Плоский конденсатор фото – Картинки краткое устройство плоского конденсатора, Стоковые Фотографии и Роялти-Фри Изображения краткое устройство плоского конденсатора

Содержание

Плоский конденсатор. Заряд и емкость конденсатора.

Наряду с резисторами одними из наиболее часто используемых электронных компонентов являются конденсаторы. И в этой статье нам предстоит разобраться, из чего они состоят, как работают и для чего применяются 🙂

Давайте, в  первую очередь, рассмотрим устройство конденсаторов, а затем уже плавно перейдем к их основным видам и характеристикам, а также к процессам зарядки/разрядки. Как видите, нам сегодня предстоит изучить много интересных моментов 😉

Плоский конденсатор.

Итак, простейший конденсатор представляет из себя две плоские проводящие пластины, расположенные параллельно друг другу и разделенные слоем диэлектрика. Причем расстояние между пластинами должно быть намного меньше, чем, собственно, размеры пластин:

Такое устройство называется плоским конденсатором, а пластины – обкладками конденсатора. Стоит уточнить, что здесь мы рассматриваем уже заряженный конденсатор (сам процесс зарядки мы изучим чуть позже), то есть на обкладках сосредоточен определенный заряд. Причем наибольший интерес представляет тот случай, когда заряды пластин конденсатора одинаковы по модулю и противоположны по знаку (как на рисунке).

А поскольку на обкладках сосредоточен заряд, между ними возникает электрическое поле, изображенное стрелками на нашей схеме. Поле плоского конденсатора, в основном, сосредоточено между пластинами, однако, в окружающем пространстве также возникает электрическое поле, которое называют полем рассеяния. Очень часто его влиянием в задачах пренебрегают, но забывать о нем не стоит 🙂

Для определения величины этого поля рассмотрим еще одно схематическое изображение плоского конденсатора:

Каждая из обкладок конденсатора в отдельности создает электрическое поле:

  • положительно заряженная пластина (+q) создает поле, напряженность которого равна
  • отрицательно заряженная пластина (-q) создает поле, напряженность которого равна E_

Выражение для напряженности поля равномерно заряженной пластины выглядит следующим образом:

Здесь – это поверхностная плотность заряда: . А  – диэлектрическая проницаемость диэлектрика, расположенного между обкладками конденсатора. Поскольку площадь пластин конденсатора у нас одинаковая, как и величина заряда, то и модули напряженности электрического поля, равны между собой:

Но направления векторов разные – внутри конденсатора вектора направлены в одну сторону, а вне – в противоположные. Таким образом, внутри обкладок результирующее поле определяется следующим образом:

А какая же будет величина напряженности вне конденсатора? А все просто – слева и справа от обкладок поля пластин компенсируют друг друга и результирующая напряженность равна 0 🙂

Процессы зарядки и разрядки конденсаторов.

С устройством мы разобрались, теперь разберемся, что произойдет, если подключить к конденсатору источник постоянного тока. На принципиальных электрических схемах конденсатор обозначают следующим образом:

Итак, мы подключили обкладки конденсатора к полюсам источника постоянного тока. Что же будет происходить?

Свободные электроны с первой обкладки конденсатора устремятся к положительному полюсу источника, в связи с чем на обкладке возникнет недостаток отрицательно заряженных частиц и она станет положительно заряженной. В то же время электроны с отрицательного полюса источника тока переместятся ко второй обкладке конденсатора, в результате чего на ней возникнет избыток электронов, соответственно, обкладка станет отрицательно заряженной. Таким образом, на обкладках конденсатора образуются заряды разного знака (как раз этот случай мы и рассматривали в первой части статьи), что приводит к появлению электрического поля, которое создаст между пластинами конденсатора определенную разность потенциалов. Процесс зарядки будет продолжаться до тех пор, пока эта разность потенциалов не станет равна напряжению источника тока, после этого процесс зарядки закончится, и перемещение электронов по цепи прекратится.

При отключении от источника конденсатор может на протяжении длительного времени сохранять накопленные заряды. Соответственно, заряженный конденсатор является источником электрической энергии, это означает, что он может отдавать энергию во внешнюю цепь. Давайте создадим простейшую цепь, просто соединив обкладки конденсатора друг с другом:

В данном случае по цепи начнет протекать ток разряда конденсатора, а электроны начнут перемещаться с отрицательно заряженной обкладки к положительной. В результате напряжение на конденсаторе (разность потенциалов между обкладками) начнет уменьшаться. Этот процесс завершится в тот момент, когда заряды пластин конденсаторов станут равны друг другу, соответственно электрическое поле между обкладками пропадет и по цепи перестанет протекать ток. Вот так и происходит разряд конденсатора, в результате которого он отдает во внешнюю цепь всю накопленную энергию.

Как видите, здесь нет ничего сложного 🙂

Емкость и энергия конденсатора.

Важнейшей характеристикой является электрическая емкость конденсатора – физическая величина, которая определяется как отношение заряда конденсатора одного из проводников к разности потенциалов между проводниками:

Емкость изменяется в Фарадах, но величина 1 Ф является довольно большой, поэтому чаще всего емкость конденсаторов измерятся в микрофарадах (мкФ), нанофарадах (нФ) и пикофарадах (пФ).

А поскольку мы уже вывели формулу для расчета напряженности, то давайте выразим напряжение на конденсаторе следующим образом:

Здесь у нас – это расстояние между пластинами конденсатора, а – заряд конденсатора. Подставим эту формулу в выражение для емкости конденсатора:

Если в качестве диэлектрика у нас выступает воздух, то во всех формулах можно подставить

Для запасенной энергии конденсатора справедливы следующие выражения:

Помимо емкости конденсаторы характеризуются еще одним параметром, а именно величиной напряжения, которое может выдержать его диэлектрик. При слишком больших значениях напряжения электроны диэлектрика отрываются от атомов, и диэлектрик начинает проводить ток. Это явление называется пробоем конденсатора, и в результате обкладки оказываются замкнутыми друг с другом. Собственно, характеристикой, которая часто используется при работе с конденсаторами является не напряжение пробоя, а рабочее напряжение – то есть величина напряжения, при которой конденсатор может работать неограниченно долгое время, и пробоя не произойдет.

В общем, мы рассмотрели сегодня основные свойства конденсаторов, их устройство и характеристики, так что на этом заканчиваем статью, а в следующей мы будем обсуждать различные варианты соединений конденсаторов, так что заходите на наш сайт снова!

microtechnics.ru

конденсатор Фотографии, картинки, изображения и сток-фотография без роялти


#85556380 — HVAC Technician checking capacitor on air conditioner


Похожие изображения


Добавить в Лайкбокс

#15193348 — Complete set of electronic circuit symbols and resistor codes

Вектор


Похожие изображения


Добавить в Лайкбокс

#66300681 — Isometric Electronic components icons set. Electrical components..

