По какой формуле определяют силу тока – Основные электротехнические формулы. Мощность. Сопротивление. Ток. Напряжение. Закон Ома.

Содержание

Формула силы тока

ОПРЕДЕЛЕНИЕ


Сила тока определяется как отношение количества заряда, прошедшего через какую-то поверхность, ко времени прохождения.

   

В формуле – сила тока, – количество заряда, – время.

Единица измерения силы тока – А (ампер).

Обычно под поверхностью, через которую прошёл заряд, понимают сечение проводника. В цепях с постоянным током силу тока находят по закону Ома:

   

Где – напряжение, – сопротивление проводника. Прибор, которой используется для измерения силы тока, называют амперметром.

Примеры решения задач по теме «Сила тока»

ПРИМЕР 1




ЗаданиеНайти силу тока в проводнике, если за 50 сек через него прошёл заряд 43 кКл.
РешениеНапомним, что кКл = Кл. Подставим численные значения в формулу:

   

ОтветСила тока была равна 860 Ампер.

ПРИМЕР 2




ЗаданиеЧерез сечение проводника за 1 минуту прошёл заряд 10 Кл. Найти сопротивление участка цепи, если напряжение в нём 50 В.
РешениеНайдём силу тока через заряд:

   

По закону Ома:

   

Сопоставим формулы:

   

Подставим числа:

(Ом)

ОтветСопротивление цепи равно 300 Ом.



Понравился сайт? Расскажи друзьям!



ru.solverbook.com

Формула тока. По какой формуле можно найти, вычислить силу электрического тока.

 

 

 

Тема: как рассчитать силу тока, зная напряжение и сопротивления по закону Ома.

 

Электрический ток, это именно та сила, которая течет во всей электротехники заставляя ее работать. Но сводить все к простому течению электротока по электрическим цепям в схемах неразумно, должна быть какая-то мера, определенная величина этой силы тока. Ведь если в электрической схеме пойдет слишком большой ток по проводникам, которые на него не рассчитаны, то просто эта схема выгорит. Из школьных уроков мы помним, что существуют так называемые формулы, которые и позволяют вычислять конкретные неизвестные величины имея при этом известные.

 

Вот самая базовая, наиболее используемая формула тока, по которой и вычисляется эта самая сила тока. В ней всего лишь три электрических величины (базовые электрические величины) — ток, напряжение и сопротивление.

 

 

Итак, сила тока на схемах обычно обозначается большой английской буквой «I». Единицей измерения тока является «Ампер». Формула тока звучит следующим образом — электрический ток равен отношению напряжения (разности потенциалов) к сопротивлению. То есть, чтобы найти силу тока нам нужно просто напряжение разделить на сопротивление. Единицей измерения электрического напряжения является «Вольт», а сопротивления «Ом». Следовательно, известные вольты делим на известные омы и получаем ранее неизвестные амперы.

 

 

Эта же формула еще называется законом Ома. Она помогает найти из двух известных величин третью, которая неизвестна. Чтобы найти напряжение, то нужно силу тока перемножить на сопротивление, а для нахождения сопротивления нужно будет напряжение разделить на силу тока. Все достаточно просто. Данная формула тока подходит и для постоянного тока и для переменного, но именно с активным сопротивлением. То есть, по ней можно рассчитать те электрические цепи (участки цепей в схемах), которые содержать сопротивления в виде обычных нагревателей, резисторов, лампочек (не имеющих индуктивную и емкостную составляющую). Индуктивностью обладают все катушки, а емкостью обладают все конденсаторы (они уже имеют реактивное сопротивление и рассчитываются по другой формуле).

 

Если говорить о формуле тока, которая ближе к научной сфере, то она уже будет иметь вид немного другой. Электрический ток изначально выражается как отношение количества электрических зарядов ко времени их прохождения через проводник.

 

 

Электрический ток это упорядоченное движение электрических зарядов (в твердых телах это электроны, а в жидких и газообразных телах это ионы). Так вот ток, это непосредственное движение этих зарядов и, естественно, что он определяется их количеством и временем течения. Электрические заряды измеряются в «Кулонах», ну а время в «секундах». Следовательно, чтобы узнать силу электрического тока нужно количество зарядов разделить на время их прохождения. То есть, кулоны делим на секунды и получаем амперы.

