVAC. Наибольшее ценовое преимущество HVDC линии достигается на расстояниях свыше 500-800 км. HVDC линии меньше воздействует на человека и на природу в целом, это делает HVDC более «дружелюбной» по отношению к окружающей среде [2].

 

Преимущества HVDC [9]:

Высоковольтные DC и сверхвысоковольтные DC системы – это совершенные технологии, превосходно подходящие для целей интеграции различных источников энергии таких, как солнце и ветер в локальные электрические сети. Это особенно важно для крупномасштабных оффшорных проектов ветроэлектростанций, или крупномасштабных СЭС. HVDC имеют многочисленные преимущества над традиционной HVAC ЛЭП. Одно из главных преимуществ HVDC – малые потери при передаче энергии, в отличие от больших потерь в HVAC линиях.

Основное практическое правило выглядит следующим образом: на каждые 1000 км DC линии потери составляют менее 3% (на примере линии 5000 МВт, 800 кВ). Обычно потери DC линии на 30-40% меньше, чем потери для линий AC, при тех же уровнях напряжения. Поэтому для ЛЭП большой длины DC (ЛПТ) являются единственным приемлемым решением, как с технической, так экономической точки зрения. Подтверждение можно можно почерпнуть из  опытных данных, представленных ниже и полученных на HVAC и HVDC Transmission system for the Nelson River Bipole  [1, 2]. Из графиков сравнения затрат на строительство стандартной ЛЭП и ЛПТ, видно что начиная с расстояния 450 миль ЛПТ более выгодны, и с дальнейшим ростом расстояния выгода растёт.

 


 

На рисунке ниже показана наземная ЛЭП: площадь занимаемая HVDC оптимальна и составляет около одной трети площади HVAC. HVDC это два проводника, а HVAC это три проводника плюс нейтраль, в результате установочная цена на милю для HVDC ниже.

HVDC лучше HVAC для оффшорных (вне береговых) подводных проектов. Для подводных систем электропередачи, потери в AC линии из-за её ёмкости очень велики, что делает HVDC экономически выгоднее на более коротких дистанциях, чем на земле.

 


 

Благодаря преимуществам (см. выше) одна и таже ЛЭП может передать в 3 раза больше энергии при переходе с технологии HVAC к HVDC [19]:

 


 

Преимущества HVDC [12]:

Особенность системы ABB HVDC Light – возможность стабилизировать напряжение линий переменного тока, а так же возможность использования для связи с изолированными удаленными источниками генерации в местах, где строительство новых воздушных линий сверхвысокого напряжения слишком затратно. Это важно для ветряных электростанций, так как они значительно удалены и разница в скорости ветра может привести к значительным колебаниям напряжения.

Так же система HVDC выгодна для подземных подводных кабелей. Вот примеры реализованных проектов:

  • Протяженный подземный кабель (70 км Gotland HVDC Light) от ветряной электростанции (Швеция).
  • Протяженный подземный кабель (59 км Terranora interconnector и 180 км Murraylink) между двумя сетями (Австралия) [12] и др.

Замечание: HVDC имеют много особенностей, которые продолжают изучаться и часто не могут быть отнесены только к преимуществам или только недостаткам, например, коронный разряд не только приводит к потерям и радиошумам, но и вырабатывает озон.

Таким образом, преимущества HVDC для подводных и подземных применений обусловлены отсутствием токов Фуко, а преимущества на дальних дистанциях – малой занимаемой площадью из-за меньшего расстояния между проводами и отсутствия скин-эффекта (нет необходимости разбивать проводники на несколько меньших, работает весь объем провода, независимо от сечения) и проблем коэффициента мощности.

Недостатки HVDC связаны со использованием сложных преобразователей (конверторов), необходимостью их контроля и обслуживания [1].

С начала развития линий постоянного тока с 1880-х годов и до середины 20 века во многих странах было предпринято несколько попыток построения ЛПТ систем (Италия, Швейцария, Германия и др.). Только затем началось существенное развитие DC систем. После Великой Отечественной Войны в СССР были введены в строй ЛПТ ЛЭП 30 МВт ЛПТ Кашира–Москва (1951 г), 750 МВт Волгоград–Донбасс (1964 г) и др. С тех пор число ЛПТ ЛЭП в мире увеличилось и продолжает расти.