Вектор


Похожие изображения


Добавить в Лайкбокс

#20892476 — seamless background of electrical circuit of radio device (resistance,..

Вектор


Похожие изображения


Добавить в Лайкбокс

#12495424 — Electric motor

Вектор


Похожие изображения


Добавить в Лайкбокс


#13885842 — close-up of electronic circuit board with processor


Похожие изображения


Добавить в Лайкбокс


#15549137 — Group of various electronic components


Похожие изображения


Добавить в Лайкбокс

#16561804 — Illustration of electrical circuit symbols drawn on chalkboard

Вектор


Похожие изображения


Добавить в Лайкбокс


#81307412 — Small electronics components on human finger


Похожие изображения

ru.123rf.com

Основные типы конденсаторов | Электрик

Электрический конденсатор — один из самых распространених радио элементов, служит он для накопления электроэнергии (заряда). Самый простой конденсатор можно представить в виде двух металлических пластин (обкладок) и диэлектрика который находится между ними.

Когда к конденсатору подключают источник напряжения, то на его обкладках (пластинах) появляются противоположные заряды и возникнет электрическое поле притягивающие их друг к другу, и даже после отключения источника питания, такой заряд остается некоторое время и энергия сохраняется в электрическом поле между обкладками.

В электронных схемах роль конденсатора также может состоять не только в накоплении заряда но и в разделения постоянной и переменной составляющей тока, фильтрации пульсирующего тока и разных других задачах.
В зависимости от задач и факторов работы, конденсаторы используются очень разных типов и конструкций. Здесь мы рассмотрим наиболее популярные типы конденсаторов.

Конденсаторы алюминиевые электролитические

Это может быть, например, конденсатор К50-35 или К50-2 или же другие более новые типы.
Они состоят из двух тонких полосок алюминия свернутых в рулон, между которыми в том же рулоне находится пропитанная электролитом бумага в роли диэлектрика.
Рулон находится в герметичном алюминиевом цилиндре, чтобы предотвратить высыхание электролита.
На одном из торцов конденсатора (радиальный тип корпуса) или на двух торцах которого (аксиальный тип корпуса) располагаются контактные выводы. Выводы могут быть под пайку либо под винт.


В электролитических конденсаторах емкость исчисляется в микрофарадах и может быть от 0.1 мкф до 100 000 мкф. Как правило большая емкость и характеризует этот тип конденсаторов.
Еще одним из важных параметров есть максимальное рабочее напряжение, которое всегда указывается на корпусе и в конденсаторах этого типа может быть до 500 вольт!


 Среди недостатков данного типа можно рассмотреть 3 причины:
1. Полярность. Полярные конденсаторы недопустимы с работой в переменном токе. На корпусе обозначаются соответствующими значками выводы конденсатора, как правило конденсаторы с одним выводом минусовой контакт имеют на корпусе, а плюсовой на выводе.
2. Большой ток утечки. Естественно такие конденсаторы не годятся для длительного хранения энергии заряда, но они хорошо себя зарекомендовали в качестве промежуточных элементов, в фильтрах активных схем и пусковых установках двигателей.
3.Снижение емкости с увеличением частоты. Такой недостаток легко устраняется с помощью параллельно подключенного керамического конденсатора с очень маленькой ёмкостью.

Керамические однослойные конденсаторы

Такие типы, например как К10-7В, К10-19, КД-2. Максимальное напряжения такого типа конденсаторов лежит в пределах 15 — 50 вольт, а ёмкость от 1 пФ до 0.47 мкф при сравнительно небольших размерах довольно не плохой результат технологии.
У данного типа характерны малые токи утечки и низкая индуктивность что позволяет им легко работать на высоких частотах, при постоянном, переменном и пульсирующих токах.
Тангенс угла потерь tgδ не превышает обычно 0,05, а максимальный ток утечки – не более 3 мкА.
Конденсаторы данного типа спокойно переносят внешние факторы, такие как вибрация с частотой до 5000 Гц с ускорением до 40 g, многократные механические удары и линейные нагрузки.

Маркировка на корпусе конденсатора обозначает его номинал. Три цифры расшифровываются следующим образом. Если две первые цифры умножать на 10 в степени третьей цифры, то получится значение емкости данного конденсатора в пф. Так, конденсатор с маркировкой 101 имеет емкость 100 пф, а конденсатор с маркировкой 472 — 4,7 нф. Для удобства составлены таблицы наиболее «ходовых» ёмкостей конденсаторов и их маркировочные коды.
Наиболее часто применяются в фильтрах блоков питания и как фильтр поглощающий высокочастотные импульсы и помехи.

Керамические многослойные конденсаторы

Например К10-17А или К10-17Б.
В отличии от вышеописанных, состоят уже из нескольких слоев металлических пластин и диэлектрика в виде керамики, что позволяет иметь им большую ёмкость чем у однослойных и может быть порядка нескольких микрофарад, но максимальное напряжение у данного типа все также ограничено 50 вольтами.
Применяются в основном как фильтрующие элементы и могут исправно работать как с постоянным так и с переменным и пульсирующим током.

Керамические высоковольтные конденсаторы

Например К15У, КВИ и К15-4
Максимальное рабочее напряжение данного типа может достигать 15 000 вольт! Но ёмкость у них небольшая, порядка 68 — 100 нФ.


Работают они как с переменным так и с постоянным током. Керамика в качестве диэлектрика создает нужное диэлектрическое свойство выдерживать большое напряжение, а особая форма защищает конструкцию от пробоя пластин.


Применение у них самое разнообразное, например в схемах вторичных источников питания в качестве фильтра для поглощения высокочастотных помех и шумов, или в конструирование катушек Тесла, мощной и ламповой радиоаппаратуре.

Танталовые конденсаторы

Например К52-1 или smd А. Основным веществом служит — пентоксид тантала, а в качестве электролита — диоксид марганца.

Твердотельный танталовый конденсатор состоит из четырех основных частей: анода, диэлектрика, электролита (твердого или жидкого) и катода.
По рабочим свойствам танталовые конденсаторы схожи с электролитическими, но рабочее максимальное напряжение ограничено 100 вольтами, а ёмкость как правило не превышает 1000 мкФ.
Но в отличии от электролитических, у данного типа собственная индуктивность намного меньше что дает возможность их использования на высоких частотах, до несколько сотен килогерц.


Основной причиной выхода из строя бывает превышение максимального напряжения.
Применение у них в большинстве наблюдается в современных платах электронных устройств, что возможно из за конструктивной особенности smd-монтажа.

Полиэстеровые конденсаторы

Например K73-17 или CL21, на основе металлизированной пленки…
Весьма популярные из за небольшой стоимости конденсаторы встречающиеся в почти всех электронных устройствах, например в балластах энергосберегающих ламп. Их корпус состоит из эпоксидного компаунда что придает конденсатору устойчивость к внешним неблагоприятным факторам, химическим растворам и перегревам.