 

Повторюсь, что на практике при измерении и вычислении силы тока пользуются именно формулой закона Ома, поскольку приходится использовать при расчетах напряжение и сопротивление. Именно они повсеместно будут встречаться в электрических схемах той или иной электротехники. Никаких кулонов (количества зарядов) вы при своей работе электриком не увидите!

 

 

Ну, и поскольку выше я затронул тему реактивного сопротивления, то пожалуй приведу формулу для нахождения силы тока именно для цепей, содержащих индуктивное и емкостное сопротивление.

 

 

По данной формуле можно найти силу тока, которая будет течь в электрической цепи с переменным, синусоидальным напряжением и содержащая реактивное сопротивление в виде катушки (индуктивности) или конденсатора (емкости). Думаю вы заметили, что в приведенной формуле изменился лишь тип сопротивления. Сама же основа — это все та же формула закона Ома, что была приведена в самом начале. Просто тут для нахождения индуктивного и емкостного сопротивления уже используются такие величины как частота, емкость и индуктивность, ну и еще «ПИ», которое равно 3,14.

 

P.S. Формулу электрического тока вы просто обязаны знать наизусть (если вы конечно электрик или электронщик). Формула закона Ома будет вам полезна очень много раз. Как только нужно найти силу тока, напряжение или сопротивление (зная любые две величины из трех) вы быстро и без проблем сразу подставляете числа в эту формулу и вычислите неизвестные электрические величины.

 

 

electrohobby.ru

Что такое сила тока — пояснения и формулы

Движение заряженных частиц в проводнике в электротехнике называется электрическим током. Электроток не характеризуется только прошедшим через проводник значением количества электрической энергии, так как за 60 минут через него может пройти электричество равное 1 Кулону, но и такое же количество электричества можно пропустить через проводник за одну секунду.

Что такое сила тока

Когда рассматривается количество электричества, протекающее через проводник за разные интервалы времени, понятно, что за меньший промежуток времени ток течет интенсивней, поэтому в характеристику электротока вводится еще одно определение — это сила тока, которая характеризуется протекающим в проводнике током за секунду времени. Единицей измерения величины силы проходящего тока в электротехнике принят ампер.

Иными словами, сила электрического тока в проводнике — это количество электричества, которое прошло через его сечение за секунду времени, маркировка литерой I. Силу тока измеряют в амперах — это единица измерения, которая равняется силе неизменяющегося тока, проходящего по бесконечным параллельным проводам с наименьшим круговым сечением, удаленным друг от друга на 100 см и расположенным в вакууме, который вызывает взаимодействие на метре длины проводника силой = 2*10 минус 7 степени Ньютона на каждые 100 см длины.

Специалисты часто определяют величину проходящего тока, на Украине (сила струму) она равна 1 амперу, когда через сечение проводника проходит каждую секунду 1 кулон электричества.

Формула определения силы тока:


Формула определения силы тока

В электротехнике можно увидеть частое применение других величин в определении значения силы проходящего тока: 1 миллиампер, который равен единица/ Ампер, 10 в минус третьей степени Ампер, один микроампер — это десять в минус шестой степени Ампер.

Зная количество электричества, прошедшее через проводник за определенный промежуток времени, можно вычислить силу тока (как говорят на Украине — силу струму) по формуле:


Формула силы тока

Когда электрическая цепь замкнута и не имеет ответвлений, тогда в каждом месте ее поперечного сечения протекает за секунду одинаковое количество электричества. Теоретически это объясняется невозможностью накапливания электрических зарядов в каком либо месте цепи, по этой причине сила тока везде одинакова.


Правило постоянства электрического тока в замкнутой цепи

Данное правило справедливо и в сложных цепях, когда есть ответвления, но относится к некоторым участкам сложной цепи, которые можно рассматривать в виде простой электроцепи.