Достигнуты большие мощности и расстояния ЛПТ ЛЭП, например – UHVDC Xiangjiaba-Shanghai 2,071 км 7200 МВт ±800 кВ (от ГЭС Xiangjiaba до Шанхая) [1,11]. Количество реализованных и проектируемых ЛПТ ЛЭП за период 2000 г — 2013 г превысило количество всех построенных в 20 веке ЛПТ ЛЭП. В общем, рост ЛПТ систем касается только сферы большой энергетики, так как традиционно в бытовом применении (и для большинства промышленных нагрузок) во всём мире используется переменное напряжение 50 или 60 Гц.

Ниже приведена карта HVDC линий Европы (многие из которых обслуживают объекты возобновляемой энергетики такие, как ветро- и гидро- электростанции), а также проектируемые HVDC Китая [4,5].

 


 

 

2) Возобновляемая энергетика как «локомотивная отрасль» тянет за собой развитие систем / линий постоянного тока (ЛПТ / HVDC) за счёт их преимущества

В связи с прохождением пика потребления углеводородов в результате роста цен на газ и нефть резко возрастает роль возобновляемых источников энергии, а также всех смежных с ними отраслях, том числе строительстве ЛПТ. Линии переменного тока AC эффективны в системах с машинной генерацией напряжения синусоидальной формы, например: ДЭС, ТЭС, АЭС и т.п.. А для таких возобновляемых источников энергии, таких как ВЭС и СЭС более эффективны в работе ЛПТ.

Это связано с тем что:

  • Данные ВИЭ не могут самостоятельно генерировать переменное напряжение с фиксированной частотой и напряжением (как генераторы на обычных ЭС). Это связано с нестабильностью альтернативных источников энергии  (Солнце, ветер) и актуальной проблемой выгодного аккумулирования энергии. Поэтому для ВИЭ требуются импульсные преобразователи, которым легче работать с ЛПТ. Наоборот, паровые, дизельные, газовые и др. приводы генераторов обычных ЭС изначально легко дают фиксированное переменное напряжение («стабильное напряжение, стабильная частота»).

Выходит, что эффективность ЛЭП переменного тока как бы «привязана» к нефти, газу др. НВИЭ. Исключением являются ГЭС  (ВИЭ), но ГЭС не могут работать круглосуточно и поэтому также нуждаются в объединении сетей (в ГЭС с накопительным водохранилищем работа на номинальную мощность производится периодически т.к. вода аккумулируется в периоды пониженных нагрузок). ГЭС работающие на водотоке не годны для выработки больших мощностей – см. ниже.

Рассмотрим распространенную ситуацию с централизованной электростанцией в регионе, когда электростанция – это одиночный центр, питающий весь окружающий регион. В этом случае никакие объединения электросетей не требуются или требуются только для аварийного режима. Речь может идти об объединении единиц ЭС – ЭС на ВИЭ (ВЭС СЭС и др.), сильно рассредоточенными по большой территории, поэтому вопрос объединения десятков, сотен, и более единиц ЭС в единую сеть крайне важен. А в случае объединения ЛПТ выигрывает по сравнению с ЛЭП переменного тока по простоте и эффективности.

Причины необходимости объединения ЭС на ВИЭ и выгодности HVDC для этих целей:

  • Парковые ВЭС (Ветроэлектростанции / Wind farms) и СЭС электростанции изначально является сильно рассредоточенными по большой территории на площади несколько десятков и сотен кв. км. Примером могут служить оффшорные, горные, равнинные парковые ВЭС – в среднем от 30 до 300 единичных ВЭС мощностью 1-6 МВт каждая на территории 10-300 кв. км [7].
  • Парковые ЭС на ВИЭ требуют объединения в единую энергосистему, так как источник энергии нестабилен, а дешёвый аккумулятор электроэнергии до сих пор не разработан.
  • Парковые ЭС часто удалены и рассредоточены, так как привязаны к ресурсам солнца и ветра, поэтому требуется много длинных ЛЭП, что более подходит для HVDC технологии.
  • Для объединения многих терминалов (источников и потребителей) HVDC значительно выгоднее (см преимущества выше). Главная причина – не требуется синхронизация, терминалы подключаются параллельно.
  • При использовании HVDC линий упрощается постройка системы «сетевая электростанция». При этом парковая ЭС может выдавать энергию в сеть, принимать энергию из сети в аккумуляторы, передавать / ретранслировать потоки энергии.
  • При использовании HVDC линий упрощается постройка системы «объединённая сетевая электростанция» для большого числа малых частных ЭС / потребителей.
  • При использовании HVDC упрощается построение энергосистемы «силовой интернет», включающей множество мелких и крупных станций типа «источник», «потребитель», «аккумулятор», а также их комбинаций.
  • Даже в настоящее время, когда большинство основных магистральных сетей – HVAC, из-за своей выгодности HVDC используются для сопряжения сетей HVAC, сопряжения сетей HVAC с ЭС на ВИЭ.