Ёмкость таких конденсаторов идет порядка 1 нф — 15мкф и максимальное рабочее напряжение у них от 50 до 1500 вольт.
Большой диапазон максимального напряжения и ёмкости дает возможность использования полиэстеровых конденсаторов в цепях постоянного, переменного и импульсных токов.

Полипропиленовые конденсаторы

Например К78-2 и CBB-60.
В данного типа конденсаторов в качестве диэлектрика выступает полипропиленовая пленка. Корпус изготовлен из негорючих материалов, а сам конденсатор призначен для работы в тяжелых условиях.
Ёмкость, как правило в пределах 100пф — 10мкф, но в последнее время выпускают и больше, а по поводу напряжение то большой запас может достигать и 3000 вольт!

Преимущество этих конденсаторов заключается не только в высоком напряжении, но и в чрезвычайно низком тангенсе угла потерь, поскольку tg? может не превышать 0,001, что позволяет использовать конденсаторы на больших частотах в несколько сотен килогерц и применять их в индукционных обогревателях и пусковых установках асинхронных электродвигателей.

Пусковые конденсаторы (CBB-60) могут иметь ёмкость и до 1000мкф что стает возможным из за особенностей конструкции такого типа конденсаторов. На пластиковый сердечник наматывается металлизированная полипропиленовая пленка, а сверху весь этот рулон покрывается компаундом.

Максимальное напряжение у них сравнительно не большое, до 300 — 600 вольт что вполне достаточно для пуска и работы электродвигателей.
Выводы конденсатора могут быть как в виде проводов, так и под клеммы или под болт.

Цифровая маркировка конденсаторов

Цифро-буквенная маркировка конденсаторов

elektt.blogspot.com

Керамические конденсаторы: описание, виды

Что такое керамика? В обиходе так называют изделия, изготовленные методом обжига массы, в основном глины. В технике же под керамическими подразумевают материалы с подобной структурой, хотя глины в них вовсе нет, либо она присутствует в незначительном количестве. К ним можно отнести конденсаторную керамику, применяемую в качестве диэлектрика конденсаторов.

Керамические конденсаторы

Такие изделия отличаются высокими электрическими показателями, небольшими размерами и низкой стоимостью. Керамические конденсаторы широко применяются в контурах радиоаппаратуры. Они бывают с постоянной емкостью и подстроечными.

Виды конденсаторов с постоянной емкостью

Термостабильные керамические конденсаторы применяются в контурах генераторов и гетеродинов высокой стабильности. Для восстановления температуры используются термокомпенсирующие элементы. Особую группу составляют сегнето-керамические конденсаторы, в которых в качестве диэлектрика применяется сегнетокерамика – материал с очень высокой диэлектрической проницаемостью (до нескольких тысяч) в определенном интервале температур. Упомянутые изделия отличаются от высокочастотной керамики большей емкостью при одинаковых размерах.

Керамический трубчатый конденсатор (КТ-1, КТ-2) — это тонкостенная трубка, внешняя и внутренняя поверхности которой покрыты слоем серебра.

Конденсатор керамический дисковый (КД1, КД2) и дисковые сегнето-керамические модели (КДС1, КДС2, КДС3) представляют собой круглую керамическую пластину с обкладкой в виде тонких слоев серебра.

Керамический, опрессованный пластмассой боченочный элемент (КОБ1, КОБ2, КОБ3) – керамический цилиндрик, на основание которого также нанесены обкладки.

Цветовая гамма и её значение

Различные цвета, в которые окрашены изделия КТ, КДС, КД и др., обозначают стабильность их емкости при изменении температуры. Синяя, голубая и серая краска применяется в том случае, если емкость конденсатора на изменение температуры отреагирует незначительным образом. Такие элементы называются термостабильными. Красный и зеленый цвета означают, что при повышении температуры емкость изделий заметно уменьшится – это термокомпенсирующие конденсаторы. Оранжевый цвет свидетельствует о том, что в случае перемены температурного режима в широком диапазоне емкость изделия будет меняться довольно сильно (однако при комнатной температуре емкость остается стабильной).

Виды керамических подстроечных конденсаторов

Эти изделия предназначены для подгонки (подстройки) параметров колебательных контуров, еще их называют полупеременными. Кратко рассмотрим каждый из них.

Конденсатор подстроечный керамический (КПК) состоит из керамического основания (статора) и керамического же подвижного диска (ротора). Диск на оси прикреплен к статору, и его можно вращать при помощи отвертки. Серебряные обкладки, имеющие форму секторов, нанесены на плоскости обеих составляющих. Материал ротора является диэлектриком. При вращении изменяется взаимное расположение обкладок, соответственно, и емкость между ними.

Конденсатор подстроечный керамический трубчатый (КПКТ) – само название говорит о том, что рассматриваемое изделие имеет вид трубки. На её внутреннюю поверхность также нанесена тонкая серебряная неподвижная обкладка — металлический стержень с винтовой нарезкой. При вращении (достигается посредством отвертки) емкость изменяется за счет ввода или вывода стержня из трубки.

Емкость керамических конденсаторов

Еще 10-20 лет назад из-за трудностей, связанных с производством упомянутых конденсаторов, изделия относили к разряду приборов малой емкости. Совсем недавно керамический конденсатор 1 мкф никого не удивил бы, а вот элемент на 10 мкФ воспринимался как экзотика.

Но сегодня развитие технологий позволило некоторым производителям радиокомпонентов заявить о достижении лимита емкости в таких конденсаторах до 100 мкФ, но, как они заверяют, и это еще не предел.

fb.ru

типы, емкость, практика, полезные советы / Школа электрика / Коллективный блог

Конденсатор – электрическая цепь, содержащая две точки для соединения с другими цепями, с заданным значением емкости и небольшой проводимостью. Конденсатор – пассивный электронный компонент, который накапливает заряд и энергию электрического поля. Самая простая конструкция представляет собой два электрода в форме пластин (обкладки), разделенных диэлектриком с толщиной меньшей, чем размеры обкладок. На практике электрический конденсатор состоит из множества слоев диэлектрика и многослойных электродов.

Электрические конденсаторы используют в системах энергоснабжения для стабилизации электрической энергии в условиях переменного тока, для сглаживания пульсирующего тока, для устранения искрения контактов и радиопомех, для создания симметричного трехфазного напряжения и т.д.

Электрические параметры зависят от конструкции конденсатора и свойств используемых материалов. Чтобы правильно подобрать конденсатор для конкретного устройства, необходимо выяснить следующие параметры:

  1. Емкость,
  2. Рабочее напряжение (максимальное напряжение при длительной работе конденсатора без изменения свойств),
  3. Необходимую точность диапазон значений емкости,
  4. Температурный коэффициент емкости,
  5. Стабильность,
  6. Ток утечки диэлектрика при номинальном напряжении и заданной температуре.