Как измеряется сила тока

Величину силы тока измеряют прибором, который называется амперметр, а также для небольших значений — миллиамперметр и микроамперметр, который можно увидеть на фото внизу:


Амперметр
Основы

Среди людей бытует мнение, что когда измеряется сила тока в проводнике до нагрузки (потребителя), то значение будет выше, чем после нее. Это ошибочное мнение, основанное на том, что якобы какое-то значение силы будет расходоваться на то, чтобы привести потребитель в действие. Электроток в проводнике — это процесс электромагнитный, в котором участвуют заряженные электроны, они направленно двигаются, но энергию передают не электроны, а электромагнитное поле, которое окружает проводник.

Количество электронов, вышедших из начала цепи, будет равно количеству электронов и после потребителя в конце цепи, они не могут быть израсходованы.


Измерение силы тока

Какие проводники бывают? Специалисты дают определение понятию «проводник» — это материал, в котором частицы, имеющие заряд, могут перемещаться свободно. Такие свойства на практике имеют почти все металлы, кислота и солевой раствор. А материал или вещество, в котором движение заряженных частиц затруднено или вообще невозможно, называются изоляторами (диэлектриками). Часто встречающиеся материалы-диэлектрики — это кварц или эбонит, искусственный изолятор.

Вывод

На практике современное оборудование работает с большими величинами тока, до сотни, а то и тысячи ампер, а также и с малыми значениями. Примером в повседневной жизни величины тока в разных приборах может быть электрическая плита, где она достигает значения в 5 А, а простая лампа накаливания может иметь величину 0,4 А, в фотоэлементе величина проходящего тока измеряется в микроамперах. В линиях городского общественного транспорта (троллейбус, трамвай) значение проходящего тока достигает 1000 А.

Похожие статьи:

domelectrik.ru

Формула тока. Как найти ток. Вычисляем и определяем ток по формуле закона Ома.

 

 

 

Тема: Как вычислить ток по формуле. Находим силу тока по формуле Ома и мощности.

 

Основополагающей формулой для нахождения силы тока является классический закон Ома, который гласит, что сила тока равна напряжение деленное на сопротивление. И эта основополагающая формула любого электрика и электроника, которая постоянно используется для быстрого вычисления силы тока той или иной цепи. Из любых двух известных величин закона Ома (это ток, напряжение и сопротивление) всегда можно найти третью. В случае нахождения напряжения мы перемножаем ток на сопротивление, ну а при вычислении тока или сопротивления всегда напряжение делим на ту величину, которая известная (сила тока или сопротивление).

 

Стоит сказать, что данная формула тока подходит как для переменного, так и для постоянного тока. Хотя для переменного имеются некоторые нюансы. А именно: это случаи, когда мы используем активную нагрузку (нагреватели, лампочки). Формула тока показывает зависимость напряжения, сопротивления, и собственно силы тока.

 

Поскольку немаловажной характеристикой, используемой в области электричества, является также электрическая мощность, то для нахождения силы тока применять можно и её. Электрическая мощность, это произведение силы тока на напряжение. И чтобы найти силу тока необходимо мощность поделить на известное напряжение. Например, нам известна мощность нагревательного элемента, которая равна 880 Вт. Мы также знаем напряжение, что будет подаваться на него, равное 220 В. Нам нужно найти силу тока, которая будет протекать по цепи питания данного нагревателя. Для этого мы просто 880 ватт делим на 220 вольт, что даст на силу тока в 4 ампера.

 

 

Теперь как можно вычислить по формуле тока (по закону Ома) этот самый ток зная напряжение и сопротивление. Итак, у нас всё то же напряжение 220 вольт, и есть тот же нагревательный элемент. Мы мультиметром, тестером измеряем сопротивление элемента (у нагревателя с мощностью 880 ватт и рассчитанного на напряжение 220 вольт оно будет 55 ом). И что бы найти силу тока мы напряжение 220 вольт делим на сопротивление нагревателя 55 ом, в итоге получаем всю ту же силу тока в 4 ампера.