 

Пример 1 [13]

Система BorWin1 – одна из крупнейших HVDC систем Германии. Используется для энергетического соединения оффшорного ветропарка BARD Offshore 1 (400 МВт) и других оффшорных ветроферм, расположенных в Германии рядом с Боркумом с Европейской энергетической сетью. Характеристики: мощность 400 МВт, биполярная линия, напряжение 150 кВ. ЛЭП HVDC BorWin1, идущая от оффшорной платформы BorWin Alpha к подстанции Diele, содержит участки 75 км подземного и 125 км подводного кабеля. Запущена в строй в 2009 г.




Вид BARD Offshore 1 с платформы HVDC конвертора
Вид BARD Offshore 1 (cправа платформа HVDC конвертора)

 

 

Пример 2

Система Atlantic Wind Connection (AWC), HVDC магистральная линия длиной 350 миль от Sayreville NJ до Virginia Beach передаёт от 6000 до 7000 MВт мощности от парковой ветроэлектростанции в общую сеть (в процессе строительства).

 


 

А если кто то спросит: «что случится если ветер перестанет дуть?», то мы всегда можем ответить, что ветер всегда дует где-нибудь, мы только должны перебросить энергию туда где она необходима. И сделать это можно с помощью линий HVDC [9].

 

 

3) Рост количества оборудования с импульсными блоками питания способствует развитию систем / линий / преобразователей постоянного тока.

 

4) Рост количества железнодорожных и других контактных сетей способствует развитию систем / линий постоянного тока.

 

5) Рост количества бортовых сетей (авто, корабельных, авиа и других) способствует развитию систем/линий пост. тока.

 

6) Рост внутренних, в т.ч. специального назначения, сетей (внутри зданий, предприятий и др.) способствует развитию систем / линий постоянного тока.

 

Несмотря на то, что линии и оборудование постоянного тока продолжают использоваться и развиваться (см выше), большинство высоковольтных и низковольтных сетей, а также потребителей в мире являются сетями и потребителями переменного тока 50/60 Гц.

Независимо от того как преимущественно будет идти развитие силовой энергетики

  • по пути ЛЭП перем. тока
  • по пути ЛПТ
  • по обоим путям
  • другие альтернативы, например водородная энергетика, сети повышенной частоты и др. пока не могут конкурировать с приведёнными)

в современной электротехнике остаётся и будет оставаться одной из основных задач – задача генерации переменного напряжения, так как эти устройства применяются и в ЛЭП переменного тока и ЛПТ системах.

Общепринятым стандартом здесь является синусоидальное переменное напряжение 50 / 60 Гц, хотя возможны и другие формы сигнала напряжения и стандарты частот.

Спектр решаемых при этом задач очень широк – от обычной генерации напряжения 380 В / 50 Гц с помощью дизельной электростанции в удалённом посёлке, до преобразования высокого постоянного напряжение в высокое переменное синусоидальное напряжение в высоковольтных ЛПТ (линиях электропередач постоянного тока) систем магистральных ЛЭП.

К области техники для генерации переменного напряжения также относятся инверторы, преобразователи частоты, устройства плавного пуска электродвигателей, частотно-регулируемые (управляемые) преобразователи (приводы) моторов (ЧУП, Variable Frequency Drive, VFD), устройства защиты от противотока, ДГУ, ИБП, инверторные, бензиновые и др. генераторные установки, некоторые типы стабилизаторов, активные корректоры КНИ, активные корректоры коэффициента мощности, специальные преобразователи (ЖД, подводные лодки и др.), электрогенераторы, умформеры и др. Данный список можно дополнить специализированными инверторами электрогенераторов на ВИЭ (СЭС, ВЭС и др.) и др.