Емкость конденсатора (С) определяют по формуле:,

где q ― заряд, накопленный в конденсаторе, U ― разность потенциалов между его электродами. Единица измерения в системе СИ ― фарад (Ф). В практике применяют микрофарад (мкФ) и пикофарад (пФ).

Емкость конденсатора зависит от электродов (форма и размер), их расположения и свойств диэлектрика, который разделяет электроды. Электродами могут быть плоские параллельные и цилиндрические пластины (рис. 1, а, б).

Емкость конденсатора можно проверить в домашних условиях, для этого понадобится компьютер со звуковой картой и программы C-ESR-метр.

Стабильность параметров конденсаторов может меняться с течением времени. Проверить качество конденсатора можно так:

Конденсаторы различают по возможности изменения емкости на:

  • постоянные – основной класс конденсаторов, не меняют емкости
  • переменные – возможно изменение емкости во время эксплуатации прибора
  • подстроечные – емкость изменяется только при регулировке и не меняется во время эксплуатации прибора

В зависимости от назначения конденсаторы разделяют на классы:

  • общего назначения, применяемые в большинстве приборов. Самые распространенные низковольтные конденсаторы, требования к ним минимальные.
  • специального назначения. Сюда входят импульсные, дозиметрические, помехоподавляюшие, высоковольтные, пусковые и т.д.

Конденсаторы бывают:

  • вакуумные,
  • с газообразным диэлектриком,
  • с жидким диэлектриком,
  • с твёрдым органическим диэлектриком (бумага, пленка, комбинированные),
  • с твердым неорганическим диэлектриком (керамика, стекло, неорганические пленки, слюда),
  • оксидно-полупроводниковые и электролитические конденсаторы. Это конденсаторы с очень большой удельной емкостью. Анодом здесь является оксидный слой на металле, изготовляют его из фольги алюминия, ниобия или тантала. В качестве катода служит электролит или полупроводник, который наносят на оксидный слой.

Электролитические конденсаторы обычно используют при возникновении необходимости в большой емкости. Здесь применяют специальную бумагу, которую пропитывают электролитом. Обкладки делают из алюминия или тантала.

Очень важно не ошибиться в полярности при подключении для избегания взрыва конденсатора.

На корпусе компонента производители всегда указывают знак «минус». Такие конденсаторы работают в сглаживающих фильтрах и разделительных цепях.

Керамические конденсаторы – это небольшой керамический диск, покрытый с двух сторон проводником. Такие конденсаторы используют в разделительных цепях.

Пленочные конденсаторы имеют более высокую емкость, которая достигается за счет принципа «многослойности», т.е. используют слои диэлектрика, которые чередуются со слоями обкладок. Диэлектриком здесь является тефлон, поликарбонат, металлизированная бумага, полиэстер, полипропилен. Бывают радиальные и аксиальные виды пленочных конденсаторов, они отличаются расположением обкладок и слоев диэлектрик. Такие конденсаторы применяют в высоковольтных источниках питания.

Слюдяные конденсаторы используют в устройствах воспроизведения звука, различных фильтрах и т.д. В качестве диэлектрика используют природный материал ― слюду, которая имеет как относительно высокую диэлектрическую проницаемость, так и электрическую и механическую прочность.

Расшифровка маркировки конденсатора:

МБМ – металлобумажный малогабаритный

КПК-М – подстроечный керамический малогабаритный

БМТ – бумажный малогабаритный теплостойкий

КТ – керамический трубчатый

МБГО – металлобумажный герметизированный однослойный

МБГЧ – металлобумажный герметизированный однослойный

ПСО – пленочный стирофлексный открытый

КЛС – керамический литой секционный

КД – керамический дисковый

КСО – слюдянной опресованный

МБГ – металлобумажный герметизированный

БМ – бумажный малогабаритный

КМ – керамический монолитный

МБГТ – металлобумажный герметизированный теплостойкий

ПМ – полистироловый малогабаритный

ПО – пленочный открытый

В таблицах 1-3 приведены данные об основных характеристиках конденсаторов разных типов.

Таблица 1. Керамические, электролитические и конденсаторы на основе металлизированной пленки: характеристики

Таблица 2. Слюдяные и конденсаторы с полиэстеровой и полипропиленовой основой: характеристики

Таблица 3. Слюдяные конденсаторы с поликарбонатной, полистиреновой и танталовой основой: характеристики

О цветовой маркировке конденсаторов

Корпус большинства конденсаторов имеет надпись с информацией об их номинальной емкости и рабочем напряжении. Но иногда можно встретить и цветовую маркировку.

На некоторых конденсаторах можно увидеть маркировочную надпись из двух строк. В первой строке содержится информация об их емкости (пФ или же мкФ) и точности (К = 10%, М 20%). Во второй строке – информация о допустимом постоянном напряжении, а также код материала диэлектрика.

Для монолитных керамических конденсаторов характерна маркировка кодом, который состоит из трех цифр. В этом коде третья цифра указывает на то, сколько нулей необходимо приписать к первым двум цифрам, чтобы узнать емкость в пикофарадах.

Так выглядит цветовой код, обозначающий номинал конденсатора

Пример 1. Что значит код 103, указанный на конденсаторе? Этот код означает, что к числу 10 необходимо дописать три нуля, чтобы получилась емкость конденсатора – это будет 10 000 пФ.
Пример 2. На конденсаторе стоит такая маркировка: 0,22/20 250. Это значит, что емкость данного конденсатора составляет 0,22 мкФ ± 20% и рассчитан он на постоянное напряжение 250 В.

Некоторые замечания и полезные советы. При работе с конденсаторами следует:

  • уменьшать рабочее напряжение при повышении температуры;
  • создавать большой запас прочности по напряжению;
  • обеспечить реальное рабочее напряжения около 0,5 допустимого значения;
  • принудительно понижать рабочие напряжения для частот выше 50-60 Гц или импульсных сигналов;
  • для повышения безопасности в цепь разряда следует подключить резистор, имеющий сопротивление 1 МОм параллельно конденсатору;
  • для выравнивания напряжений в высоковольтных цепях нужно подключить резистор, имеющий сопротивление в диапазоне 220 к0м ― 1 МОм, параллельно каждому конденсатору;
  • керамические проходные конденсаторы устанавливают непосредственно на корпус аппарата или металлический экран;
  • необходимо учитывать амплитуду импульса тока заряда, могущего в разы превосходить допустимое значение, чтобы не ошибиться с выбором конденсатора в качестве фильтра источника электропитания;
  • не допускать ошибок при определении полярности включения для использования электролитического конденсатора как разделительного;
  • электролитические конденсаторы взаимозаменяемы, внимание следует обращать на значение рабочего напряжения.
ВложениеРазмер
capacitor-01.JPG18.86 КБ
capacitor-02.JPG44.21 КБ
capacitor-03.JPG12.71 КБ
capacitor-04.JPG29.16 КБ
capacitor-08.JPG149.78 КБ

44kw.com

Электрический конденсатор — википедия фото

Основные параметры

Ёмкость

Основной характеристикой конденсатора является его ёмкость, характеризующая способность конденсатора накапливать электрический заряд. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками (q = CU). Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до тысяч микрофарад. Однако существуют конденсаторы (ионисторы) с ёмкостью до десятков фарад.

