Ппп на 160 метров – Кв приемник на 160 метров

Кв приемник на 160 метров

Кв приемник на 160 метров предназначен для приема любительских радиостанций, работающих в диапазоне 1,8 МГц, но, изменив параметры входного и гетеродинного контуров его можно перестроить на любой другой диапазон. В таблице 1 приведены изменения для работы в диапазонах 3,5 МГц, 7 МГц, 14 МГц, 21 МГц и 28 МГц. Схема кв приемник на 160 метров выполнен на двух микросхемах, – TDA1072E и LM386.

Микросхема TDA1072E предназначена для схемы АМ-радиовещательного супергетеродинного приемника. Здесь на ней выполнен супергетеродинный приемный тракт радиостанций с SSB. Ширина полосы и промежуточная частота зависит от электромеханического фильтра, соответственно, 3 кГц и 500 кГц. Полоса -верхняя боковая. Сигнал от антенны поступает на входной контур L1-C1-C2. Контур настроен на середину диапазона. Связь с антенной оптимизируется емкостным трансформатором на С1 и С2. Входной с катушки связи L2 поступает на симметричный вход преобразователя частоты микросхемы А1 через выводы 15 и 14.

Контур гетеродина подключен к выводам 12 и 11 микросхемы А1. Перестройка в диапазоне производится изменением частоты гетеродина с помощью переменного конденсатора СЗ, который входит в состав гетеродинного контура L3-C5-C4-С3. Конденсатор С4 ограничивает перекрытие по емкости переменного конденсатора до необходимой величины.

Выход смесителя – вывод 1, с него сигнал суммарно-разностных частот поступает на контур L4-C12, настроенный на 500 кГц, и с катушки связи L5 на электромеханический фильтр Q1 типа ФЭМ-018-500-ЗВ. Выделение боковой полосы и основная селективность – ложится на этот фильтр.

С выхода фильтра сигнал поступает на УПЧ микросхемы А1 через вывод 3. Вместо детекторного контура АМ-детектора, на вывод 5 поступает сигнал частотой 500 кГц от генератора опорной частоты на транзисторе VT1. Частота генератора задается кварцевым резонатором Q2 на частоту 500 кГц. В результате, АМ-детектор микросхемы А1 работает как SSB-демодулятор. Суммарная и разностная частоты выделяются на выводе 6 -выходе амплитудного детектора микросхемы А1. Суммарную частоту подавляет простейший фильтр C16-R7-C17. Выделенный НЧ сигнал поступает на резистор R8 – регулятор громкости, и далее на УНЧ на микросхеме А2. УНЧ на микросхеме А2 нагружен миниатюрным динамиком В1.

Питается кв приемник на 160 метров от батарейного источника напряжением 9V. В приемнике использованы резисторы МЯТ 0,125 (или импортные аналоги), конденсаторы типа К50-35, КМ, КТ, К10-7 и другие аналогичные. Переменный конденсатор типа КПВ-2 с воздушным диэлектриком и редуктором. Из его трех секций используется только одна. Транзистор КТ3102 с любым буквенным индексом. Катушки L4 и L5 намотаны на каркасе от малогабаритного советского приемника с AM-диапазоном и частотой ПЧ 465 кГц. Катушка L4 содержит 60 витков провода ПЭВ 0,12, катушка L5 содержит 15 витков провода ПЭВ 0,12. Для контурных катушек входного и гетеродинного контуров использованы полистироловые каркасы диаметром 7 мм с подстроечными сердечниками из карбонильного железа, с резьбой.

Катушка L1 содержит 80 витков провода ПЭВ 0,12. Катушка связи L2 намотана на её поверхность ближе к середине катушка. Катушка L2 содержит 10 витков провода ПЭВ 0,12.

Катушка L3 почти такая же как L1, только у неё нет катушки связи. Кв приемник на 160 метров можно сделать и на любой другой диапазон, изменив параметры входного и гетеродинного контуров.

В таблице 1 приведены изменения для работы на частотах в диапазонах 3,5 МГц, 7 МГц, 14 МГц, 21 МГц и 28 МГц.

Можно сделать кв приемник на 160 метров на другой диапазон или на несколько диапазонов. В этом случае можно сделать переключатель контуров, например, на основе галетного переключателя, либо сделать что-то вроде сменных картриджей. На основной плате поставить разъем, в который включать отдельные платы-блоки, с расположенными на них контурами для соответствующего диапазона. При отсутствии электромеханического фильтра можно сделать фильтр из двух пьезокерамических фильтров на 455 кГц от карманных приемников, включив их последовательно. При этом кварцевый резонатор Q2 должен будет быть тоже на 455 кГц. Но селективность, в таком варианте, будет существенно ниже, чем с электромеханическим фильтром, а полоса шире.

varikap.ru

Приемник на 160 метров, схема

Приемник на 160 метров для наблюдения за работой
любительских станций в 160-метровом диапазоне радиоволн можно изготовить на микросхеме ТЕА5570. Описываемый здесь приемник может принимать как телеграфные сигналы так сигналы SSB. Принцыпиальная
схема приемника на 160 метров приведена на рисунке 1.