В энергетике широко распространено применение инверторов для объединения HVDC и HVAC систем. Так же особенностью оборудования, генерирующего переменное напряжение является то, что это оборудование может быть обязательно и необходимо, но при этом сама генерация переменного напряжения не является главной целью.

Например, имеются две высоковольтные линии (системы) постоянного тока 500 кВ и 300 кВ, и требуется их объединить. Объединение достигается с помощью преобразователя с внутренним преобразованием DC-AC-DC, так как без генерации промежуточного переменного (или импульсного) напряжения преобразование DC-DC невозможно.

 

 

 

[30]. Инженеры России
http://rus-eng.org/eng/Dolivo-Dobrovol%27skij%20Mixail%20Osipovich.htm
http://energomuseum.ru/history/nachalo/

www.xn--80aacyeau1asblh.xn--p1ai

Высоковольтное напряжение — Большая Энциклопедия Нефти и Газа, статья, страница 2

Высоковольтное напряжение

Cтраница 2

Варисторы предназначены для регулирования высоковольтного напряжения в высоковольтных электрических цепях постоянного тока.
 [16]

Варисторы предназначены для регулирования постоянного высоковольтного напряжения.
 [17]

Разработаны устройства, содержащие встроенные генераторы высоковольтного напряжения.
 [18]

Причиной неисправности ( при условии нормального питания высоковольтным напряжением — 1 3 и 2 кв) может быть дефект электроннолучевой трубки Л2в, а также плохой контакт ее ламповой панели.
 [19]

Выходной каскад строчной развертки используется также для получения высоковольтного напряжения, питающего второй анод кинескопа. Цепь накала кенотрона питается от обмотки строчного автотрансформатора.
 [20]

Для питания фотоумножителя может быть применен любой источник высоковольтного напряжения. Все же при выборе его следует руководствоваться теми задачами, которые выполняет данный умножитель. Мощность источника высокого напряжения лимитируется рабочими фототоками. Особое внимание следует обратить на стабильность источника высокого напряжения.
 [21]

Различия, обусловленные, главным образом, наличием высоковольтных напряжений в цепях генераторного пентода, состоят лишь в режимах работы указанных схем.
 [23]

Экран кинескопа не светится, если на анод кинескопа не подается высоковольтное напряжение, вырабатываемое генератором строчной развертки. Наиболее часто это происходит при неисправности высоковольтного выпрямителя.
 [24]

В лаборатории используется ряд устройств, работающих от сетевого или даже высоковольтного напряжения. Все наружные металлические части, до которых можно дотронуться, следует заземлить, как предусмотрено соответствующими инструкциями. Электрододержатели должны находиться внутри закрытых штативов для возбуждения спектров. Дверцы этих штативов должны быть снабжены блокировкой, автоматически прерывающей сеть при их открывании. Если при анализе больших образцов нужно работать с открытым дуговым или искровым штативом, то противоэлектрод следует помещать в закрытое, электрически изолированное место, а анализируемый образец нужно соответственно заземлить ( разд. Генератор источника света должен иметь полностью закрытую конструкцию, а его дверца должна быть снабжена блокировкой.
 [25]

Помимо прочего трансформатор избавляет передатчик от порчи вследствие проникновения в кабель высоковольтного напряжения.
 [26]

Помимо прочего трансформатор избавляет перечатчик от порчи вследствие проникновения в кабель высоковольтного напряжения.
 [27]

Недостатком метода, ограничивающим возможности его применения, является необходимость работы с высоковольтным напряжением. При увеличении температуры обогреваемой поверхности, например при возникновении кризиса кипения, возможен электрический пробой.
 [29]

Работа аппарата основана на преобразовании напряжения питания 220 В частотой 50 Гц в высокочастотное знакопеременное быстрозатухающее высоковольтное напряжение с частотой следования 100 Гц, которое используется при контроле уровня изоляции. Принципиальная схема аппарата показана на рис. 51; основными узлами его являются: входное устройство, генератор высокочастотных колебаний, индикатор, киловольтметр. Конструктивно аппарат выполнен в виде блока, закрытого съемным металлическим кожухом.
 [30]