Ёмкость плоского конденсатора, состоящего из двух параллельных металлических пластин площадью S каждая, расположенных на расстоянии d друг от друга, в системе СИ выражается формулой C=εε0Sd{\displaystyle C={\tfrac {\varepsilon \varepsilon _{0}S}{d}}} , где ε{\displaystyle \varepsilon }  — диэлектрическая проницаемость среды, заполняющая пространство между пластинами (в вакууме равна единице), ε0{\displaystyle \varepsilon _{0}}  — электрическая постоянная, численно равная 8,854187817·10−12 Ф/м. Эта формула справедлива, лишь когда d намного меньше линейных размеров пластин.

Для получения больших ёмкостей конденсаторы соединяют параллельно. При этом напряжение между обкладками всех конденсаторов одинаково. Общая ёмкость батареи параллельно соединённых конденсаторов равна сумме ёмкостей всех конденсаторов, входящих в батарею.

 

C=∑i=1nCi{\displaystyle C=\sum _{i=1}^{n}C_{i}} 
или
C=C1+C2+…+Cn.{\displaystyle C=C_{1}+C_{2}+…+C_{n}.} 

Если у всех параллельно соединённых конденсаторов расстояние между обкладками и свойства диэлектрика одинаковы, то эти конденсаторы можно представить как один большой конденсатор, разделённый на фрагменты меньшей площади.

При последовательном соединении конденсаторов заряды всех конденсаторов одинаковы, так как от источника питания они поступают только на внешние электроды, а на внутренних электродах они получаются только за счёт разделения зарядов, ранее нейтрализовавших друг друга.
Общая ёмкость батареи последовательно соединённых конденсаторов равна

 

1C=∑i=1n1Ci⇒C=(∑i=1n1Ci)−1{\displaystyle {\tfrac {1}{C}}=\sum _{i=1}^{n}{\tfrac {1}{C_{i}}}\Rightarrow C={\begin{pmatrix}\sum _{i=1}^{n}{\tfrac {1}{C_{i}}}\end{pmatrix}}^{-1}} 
или
1C=1C1+1C2+…+1Cn.{\displaystyle {\tfrac {1}{C}}={\tfrac {1}{C_{1}}}+{\tfrac {1}{C_{2}}}+…+{\tfrac {1}{C_{n}}}.} 

Эта ёмкость всегда меньше минимальной ёмкости конденсатора, входящего в батарею. Однако при последовательном соединении уменьшается возможность пробоя конденсаторов, так как на каждый конденсатор приходится лишь часть разницы потенциалов источника напряжения.

Если площадь обкладок всех конденсаторов, соединённых последовательно, одинакова, то эти конденсаторы можно представить в виде одного большого конденсатора, между обкладками которого находится стопка из пластин диэлектрика всех составляющих его конденсаторов.

Удельная ёмкость

Конденсаторы также характеризуются удельной ёмкостью — отношением ёмкости к объёму (или массе) диэлектрика. Максимальное значение удельной ёмкости достигается при минимальной толщине диэлектрика, однако при этом уменьшается его напряжение пробоя.

Плотность энергии

Плотность энергии электролитического конденсатора зависит от конструктивного исполнения. Максимальная плотность достигается у больших конденсаторов, где масса корпуса невелика по сравнению с массой обкладок и электролита. Например, у конденсатора EPCOS B4345 с ёмкостью 12 000 мкФ, максимально допустимым напряжением 450 В и массой 1,9 кг плотность энергии при максимальном напряжении составляет 639 Дж/кг или 845 Дж/л.
Особенно важен этот параметр при использовании конденсатора в качестве накопителя энергии, с последующим мгновенным её высвобождением, например, в пушке Гаусса.

Номинальное напряжение

Другой не менее важной характеристикой конденсаторов является номинальное напряжение — значение напряжения, обозначенное на конденсаторе, при котором он может работать в заданных условиях в течение срока службы с сохранением параметров в допустимых пределах.

Номинальное напряжение зависит от конструкции конденсатора и свойств применяемых материалов. Эксплуатационное напряжение на конденсаторе должно быть не выше номинального.

Полярность

  Современные конденсаторы, разрушившиеся без взрыва благодаря специальной разрывающейся конструкции верхней крышки. Разрушение возможно из-за нарушения режима эксплуатации (температуры, напряжения, полярности) или старения. Конденсаторы с разорванной крышкой практически неработоспособны и требуют замены, а если она просто вздувшаяся, но ещё не разорвана, то, скорее всего, скоро он выйдет из строя или сильно изменятся параметры, что сделает его использование невозможным.

Многие конденсаторы с оксидным диэлектриком (электролитические) функционируют только при корректной полярности напряжения из-за химических особенностей взаимодействия электролита с диэлектриком. При обратной полярности напряжения электролитические конденсаторы обычно выходят из строя из-за химического разрушения диэлектрика с последующим увеличением тока, вскипанием электролита внутри и, как следствие, с вероятностью взрыва корпуса.

Опасность разрушения (взрыва)

Взрывы электролитических конденсаторов — довольно распространённое явление. Основной причиной взрывов является перегрев конденсатора, вызываемый в большинстве случаев утечкой или повышением эквивалентного последовательного сопротивления вследствие старения (актуально для импульсных устройств). В современных компьютерах перегрев конденсаторов частая причина выхода их из строя вследствие близкого расположения с источниками тепла, например, рядом с радиатором охлаждения.

Для уменьшения повреждений других деталей и травматизма персонала в современных конденсаторах большой ёмкости устанавливают вышибной предохранительный клапан или выполняют надсечку корпуса (часто её можно заметить в виде креста или в форме букв X, K или Т на торце цилиндрического корпуса, иногда, на больших конденсаторах, она покрыта пластиком). При повышении внутреннего давления вышибается пробка клапана или корпус разрушается по насечке, пары электролита выходят в виде едкого газа и, даже, брызг жидкости. При этом разрушение корпуса конденсатора происходит без взрыва, разбрасывания обкладок и сепаратора.

  Взорвавшийся электролитический конденсатор на печатной плате жидкокристаллического монитора. Видны волокна бумажного сепаратора обкладок и развернувшиеся фольговые алюминиевые обкладки.

Старые электролитические конденсаторы выпускались в герметичных корпусах и в конструкции их корпусов не предусматривалась взрывобезопасность. Скорость разлёта осколков при взрыве корпуса устаревших конденсаторов может быть достаточной для того, чтобы травмировать человека.