 

Просто нужно хорошо запомнить эти две формулы тока (его нахождение через мощность и через сопротивление с известным напряжением). Тогда вы быстро и без труда в голове сможете вычислять как силу тока электрической цепи, так и любые другие электрические величины (напряжение, сопротивление, мощность).

 

 

Ну, а если вы больше практик, тогда просто берите в руки измерители и меряйте. Напомню, напряжение мы измеряем параллельным прикладыванием щупов тестера, мультиметра к контактам, на которых будет измерять величину разности потенциалов. Силу тока же мы меряем уже путем разрыва цепи, где нужно измерить силу тока, то есть разрываем электрическую цепь в начале (поближе к источнику питания) и между этим разрывом подсоединяем щупы нашего измерителя тока (амперметра). Не забывайте, что переменный ток должен соответствовать своему положению на переключателе тестера, а постоянный своему месту (иначе вы получите неверные значения измеряемого тока).

P.S. Для лучшего запоминания закона Ома вы просто держите в голове, что при делении напряжение всегда в верху, то есть если по закону Ома мы находим напряжение, то перемножаем ток на сопротивление, ну в двух других случаях (при нахождении сопротивления или тока) мы всегда напряжение делим на известную величину, получая вторую, которая ранее была неизвестна.

 

electrohobby.ru

физические формулы, использующие мощность и напряжение

При выборе какого-либо электрического оборудования одним из важных параметров, на который обращается внимание, является мощность изделия. Этот параметр неразрывно связан с силой тока и напряжением. Чтобы рассчитать силу тока, напряжение или мощность в электрической цепи, используются несложные формулы. Но чтобы осмысленно проводить такие вычисления, желательно понимать физическую природу возникновения этих величин.

Физическое понятие величин

Любая электрическая цепь характеризуется рядом параметров. Наиболее важными из них являются сила тока, напряжение, мощность и сопротивление. Эти характеристики связаны между собой и зависят друг от друга. Явление, объединяющее их, называется электричеством.

Это понятие было введено ещё в 1600 году английским физиком Уильямом Гилбертом, изучающим магнитные и электрические явления. Исследуя магнетизм в природе, учёный установил, что некоторые тела при трении начинают обладать силой притяжения по отношению к другим предметам, в частности, к янтарю. Поэтому он и назвал открытое явление ēlectricus, что в переводе с латинского обозначает «янтарный».

Продолжая его исследования, немецкий физик Отто фон Герике в 1663 году изобрёл электрическую машину, которая представляла собой металлический стержень с одетым на него серным шаром. В результате он выяснил, что материалы могут не только притягивать вещества, но и отталкивать. Но только через восемьдесят лет американец Бенджамин Франклин создал теорию электричества, введя такие термины, как отрицательный и положительный заряд.

Дальнейшее развитие электричество получило после опытов Шарля Кулона и открытия им закона взаимодействия зарядов. Заключался он в следующем: сила влияния двух точечных зарядов друг на друга в вакууме прямо пропорциональна их произведению и обратно пропорциональна расстоянию между ними в квадрате. После этого благодаря экспериментам таких учёных, как Джоуль, Ленц, Ом, Ампер, Фарадей, Максвелл были введены понятия ток, напряжение и электромагнетизм.

Так, в 1897 году англичанин Джозеф Томсон установил, что носителями зарядов являются электроны. Ранее, в 1880 году, электротехник из России Дмитрий Лачинов сформулировал необходимые условия для передачи электричества на расстояния.

После этих открытий были выработаны фундаментальные определения электричества. Сегодня под ним понимаются свойства материалов образовывать вокруг себя электрическое поле, оказывающее воздействие на располагающиеся рядом другие заряженные частицы. Заряды условно принято разделять на положительные и отрицательные. При их перемещении возникает магнитное поле, при этом одинакового знака заряды притягиваются, а разного — отталкиваются.

Сила тока

Ток — это упорядоченное движение носителей заряда, происходящее под влиянием электрического поля. В качестве положительно заряженных частиц выступают электроны, а отрицательных — дырки. Математически это явление описывается с помощью формулы I = Q*T, где I — ток проводимости (А), Q — заряд частицы (Кл), T — время ©.