Принятый антенной сигнал через катушку связи L1 поступает на двухконтурный полосовой фильтр L2, C4, C7, L3, C9 и через катушку связи L4 поступает на
микросхему DA1. Там сигнал усиливается и преобразуется в промежуточную частоту. Затем сигнал ПЧ с выхода микросхемы поступает на кварцевый фильтр собранный на резонаторах ZQ1-ZQ4 и усиливается
транзистором VT1. Далее сигнал с выхода VT1 поступает на следующий каскад усилителя промежуточной частоты выполненного внутри микросхемы DA1. Затем сигнал поступает на микросхему DA2 которая
содержит двойной балансный смеситель и гетеродин. С выхода DA2 сигнал звуковой частоты поступает на УЗЧ выполненный на микросхеме
DA4.

Катушки L1-L6 намотаны на полистироловых каркасах диаметром 5 мм с подстроечниками из карбонильного железа от магнитопроводов CБ-12. Катушки L2 и L3 содержат 50 витков провода ПЭВ-2 0,1. Катушки
связи L1 и L4 намотаны таким же проводом и содержат по 5 витков. Катушка L5 намотана на каркасе диаметром 8 мм с подстроечным ферритовым подстроечником М100НН-2С 2,8*7,2 и содержит 14 витков с
отводом от 3-го витка. Трансформатор Т1 изготовлен на кольцевом магнитопроводе К7*4*2  из феррита с магнитной проницаемостью 600 — 1000. Первичная обмотка содержит 20 витков, вторичная 10
витков провода ПЭВ-2 0,25. Перед намоткой обмоток трансформатора ферритовое кольцо необходимо обернуть одним слоем лакоткани.

 

В приемнике применены кварцевые резонаторы на частоту 8,867238 МГц. При налаживании приемника на 160 метров необходимо подбором конденсатора C14 установить границы перестройки гетеродина в
пределах 10672-10862 кГц.

radio-ostrovok.jimdo.com

Слопер 160 метров — Антенны КВ

Основная моя КВ антенна на данный момент — несимметричный вибратор (длина 42 м), перекрывает хорошо 80, 40 и 15, посредственно — 20м. На ВЧ планируется поворотная, а вот 160 оставался не охваченным. А тут зазуделось…
Тип антенны целиком определяется местоположением — 9-этажный дом, ориентированный по линии юг-север с окнами на запад и большим открытым пространством туда же. То есть, слоппер.
Возле дороги стоят столбы освещения, на один из которых я и хотел подцепиться. Но в процессе отказался от этой мысли (из-за деревьев) и прицепился на дорожный знак.

Материал — полевка, преобразование сопротивлений (у антенны 200 Ом) — трансформатор. Выбирал между ШПТЛ и классическим, намотал оба, первым поставил классический (К28*16*9, 250НН, мотал 20 витков тремя скрученными в жгут проводами из UTP-5, один первичка, два остальных последовательно — вторичка.)
Изоляторы, подсмотренные в инете:

Попробовал новую технологию изолирования паек. На пайку наносится термоклей (модифицированный полиэтилен, «китайские сопли»), чуть обжимается влажными пальцами до цилиндрической колбаски и на него надевается термоусадка. При прогреве термоклей внутри плавится, термоусадка ужимается и капли клея выдавливаются наружу. Видно на фото.

На этот узел надел пластиковую бутылку (еще один супер универсальный предмет нашего времени) без дна.

Вот и вся конструкция.
Только не спрашивайте меня о земле, мне будет стыдно сознаваться, что я использовал конструкционную землю здания :). Прокладка своего заземления запланирована на это лето, оцинковка 4 мм для этого уже заготовлена. Но проблема проникновения в подвал пока не решена.

На всю подвеску потратил около часа (три выхода к столбику и три выхода на крышу), грубый промер КСВ показал примерно то, что я и хотел — минимум примерно на 1870, на 2000 примерно 1,5. Попытка пообщаться пока не удалась. Жду ночи.

RА9ОЕG


Поделитесь записью в своих социальных сетях!


При копировании материала обратная ссылка на наш сайт обязательна!

ra1ohx.ru

Антенны на диапазон 160 метров

Предлагается подборка антенн на 160 метров, представлены 22 варианта различных антенн, все на 1,8 МГц.