В отличие от электролитических, взрывоопасность оксиднополупроводниковых (танталовых) конденсаторов связана с тем, что такой конденсатор фактически представляет собой взрывчатую смесь: в качестве горючего служит тантал, а в качестве окислителя — двуокись марганца, и оба этих компонента в конструкции конденсатора перемешаны в виде тонкого порошка. При пробое конденсатора или при его случайной переполюсовке выделившееся при протекании тока тепло инициирует реакцию между данными компонентами, протекающую в виде сильной вспышки с хлопком, что сопровождается разбрасыванием искр и осколков корпуса. Сила такого взрыва довольно велика, особенно у крупных конденсаторов, и способна повредить не только соседние радиоэлементы, но и плату. При тесном расположении нескольких конденсаторов возможен прожог корпусов соседних конденсаторов, что приводит к одновременному взрыву всей группы.

Паразитные параметры

Реальные конденсаторы, помимо ёмкости, обладают также собственными последовательным и параллельным сопротивлением и индуктивностью. С достаточной для практики точностью, эквивалентную схему реального конденсатора можно представить как показано на рисунке, где все двухполюсники подразумеваются идеальными.

  Эквивалентная схема реального конденсатора и некоторые формулы.
C0 — собственная ёмкость конденсатора;
Rd — сопротивление изоляции конденсатора;
Rs — эквивалентное последовательное сопротивление;
Li — эквивалентная последовательная индуктивность.
  Зависимость модуля импеданса реального конденсатора от частоты и формула импеданса.

Электрическое сопротивление изоляции диэлектрика конденсатора, поверхностные утечки Rd и саморазряд

Сопротивление изоляции — это сопротивление конденсатора постоянному току, определяемое соотношением Rd = U / Iут, где U — напряжение, приложенное к конденсатору, Iут — ток утечки.

Из-за тока утечки, протекающего через слой диэлектрика между обкладками и по поверхности диэлектрика, предварительно заряженный конденсатор с течением времени теряет заряд (саморазряд конденсатора). Часто, в спецификациях на конденсаторы, сопротивление утечки определяют через постоянную времени T саморазряда конденсатора, которая численно равна произведению ёмкости на сопротивление утечки:

T=RdC0{\displaystyle T=R_{d}C_{0}} 

T — это время, за которое начальное напряжение на конденсаторе, неподключенном ко внешней цепи уменьшится в e раз.

Хорошие конденсаторы с полимерными и керамическими диэлектриками имеют постоянные времени саморазряда достигающие многих сотен тысяч часов.

Эквивалентное последовательное сопротивление — Rs

Эквивалентное последовательное сопротивление (ЭПС (англ. ESR), внутреннее сопротивление) обусловлено, главным образом, электрическим сопротивлением материала обкладок и выводов конденсатора и контакта(-ов) между ними, а также учитывает потери в диэлектрике. Обычно ЭПС возрастает с увеличением частоты тока, протекающего через конденсатор, вследствие поверхностного эффекта.

В большинстве практических случаев этим параметром можно пренебречь, но, иногда (напр., в случае использования электролитических конденсаторов в фильтрах импульсных блоков питания), достаточно малое его значение существенно для надёжности и устойчивости работы устройства. В электролитических конденсаторах, где один из электродов является электролитом, этот параметр при эксплуатации со временем деградирует, вследствие испарения растворителя из жидкого электролита и изменения его химического состава, вызванного взаимодействием с металлическими обкладками, что происходит относительно быстро в низкокачественных изделиях (см. Capacitor plague (англ.)).

Некоторые схемы (например, стабилизаторы напряжения) критичны к диапазону изменения ЭПС конденсаторов в своих цепях. Это связано с тем, что при проектировании таких устройств инженеры учитывают этот параметр в фазочастотной характеристике (ФЧХ) обратной связи стабилизатора. Существенное изменение со временем ЭПС применённых конденсаторов изменяет ФЧХ, что может привести к снижению запаса устойчивости контуров авторегулирования, и, даже, к самовозбуждению.

Существуют специальные приборы (ESR-метр (англ.)) для измерения этого достаточно важного параметра конденсатора, по которому можно часто определить пригодность его дальнейшего использования в определённых целях. Этот параметр, кроме собственно ёмкости (ёмкость — это основной параметр) — часто имеет решающее значение в исследовании состояния старого конденсатора и принятия решения, стоит ли использовать его в определённой схеме, или он прогнозируемо выйдет за пределы допустимых отклонений.

Эквивалентная последовательная индуктивность — Li

Эквивалентная последовательная индуктивность обусловлена, в основном, собственной индуктивностью обкладок и выводов конденсатора. Результатом этой распределенной паразитной индуктивности является превращение конденсатора в колебательный контур с характерной собственной частотой резонанса. Эта частота может быть измерена и обычно указывается в параметрах конденсатора либо в явном виде либо в виде рекомендованной максимальной рабочей частоты.

Тангенс угла диэлектрических потерь

Тангенс угла диэлектрических потерь — отношение мнимой и вещественной части комплексной диэлектрической проницаемости.
tgδ=εimεre=σωεa.{\displaystyle {\rm {{tg}\,\delta ={\frac {\varepsilon _{im}}{\varepsilon _{re}}}={\frac {\sigma }{\omega \varepsilon _{a}}}.}}} 

Потери энергии в конденсаторе определяются потерями в диэлектрике и обкладках. При протекании переменного тока через конденсатор векторы напряжения и тока сдвинуты на угол φ=π2−δ,{\displaystyle \scriptstyle \varphi ={\tfrac {\pi }{2}}-\delta ,}  где δ — угол диэлектрических потерь. При отсутствии потерь δ = 0. Тангенс угла потерь определяется отношением активной мощности Pа к реактивной Pр при синусоидальном напряжении определённой частоты. Величина, обратная tg δ, называется добротностью конденсатора. Термины добротности и тангенса угла потерь применяются также для катушек индуктивности и трансформаторов.

Температурный коэффициент ёмкости (ТКЕ)

ТКЕ — относительное изменение ёмкости при изменении температуры окружающей среды на один градус Цельсия (кельвин). ТКЕ определяется так:

TKE=ΔCCΔT{\displaystyle TKE={\frac {\Delta C}{C\Delta T}}} .

где ΔC{\displaystyle \Delta C}  — изменение ёмкости, вызванное изменением температуры на ΔT{\displaystyle \Delta T} .
Таким образом, изменение ёмкости от температуры (при не слишком больших изменениях температуры) выражается линейной функцией:

C(T)=CH.y.+TKE⋅CH.y.⋅ΔT,{\displaystyle \scriptstyle C(T)=C_{H.y.}+TKE\cdot C_{H.y.}\cdot \Delta T,} ,

где ΔT{\displaystyle \Delta T}  — изменение температуры в °C или К относительно нормальных условий, при которых специфицировано значение ёмкости, CH.y.{\displaystyle C_{H.y.}}  — ёмкость при нормальных условиях.
TKE применяется для характеристики конденсаторов с практически линейной зависимостью ёмкости от температуры. Однако ТКЕ указывается в спецификациях не для всех типов конденсаторов.