То есть электрическим током называется количество зарядов, прошедших через поперечное сечение вещества. Но эта формулировка верна только для тока постоянной величины, в то время как для изменяемого во времени она будет выглядеть I (T) = dQ/dT.

Плотность движения носителей заряда в материале, то есть количество электричества, проходящего за условно принятое время, называется силой тока. Согласно Международной системе (СИ) его единицей измерения является ампер. Один ампер равен перемещению электрического заряда, равного одному кулону, через поперечное сечение за одну секунду.

Носители заряда могут двигаться как упорядоченно, так и хаотично. При их движении возникает электрическое поле, обозначаемое латинской буквой E. Значение, определяющееся отношением тока к поперечному сечению проводника, называется плотностью тока. За единицу её измерения принимается А/мм2.

По своему виду ток различают на следующие типы:

  1. Переноса. Характеризуется движением зарядов, осуществляемым в свободном пространстве. Этот тип характерен для газоразрядных приборов.
  2. Смещения. Возникает в диэлектриках и определяется упорядоченным перемещением связанных заряженных частиц.
  3. Полный. Определяется суммарным значением тока: проводимости, переноса и смещения.
  4. Постоянный. Это такой вид, который может изменять величину, но не изменяет направление движения, то есть свой знак.
  5. Переменный. Такого вида ток может изменяться как по величине, так и по направлению (знаку).

Переменный вид разделяется по форме и может быть синусоидальным и несинусоидальным. Для расчёта силы тока синусоидальной формы используется формула Is = Ia*sin ωt, где Ia — максимальное значение тока (A), ω — угловая скорость, равная 2πf (Гц).

Физические тела, в которых возможно протекание тока, называют проводниками, а в тех, где возникают препятствия его прохождению — диэлектриками. Промежуточное состояние между ними занимают полупроводники.

Разность потенциалов

Напряжением принято называть физическую величину, характеризующую электрическое поле. Она показывает, какую работу понадобится совершить полю для того, чтобы переместить единичный заряд из одной точки в другую. При этом принимается, что этот перенос не влияет на распределение зарядов в источнике поля. Согласно Международной системе единиц напряжение измеряется в вольтах.

Работа по переносу складывается из двух величин — электрических и сторонних. Если сторонние силы не действуют, то напряжение на участке цепи равно разности потенциалов и вычисляется по формуле U = φ1-φ2. При этом потенциал определяется отношением напряжённости электрического поля к заряду. Для его расчёта используют формулу φ = W/q.

Другими словами, это характеристика поля в определённой точке, не зависящей от величины заряда, находящегося в нём. То есть напряжение в общем случае определяется работой электростатического поля, возникающего при движении заряда вдоль его силовых линий. Математически его можно рассчитать по формуле U = A/q, где А — совершаемая работа по перемещению (Дж), q — энергия заряда (Кл).

Применительно к сети переменного тока для напряжения используются следующие понятия:

  1. Мгновенное. Это значение физической величины, измеренное в конкретный момент времени: U = U (t). Для синусоидального сигнала мгновенное напряжение находится с помощью выражения U (t) = Ua sin (ὤt + φ).
  2. Амплитудное. Характеризуется наибольшей величиной мгновенного значения без учёта знака: Ua = max (U (t)).
  3. Среднее. Определяется за полный период сигнала по формуле Us = 1/T ʃ U (t)*dt. Для синусоидальной формы это значение равно нулю.

Проводя расчёт напряжения, редко используется понятие электрического потенциала. Связано это с тем, что условно принято за одну из точек потенциала принимать землю.

Это значение берётся равным нулю, а все остальные потенциалы считаются относительно неё. Говоря, что напряжение в определённой точке составляет 300 вольт, имеется в виду разность потенциалов между этой точкой и землёй, равная этому значению.

Электрическая мощность

Электрическая мощность характеризует скорость передачи электрической энергии или её преобразование. Единицей её измерения является ватт. Для того чтобы посчитать мощность на определённом участке цепи, необходимо перемножить значение напряжения и силы тока на этом участке. Исходя из определения электрического напряжения, можно сказать, что заряд при движении совершает работу, численно равную ей на участке цепи. Если же умножить работу на количество зарядов, то можно найти общее значение работы, которую совершили заряды на этом участке.