Страницы:  

   1

   2

   3

   4

   5




www.ngpedia.ru

Особенность выпрямления высоковольтного напряжения

В замечательных паспортных характеристиках лампы типа 6528 обязательно должна быть своя «ахиллесова пята». Для предотвращения разрушения поверхностного слоя катода производители специально оговорили в документации, что катоду требуется предварительное время прогрева в течение 30 с, перед тем как может быть подано высокое напряжение. Такие требования встречаются довольно часто при использовании более-менее мощных ламп. Для такого положения дел могло бы оказаться превосходным использование лампового выпрямителя. В рассматриваемой схеме необходим ток силой 120 мА (с небольшим запасом для предусилительного каскада, возможно, около 10 мА) и высоковольтное напряжение, не превышающее 300 В, поэтому наиболее подходящим для выпрямителя кажется использование лампы-кенотрона EZ81.

Однако на практике обычные ламповые выпрямители начинают пропускать ток спустя примерно 10 с после подачи напряжения, следовательно, необходима дополнительная задержка, которая может быть обеспечена тепловым реле задержки. Тепловое реле задержки похоже на обычную лампу и состоит из подогревателя и биметаллической пластины, размещенных в стеклянном вакуумном баллоне. Биметаллическая пластина состоит из двух скрепленных вместе полосок разнородных металлов, имеющих различные коэффициенты температурного расширения. При нагревании полосы начинают изгибаться, на подвижном конце пластины имеется контакт, замыкающий электрическую цепь. В вакуумированной колбе потери на образование электрической дуги при замыкании-размыкании контактов отсутствуют, поэтому потери на работу такого реле определяются, в основном, удельной теплоемкостью материалов биметаллической пластины и ее массой. Время задержки срабатывания теплового реле может быть увеличено почти до трехкратного значения, указанного в паспорте, снижением напряжения подогревателя биметаллической пластины.

Если контакты реле задержки включены в цепь источника питания подогревателя лампового выпрямительного кенотрона, то время задержки теплового реле прибавляется ко времени задержки начала работы самого кенотрона и высоковольтное напряжение начнет постепенно повышаться спустя примерно 5 с после истечения времени задержки, которое необходимо для нормальной работы выходной лампы. В других вариантах используется способность многих реле задержки переключать сетевое напряжение питания или высоковольтное напряжение, но для таких реле должна существовать незначительная разница между напряжением подогревателя биметаллической пластины и напряжением на подвижном контакте переключателя. К сожалению, автор не смог найти паспортные данные для теплового реле типа 6N045T, обнаруженного в своих старых запасах, однако по маркировке он установил, что напряжение подогревателя реле составляет 6,3 В, а реле способно обеспечить задержку в 45 с. Реле имело стеклянный корпус, выполненный на основе колбы для лампы с пуговичными выводами В9А, что позволяло без труда визуально определить назначение контактных выводов и затем произвести тестирование на основе сделанных ранее умозаключений. При напряжении питания 6,3 В подогреватель потреблял ток 300 мА, а контакты замыкались через 41 с.

При включении сетевого питания с силового трансформатора на ламповый выпрямитель одновременно подается как высоковольтное напряжение так и напряжение питания подогревателя, но так как подогреватель катода еще холодный, то катод подвергается вредному воздействию сильного поля, создаваемого анодным напряжением, что уменьшает его срок службы. Хотя размещение реле задержки в цепи подогревателя выпрямительной лампы обеспечивает ситуацию, при которой высоковольтное напряжение в цепях звукового канала медленно возрастает с нулевого значения, но это также означает, что всякий раз при включении усилителя выпрямительная лампа испытывает аналогичное вредное воздействие в течение дополнительных 45 с, что сокращает срок ее службы. Это является инженерным компромиссом: кенотрон типа EZ81 является менее дорогим жертвоприношением, чтобы обеспечить больший срок службы более дорогой лампы выходного каскада.