Для конденсаторов, имеющих существенно нелинейную зависимость ёмкости от температуры и для конденсаторов с большими изменениями ёмкости от воздействия температуры окружающей среды в спецификациях нормируются относительное изменение ёмкости в рабочем диапазоне температур или в виде графика зависимости ёмкости от температуры.

Диэлектрическая абсорбция

Если заряженный конденсатор быстро разрядить до нулевого напряжения путём подключения низкоомной нагрузки, а затем снять нагрузку и наблюдать за напряжением на выводах конденсатора, то мы увидим, что напряжение на обкладках снова появится как если бы мы разрядили конденсатор не до нуля. Это явление получило название диэлектрическая абсорбция (диэлектрическое поглощение). Конденсатор ведёт себя так, словно параллельно ему подключено множество последовательных RC-цепочек с различной постоянной времени. Интенсивность проявления этого эффекта зависит в основном от свойств диэлектрика конденсатора.

Подобный эффект можно наблюдать практически на всех типах диэлектриков. В электролитических конденсаторах он особенно ярок и является следствием химических реакций между электролитом и обкладками. У конденсаторов с твердым диэлектриком (например, керамических и слюдяных) эффект связан с остаточной поляризацией диэлектрика. Наименьшим диэлектрическим поглощением обладают конденсаторы с неполярными диэлектриками: тефлон (фторопласт), полистирол, полипропилен и т. п.

Эффект зависит от времени зарядки конденсатора, времени закорочения, иногда от температуры. Количественное значение абсорбции принято характеризовать коэффициентом абсорбции, который определяется в стандартных условиях.

Особое внимание в связи с эффектом следует уделять измерительным цепям постоянного тока: прецизионным интегрирующим усилителям, устройствам выборки-хранения, некоторым схемам на переключаемых конденсаторах.

Паразитный пьезоэффект

Многие керамические материалы, используемые в качестве диэлектрика в конденсаторах (например, титанат бария, обладающий очень высокой диэлектрической проницаемостью в не слишком сильных электрических полях) проявляют пьезоэффект — способность генерировать напряжение на обкладках при механических деформациях. Это характерно для конденсаторов с пьезоэлектрическими диэлектриками. Пьезоэффект ведёт к возникновению электрических помех, в устройствах, где использованы такие конденсаторы при воздействии акустического шума или вибрации на конденсатор. Это нежелательное явление иногда называют «микрофонным эффектом».

Также подобные диэлектрики проявляют и обратный пьезоэффект — при работе в цепи переменного напряжения происходит знакопеременная деформация диэлектрика, генерирующая акустические колебания, порождающие дополнительные электрические потери в конденсаторе.

Самовосстановление

Конденсаторы с металлизированным электродом (бумажный и пленочный диэлектрик) обладают важным свойством самовосстановления (англ. self-healing, cleaning) электрической прочности после пробоя диэлектрика. Механизм самовосстановления заключается в отгорании металлизации электрода после локального пробоя диэлектрика посредством микродугового электрического разряда.

org-wikipediya.ru

Плоский конденсатор: формулы, особенности, конструкция

Плоский конденсатор – физическое упрощение, взявшее начало из ранних исследований электричества, представляющее собой конструкцию, где обкладки носят форму плоскостей и в любой точке параллельны.

Формулы

Люди ищут формулы, описывающие ёмкость плоского конденсатора. Читайте ниже любопытные и малоизвестные факты, сухие математические знаки также важны.

Первым определил ёмкость плоского конденсатора Вольта. В его распоряжении ещё не было величины — разница потенциалов, именуемая напряжением, но интуитивно учёный правильно объяснил суть явления. Величину количества зарядов трактовал как объем электрического флюида атмосферы – не совсем правильно, но похоже на правду. Согласно озвученному мировоззрению ёмкость плоского конденсатора находится как отношение объёма накопленного электрического флюида к разнице атмосферных потенциалов:

С = q/U.

Формула применима к любому конденсатору, вне зависимости от конструкции. Признана универсальной. Специально для плоских конденсаторов разработана формула ёмкости, выраженная через свойства материала диэлектрика и геометрические размеры:

В этой формуле через S обозначена площадь обкладок, вычисляемая через произведение сторон, а d – показывает расстояние между обкладками. Прочие символы – электрическая постоянная (8,854 пФ/м) и диэлектрическая проницаемость материала диэлектрика. Электролитические конденсаторы обладают столь большой ёмкостью по понятной причине: проводящий раствор отделен от металла крайне тонким слоем оксида. Следовательно, d оказывается минимальным. Единственный минус — электролитические конденсаторы полярные, их нельзя подключать в цепи переменного тока. С этой целью на аноде или катоде обозначены значками плюса или минуса.

Плоские конденсаторы сегодня редко встречаются, это преимущественно плёночные микроскопические технологии, где указанный род поверхностей считается доминирующим. Все пассивные и активные элементы образуются через трафарет, образуя вид плёнок. Плоские индуктивности, резисторы и конденсаторы наносятся в виде токопроводящих паст.

От материала диэлектрика зависит ёмкость, у каждого собственная структура. Считается, что аморфное вещество состоит из неориентированных диполей, упруго укреплённых на своих местах. При приложении внешнего электрического поля они обратимо ориентируются вдоль силовых линий, ослабляя напряжённость. В результате заряд накапливается, пока процесс не прекратится. По мере выхода энергии из обкладок диполи возвращаются на места, делая возможным новый рабочий цикл. Так функционирует плоский электрический конденсатор.

Конденсатор для уроков

Из истории

Первым начал исследовать накопление заряда великий Алессандро Вольта. В докладе Королевскому научному обществу за 1782 год впервые озвучил слово конденсатор. В понимании Вольты электрофорус, представляющий две параллельные обкладки, выкачивал из эфира электрический флюид.

В давнее время все познания сводились к мнению учёных, будто атмосфера Земли содержит нечто, не определяемое приборами. Присутствовали простейшие электроскопы, способные определить знак заряда и его наличие, не дававшие представления о количестве. Учёные просто натирали мехом поверхность тела и подносили для исследования в область влияния прибора. Гильберт показал, что электрические и магнитные взаимодействия ослабевают с расстоянием. Учёные примерно знали, что делать, но исследования не продвигались.

Гипотеза об атмосферном электричестве высказана Бенджамином Франклином. Он активно исследовал молнии и пришёл к выводу, что это проявления прежней единой силы. Запуская воздушного змея в небо, он соединял игрушку шёлковой нитью с землёй и наблюдал дуговой разряд. Это опасные опыты, и Бенджамин многократно рисковал собственной жизнью ради развития науки. Шёлковая нить проводит статический заряд — это доказал Стивен Грей, первый собравший в 1732 году электрическую цепь.