Исходя из физического определения, что мощность — это работа за единицу времени, получается выражение P = A/Δt, где A — работа, совершаемая зарядом при перемещении от начальной точки к конечной (Дж), Δt — время, затраченное на полное перемещение заряда ©.

Для всех зарядов в цепи мощность можно найти благодаря формуле P = (U/ Δt) * Q, где Q — общее число зарядов.

Так как ток представляет собой заряд, протекающий в единицу времени (I = Q/ Δt), то получается, что мощность равна произведению тока на напряжение, то есть P = U*I (Вт).

В цепи с постоянным током его сила и напряжение всегда имеют постоянное значение в определённой точке, поэтому для любого момента времени мощность можно вычислить по формуле P = I*U = I2*R = U2/R, где R — сопротивление прохождению тока в электрической цепи (Ом). Если же в этой сети находится источник электродвижущей силы, то мощность находится как P = I*E+ I2*r, где Е — электродвижущая сила или ЭДС (В), r — внутреннее сопротивление источника ЭДС (Ом).

Для цепи, в которой её параметры изменяются по какому-то циклу, мощность в определённой точке интегрируется по времени. При этом существуют следующие виды мощности:

  1. Активная. Для её нахождения используется расчёт, учитывающий угол сдвига фаз φ. Находится согласно формуле P = U*I*cos φ.
  2. Реактивная. Характеризуется нагрузками, создаваемыми электрическими устройствами в виде колебаний энергии электромагнитного поля. Её вычисление осуществляется по формуле P = U*I*sin φ.
  3. Полная. Определяется произведением действующих значений тока и напряжения, связана с другими видами мощности выражением S= √(P 2 +Q 2).

Закон Ома для цепи

Проводя расчёты мощности по напряжению и току на практике, часто используют закон Ома. Он устанавливает связь между током, сопротивлением и напряжением. Этот закон был открыт путём проведения Симоном Омом ряда экспериментов и сформулирован им в 1826 году. Он выяснил, что величина тока на участке цепи прямо пропорциональна разности потенциалов и обратно пропорциональна сопротивлению этого участка.

Закон Ома можно записать в следующем виде: I = U/R, где I — значение силы тока (А), U — разность потенциалов (В), R — сопротивление цепи прохождению тока (Ом).

Для полной же цепи эту формулу можно записать так: I = E/(R+ r0), где E — ЭДС источника питания (В), r0 — внутреннее сопротивление источника напряжения (Ом).

Таким образом, для участка цепи будет справедливо выражение P = U2/R = I2R, а для полной цепи — P = (E/(R+ R0))2*R. Именно эти две формулы и используются чаще всего для расчётов электрических сетей или мощности необходимого оборудования.

Различные компоненты электрической сети в определённый момент времени потребляют разную величину тока. Поэтому очень важно правильно рассчитать, какое количество энергии подводится в тот или иной момент в определённое место цепи, чтобы не допустить перегрузок на линии и возникновения аварийных ситуаций.

Этим и занимаются разработчики схем, упрощая их до состояния, когда можно рассчитать необходимую мощность, используя закон Ома.

Практический расчёт

Например, пусть понадобится узнать, на какой ток необходимо приобрести устанавливаемый на участок цепи автоматический выключатель. При этом известно, что в линию, на которой он будет установлен, одновременно будут включаться холодильник с максимальной мощностью потребления энергии один киловатт, бойлер (два киловатта) и люстра, потребляющая 90 ватт. В месте установки используется однофазная сеть, рассчитанная на рабочее напряжение 220 вольт.

На первом этапе расчёта понадобится суммировать всю мощность подключаемых к линии электроприборов. Так, P общ. = 1000 + 2000 + 90 +220 = 3310 Вт. Используя формулу P = I*U, находится необходимое значение тока: I = P/U = 3310/220 = 15,04 А.