Высоковольтный силовой трансформатор

Чтобы обеспечить подачу высоковольтного напряжения 300 В в начало обмотки выходного трансформатора, был выбран ламповый выпрямитель, дополненный сглаживающим фильтром, содержащим дроссель. Следовательно, необходимо знать падение напряжение на резистивной составляющей сопротивления дросселя RDC В запасниках автора (а это большая часть целой комнаты) удалось обнаружить пару дросселей Pameko, имеющих индуктивность 15 Гн и рассчитанных на токи до 250 мА, значение сопротивления RDC которых составляло 136 Ом. Следовательно, падение напряжения на каждом дросселе при прохождении тока 130 мА составило бы 17 В. Это значение напряжения должно быть прибавлено к необходимому напряжению 300 В, что в сумме составит 317 В.

Вместо того, чтобы заниматься расчетами «с нуля», для определения необходимого значения напряжения на трансформаторе можно воспользоваться характеристиками изменения напряжения стабилизации на дросселе, приводимыми производителями выпрямителей. Интерполяция зависимостей, приводимых для выпрямителя Milliard на кенотроне EZ81, дает примерную величину среднеквадратического значения напряжения 375 В, которое соответствует требуемому значению постоянного напряжения 317 В.

Тщательный поиск в запасниках позволил обнаружить большой трансформатор с U-образным сердечником, имеющий пару обмоток на напряжения 375 В с выводом от средней точки и рассчитанных на токи 250 мА, а также многочисленные накальные обмотки на напряжения 6,3 В. Находка показалась идеальной, позволяющей осуществить сдвоенный вариант конструкции.

Применимость высоковольтного дросселя и проблемы сглаживания пульсаций

Так как номинальный ток дросселя составляет 250 мА, то он легко поддержит рассчитанное значение тока. Минимально необходимое значение тока составляет:

В итоге, всегда необходимо иметь достоверную информацию, оказался ли выбор имеющегося в наличии высоковольтного дросселя (например, как в данном примере с индуктивностью 15 Гн и рассчитанного на ток до 250 мА) оправданным и удовлетворяющим всем требованиям. Используя соотношения и считая, что используется напряжение промышленной частоты 50 Гц, можно рассчитать, величины протекающих через дроссель переменных составляющих тока:

Так как выходной каскад потребляет ток 120 мА, то это значение гораздо выше рассчитанного нижнего предельного значения.

Зная емкость сглаживающего конденсатора, можно оценить величину фона переменного тока, создаваемого высоковольтным выпрямителем. Автор проверил несколько полипропиленовых конденсаторов с емкостью 120 мкФ и рабочим напряжением 400 В из имеющихся в наличии. Расчет уровня фон дал следующее:

где величина индуктивности приведен в генри, а величина емкости — в микрофарадах.

Анодная нагрузка и эквивалентное сопротивление лампы rа образуют делитель напряжения, следовательно, напряжение пульсации на аноде составит:

Выходной трансформатор реагирует на переменное напряжение, приложенное к нему, в том числе и на напряжение пульсаций (фона) переменного тока. Следовательно, расчет дает величину напряжения фона, приложенного к выводам первичной обмотки выходного трансформатора: 56 мВ — 9,3 мВ = 47 мВ. При максимальной выходной мощности размах амплитуд выходного напряжения составляет 115 В среднеквадратического значения. Таким образом, 47 мВ соответствует уровню отношения сигнал/фон 68 дБ, что явно мало для громкоговорителя с высокой чувствительностью. Следовательно, необходима еще одна ступень (звено) фильтрования пульсаций.

Второе звено сглаживающего LC-фильтра, имеющего ослабление на частоте 100 Гц только 32 дБ, улучшит значение соотношения сигнал/фон до величины 100 дБ. 32 дБ соответствует сорокакратному отношению напряжений, поэтому делитель напряжений, образованный вторым LC фильтром, должен был бы иметь соотношение реактивных сопротивлений XL/XC 40. Если бы в наличии был еще один конденсатор с емкостью 120 мкФ, то с лихвой хватило бы дросселя с индуктивностью всего 1 Гн, рассчитанного на ток 130 мА.

Однако у автора не оказалось второй подходящей пары дросселей, и он понял, что конструкция усилителя становится все больше и тяжелее (даже по меркам ламповых усилителей). Хотя дополнительное увеличение массы вовсе не является привлекательной чертой любой разработки. Решить эту дилемму могло бы применение стабилизатора высоковольтного напряжения.

 

tubeamplifier-narod.ru