Уже через 20 лет (1752 год) Бенджамин Франклин предложил конструкцию первого громоотвода, осуществлявшего молниезащиты близлежащих построек. Только вдуматься! – прежде любой ожидал, что дом сгорит от случайного удара. Бенджамин Франклин предложил один вид заряда называть положительным (стеклянный), а второй отрицательным (смоляной). Так физики оказались введены в заблуждение относительно истинного направления движения электронов. Но откуда возьмётся иное мнение, когда в 1802 году на примере опытов россиянина Петрова увидели, что на аноде образуется ямка? Следовательно, положительные частицы переносили заряд на катод, но в действительности это оказались ионы воздушной плазмы.

К началу исследования Вольтой электрических явлений уже известны статические заряды и факт наличия у них двух знаков. Люди упорно считали, что «флюид» берётся из воздуха. На эту мысль натолкнули опыты с натиранием янтаря шерстью, не воспроизводимые под водой. Следовательно, логичным стало предположить, что электричество может происходить исключительно из атмосферы Земли, что, конечно же, неверно. К примеру, многие растворы, исследованные Хампфри Дэви, проводят электрический ток.

Причина, следовательно, иная – при натирании янтаря под водой силы трения снижались в десятки и сотни раз, а заряд рассеивался по объёму жидкости. Следовательно, процесс лишь оказывался неэффективным. Сегодня каждый добытчик знает, что нефть электризуется трением о трубы без воздуха. Следовательно, атмосфера для «флюида» не считается обязательным компонентом.

Самый большой в мире плоский конденсатор

Столь систематизированные, но в корне неверные толкования не остановили Вольту на исследовательском пути. Он упорно изучал электрофорус, как совершенный генератор того времени. Вторым был серный шар Отто фон Герике, изобретённый на век раньше (1663 год). Его конструкция мало менялась, но после открытий Стивена Грея заряд начали снимать при помощи проводников. К примеру, в электрофорной машине применяются металлические гребёнки-нейтрализаторы.

Долгое время учёные раскачивались. Электрофорная машина 1880 года вправе считаться первым мощным генератором разряда, позволявшим получить дугу, но истинной силы электроны достигли в генераторе Ван де Граафа (1929 год), где разница потенциалов составила единицы мегавольта. Для сравнения — грозовое облако, согласно данным Википедии, обнаруживает потенциал относительно Земли в единицы гигавольт (на три порядка больше, чем в человеческой машине).

Суммируя сказанное, с определённой долей уверенности скажем, что природные процессы используют в качестве принципа действия электризацию трением, влиянием и прочие виды, а мощный циклон считается самым большим из известных плоских конденсаторов. Молния показывает, что случается, когда диэлектрик (атмосфера) не выдерживает приложенной разницы потенциалов и пробивается. В точности аналогичное происходит в плоском конденсаторе, созданном человеком, если вольтаж оказывается непомерным. Пробой твёрдого диэлектрика необратим, а возникающая электрическая дуга часто служит причиной расплавления обкладок и выхода изделия из строя.

Электрофорус

Итак, Вольта взялся за исследование модели природных процессов. Первый электрофорус появился в 1762 году сконструированный Йоханом Карлом Вильке. По-настоящему популярным прибор становится после докладов Вольты Королевскому научному обществу (середина 70-х годов XVIII века). Вольта дал прибору нынешнее название.

Вид электрофоруса

Электрофорус способен накапливать электростатический заряд, образованный трением резины куском шерсти. Состоит из двух плоских, параллельных друг другу обкладок:

  • Нижняя представляет тонкий кусок резины. Толщина выбирается из соображений эффективности устройства. Если выбрать кусок солиднее, значительная часть энергии станет накапливаться внутри диэлектрика на ориентацию его молекул. Что отмечается в современном плоском конденсаторе, куда диэлектрик помещается для увеличения электроёмкости.
  • Верхняя пластина из тонкой стали кладётся сверху, когда заряд уже накоплен трением. За счёт влияния на верхней поверхности образуется избыток отрицательного заряда, снимаемого на заземлитель, чтобы при расстыковке двух обкладок не произошло взаимной компенсации.

Принцип действия плоского конденсатора уже понятен. Оператор трёт резину шерстью, оставляя на ней отрицательный заряд. Сверху кладётся кусок металла. Из-за значительной шероховатости поверхностей они не соприкасаются, но находятся на расстоянии друг от друга. В результате металл электризуется влиянием. Электроны отталкиваются поверхностным зарядом резины и уходят на внешнюю плоскость, где оператор их снимает через заземлитель лёгким кратковременным прикосновением.

Низ металлической обкладки остаётся заряженным положительно. При расстыковке двух поверхностей этот эффект сохраняется, в материале наблюдается дефицит электронов. И заметно искру, если дотронуться до металлической обкладки. Этот опыт допускается на единственном заряде резины проделывать сотни раз, её поверхностное статическое сопротивление крайне велико. Это не даёт заряду растекаться. Демонстрируя описанный опыт, Вольта привлёк внимание научного мира, но исследования не двигались вперёд, если не считать открытий Шарля Кулона.

В 1800 году Алессандро даёт толчок развитию изысканий в области электричества, изобретя знаменитый гальванический источник питания.

Конструкция плоского конденсатора

Электрофорус представляет собой первый из сконструированных плоских конденсаторов. Его обкладки способны хранить только статический заряд, иначе наэлектризовать резину невозможно. Поверхность чрезвычайно долго хранит электроны. Вольта даже предлагал снимать их пламенем свечи через ионизированный воздух или ультрафиолетовым излучением Солнца. Сегодня каждый школьник знает, что явление проделывается водой. Правда, электрофорус потом потребуется высушить.

В современном мире нижней обкладкой служит тефлоновое покрытие или пластик. Они хорошо набирают статический заряд. Диэлектриком становится воздух. Чтобы перейти к конструкции современного конденсатора, нужно обе обкладки сделать металлическими. Тогда при возникновении на одной заряда электризация распространится на вторую, и если другой контакт заземлён, накопленная энергия хранится определённое время.

Конструкция в деталях

Запас электронов напрямую зависит от материала диэлектриков. К примеру, среди современных конденсаторов встречаются:

  1. Слюдяные.
  2. Воздушные.
  3. Электролитические (оксидные).
  4. Керамические.

В эти названия заложен материал диэлектрика. От состава зависит напрямую ёмкость, способная увеличиваться многократно. Роль диэлектриков объяснялась выше, их параметры определяются непосредственно строением вещества. Однако многие материалы, обладающие высокими характеристиками, использовать не удаётся по причине их непригодности. К примеру, вода характеризуется высокой диэлектрической проницаемостью.

vashtehnik.ru