Из стандартного ряда выключателей наиболее близкое значение имеет автомат на 16 А. Поскольку необходимо покупать устройство защиты с небольшим запасом, то для рассматриваемого примера подойдёт выключатель, рассчитанный на 20 ампер.

Благодаря таким вычислениям можно рассчитать любой параметр электрической цепи, но это при учёте достаточного количества вводных данных.


220v.guru

Сила тока формула? — Полезная информация для всех

  • Мгновенное значение электрического тока:

    i=dq/dt

    Т.е. равна производной заряда по времени..

    Для постоянного тока

    I=Q/t

    количество заряда в кулонах, прошедшее через проводник за определнный отрезок времени, т.е. это физическое определение силы тока..

    Эта формула используется обычно для задания размерности силы тока 1A=1Кл/1с (ампер равен кулон за секунду)

    Для цепей постоянного тока сила тока определяется законом Ома:

    I=U/R,

    где U-электрическое напряжение на концах рассматриевого проводника (Вольт),

    R-электрическое сопротивление проводника по постоянному току (Ом)..

    Если на рассматриваемом участке имеется источник ЭДС E, то закон Ома описывается в более обобщнной форме:

    I=(U-E)/R

    Для цепей переменного тока:

    I=U/Z,

    где I,U,Z-соответственно комплексные ток, напряжение и сопротивление цепи..

  • Сила тока в приближенном для простого человека виде ( всем известный закон Ома ):

    Сила тока в проводнике прямопропорциональна приложенному напряжению, и обратно пропорционально удельному сопротивлению проводника.

    I=U:R

  • Лично мне знакомы две формулы силы тока из школьной программы, одна из них через напряжение и сопротивление проводника тока.Так называемый, закон Ома

    Вторая через количество электричества и время

    Обе формулы верны, так что дерзайте..

  • Сила тока (I) — это физическая величина, определяется как отношение количества заряда q (измеряется в Кулонах), который проходит через имеющуюся поверхность за определенный промежуток времени, к этому самому определенному промежутку времени t (измеряется в секундах). Формула выглядит как I=q/t.

    Часто поверхность представляет собой поперечное сечение проводника тока.

    Измеряется сила тока в Амперах, А.

    Если определять силу тока исходя из закона Ома, то она прямо пропорциональна напряжению на этом участке цепи U и обратно пропорциональна сопротивлению проводника R на этом участке.

    В виде формулы это выглядит как I=U/R.

  • I=дельтаQдельтаt

    Сила тока физическая величина I, равная отношению количества заряда Delta Q, прошедшего через некоторую поверхность за время Delta t, к величине этого промежутка времени .

    I=UR — напряжение делить на сопротивление .

  • Формула имеет такой вид, то есть соотношение такого вида:

    Где:

    I — это сила тока в проводнике, эта величина измеряется в Амперах (А),

    q — это заряд, который протекает по проводнику, измеряется он в Кулонах (Кл),

    t — это время прохождения заряда, измеряют в секундах (с).

  • info-4all.ru

    способы на практике узнать значение с помощью приборов и расчетных формул

    Передвижение положительно заряженных частиц, движущихся в едином направлении, в физике называют силой тока. По своей сути это физическая величина, демонстрирующая заряд, происходящий в определенное время через специальный проводник. Найти силу тока можно несколькими способами. Первый — это расчет величины по выведенным готовым формулам при наличии первоначальных данных. Второй — это использование специальных измерительных приборов.

    Зачем нужна сила тока

    Работа любой электротехники напрямую связана с физической величиной заряженных частиц. Знание того, как найти силу тока, позволяет понимать нюансы работы такого оборудования, отдельной цепи либо схемы. Расчет подобного значения у настоящего профессионала не вызовет особых трудностей, а вот у начинающих электриков это может вызвать некоторые проблемы. Для этого стоит знать определенные расчетные формулы или иметь под рукой специальный измерительный прибор.

    По своей сути различают несколько разновидностей тока — это постоянный (содержащийся в аккумуляторных батарейках) и переменный (находящийся в розетке). Именно второй вид отвечает за освещение в помещении, работу электроприборов. Особенность переменного тока заключается в быстрой передаче и трансформации, ярким примером тому может служить работа люминесцентных лампочек (движение токовых частиц при включении).

    Расчет величины по формулам

    Так как самым распространенным видом тока, использующимся в быту, является переменный, то для его расчета используется известная каждому школьнику формула расчета «Закон Ома». Выглядит она следующим образом — I = U / R (найти ток можно, разделив напряжение на сопротивление), где:

    • I — это переменное токовое значение;
    • U — это напряжение;
    • R — это сопротивление.

    Из этой формулы тока можно вывести и другие, не менее полезные вычисления, позволяющие определить другие значения, имея только фактические показатели двух других величин (R = U / I и U = I * R). При расчете рекомендуется использовать основные единицы измерения — амперы, вольты и омы. Данная расчетная формула чаще всего используется для вычисления силы в цепях с активной нагрузкой, например, нагревательных приборах, электрочайниках, светодиодах и т. д.

    В других же случаях используется иная вычислительная формула, содержащая в себе мощность и напряжение. Выглядит она следующим образом — I = P / U. Также сила тока рассчитывается по формуле I = q / t, где q — это заряд, идущий по проводнику, измеряющийся в кулонах, а t — это время прохождения электрического заряда, вычисляющееся в секундах.

    Вычисление значений приборными системами

    Помимо формул при отсутствии четких показателей необходимых значений используются специальные приборные системы. Преимущество такого метода заключается в быстроте и точности получаемых данных, минус — в необходимости покупать требуемые устройства. К основным способам, как определить силу тока, стоит отнести:

    • Магнитоэлектрический метод вычисления, отличающийся высокой чувствительностью, точностью показаний, минимальным потреблением электроэнергии. Используется он зачастую для определения значения силы постоянного тока.
    • Электромагнитный, основным вычислительным элементом которого становится магнитомодульный датчик, на который из магнитного поля поступает сигнал. Таким способом можно узнать силу постоянного и переменного тока.
    • Косвенный, где по старинке используется вольтметр, определяющий показания напряжения на определенном сопротивлении.

    Стоит отметить, что подобные методы редко применяются самими электрикам, так как они отнимают много времени. Гораздо проще использовать специальные приборы, а не приборные системы.

    Измерение амперметром

    Самым простым способом узнать силу тока является измерение показаний амперметром. Особенности его использования заключаются в подключении прибора к разрывам электрической цепи. Для этого выбирается подходящее место, после чего остается дождаться, когда на экране амперметра высветится значение силы тока (заряда), прошедшего через кабельное сечение через определенное время.

    Помимо классического прибора используются похожие на них аналоги, предназначенные для того, чтобы быстро найти силу тока малого электричества — это миллиамперметры, микроамперметры, гальванометры. Процедура подключения установки мало чем отличается от обычных измерительных приборов, их нужно зафиксировать на том участке цепи, где требуется узнать значение заряда. Подключение осуществляется несколькими методами — последовательным и параллельным. Условно весь процесс можно разделить на несколько этапов:

    1. подготовка прибора, из которого выходит провод с двумя кабелями питания;
    2. выставление необходимого измерительного диапазона на вычислительной установке;
    3. прикладывание одного щупа к проводу питания прибора;
    4. подключение второго щупа к любому контакту электропитания;
    5. подсоединение оставшегося провода ко второму щупу;
    6. включение измерительного прибора;
    7. получение величины токовой силы, показанной на измерителе.

    При измерении токовой силы нельзя забывать о том, что особую роль в этом деле играет его вид (переменный либо постоянный). Особое внимание следует уделить постоянному типу тока, например, если внутри устройства установлен блок питания, снижающий сетевое напряжение до меньших значений.

    В таком случае необходимо измерять токовую силу в той части цепи, где установлен выпрямляющий мост диодов.

    Немаловажную роль в измерении играет напряжение, в таком случае измерительные щипы прибора прикладываются не к разрыву цепи, а к параллельным контактам электропитания. Тут также стоит уделить внимание типу напряжения, которое бывает переменным и постоянным.


    220v.guru