 

Random Length Radiator Wire Antenna

 

Delta Loop Antenna

 

 

 

Half Delta Loop Antenna

 

1.9 MHz Full-Wave Loop Antenna

Off-Center-Fed Full-Wave Doublet Antenna

 

Terminated Sloper Antenna

Double Extended Zepp Antenna

 

40m — 80m — 160m Short Dipole Antenna

 

10m -160m Multiband “Z” Antenna

160m Half-Sloper Antenna

160m Linear Loaded Sloper Antenna

Super-Sloper Antenna

 

Clothesline Antenna

 

160m, 80m, 40m Curtain Zepp Antenna

160m Inverted Delta Loop

160m Capacitance Loaded Vertical Antenna

160m Inverted-L

 

160m Inductance-Loaded Shortened Dipole

160m Loop Antenna for TX

 

160m and 80m Morgain-Dipole Antenna

 

160m Twisted Loop Antenna

160m DX RX Loop Antenna

Источник: https://topbandhams.com/tech-page/

r3rt.jimdo.com

Доступные антенны диапазона 160 метров | RUQRZ.COM


Простая и эффективная антенна для диапазона 160 м — мечта почти каждого радиолюбителя, тем более, завзятого «охотника за DX». Как без больших технических и материальных затрат начать работать в этом диапазоне? Ведь диапазон 160 м предъявляет повышенные требования как к навыкам работы радиолюбителя в эфире, так и к конструкции антенн. Если антенны для 10, 15 или 20-метрового диапазона имеют малые габариты, то изготовить антенну на диапазон 160 м совсем непросто.

Имеется сотня-другая счастливых радиолюбителей, которые сумели установить полноразмерные вертикалы этого диапазона. Можно, конечно, в качестве 160-метровой антенны использовать 10—15-метровую металлическую мачту с направленными антеннами на коротковолновые ВЧ диапазоны, которые будут играть роль емкостной нагрузки. И вновь возникает вопрос: «А многие ли радиолюбители в состоянии позволить себе такую роскошь?».

В итоге, после длительных раздумий и сопутствующих сомнений, «среднестатистический» радиолюбитель все равно приходит к необходимости использовать проволочную антенну—наиболее адекватную конструкцию, которую можно реализовать на практике. Как правило, это полноразмерный 1/4 или 1/2 волновый излучатель, запитанный 50-омным коаксиальным кабелем. Если такая антенна правильно установлена и настроена в резонанс, то в выбранной полосе частот диапазона отсутствует необходимость в антенном тюнере или другом согласующем устройстве.

Прежде чем перейти к рассмотрению конкретных конструкций антенн диапазона 160 м, целесообразно хотя бы коротко рассмотреть вопрос влияния высоты установки над землей на такие антенны. Если закрепить горизонтальный 160-метровый диполь на высоте 15м над землей, то он будет находиться на высоте менее 0,1 длины волны. Казалось бы, вполне достаточная высота. Однако, проведя аналогию с диполем диапазона 20 м, который при высоте подвеса 0,1 длины волны располагается всего в 2 м от земли (такое сравнение допустимо, т.к. обе антенны ведут себя почти одинаково), можно утверждать, что такая установка совершенно неэффективна. Обе антенны будут излучать радиоволны под большими углами к горизонту, почти в зенит, что делает их практически непригодными для дальних KB радиосвязей.

Низко установленный диполь хорош только для проведения ближних радиосвязей. Диполь 160-метрового диапазона, который излучает под небольшими углами к горизонту, должен располагаться на высоте более 40 м (0,25 длины волны) над землей. Однако возможности «среднестатистического радиолюбителя» чаще всего не позволяют использовать высоту более 20—30 м.

Оптимальный угол излучения антенны 160-метрового находится в пределах от 30 до 35°, хотя на более высокочастотных диапазонах он существенно ниже — 5—10°. Главным определяющим фактором для выбора оптимального угла излучения на определенных трассах является состояние ионосферы. Оно задает, в зависимости от направления на корреспондента, солнечного цикла, времени года и сответствующего времени суток, соответствующий оптимальный угол падения (входа) для радиоволны. Обусловленный этими факторами угол падения радиоволны подвергается постоянным изменениям, и этим объясняются факты кратковременного более лучшего приема DX-сигналов на низко висящую антенну по сравнению с антенной, имеющей низкий угол излучения. Такой феномен, однако, всегда проявляется только моментами и ничего не говорит о фактических соотношениях, т.е о том, что для проведения DX-радиосвязей антенна с низким углом излучения, конечно, предпочтительнее низковисящего диполя. Один из американских радиолюбителей когда-то очень верно подметил: «Оптимальный угол излучения сигнала определяется не радиоантенной, а ионосферой, расположенной существенно выше».

При рассмотрении конструкции любой антенны один из важных моментов — распределение тока в ней. Излучение электромагнитной энергии антенной происходит там, где течет ток. Причем чем ток сильнее, тем больше напряженность электромагнитного поля, а это значит, что чем выше располагаются токоведущие части антенны, тем лучше она, в конечном итоге, будет функционировать.

Если рассмотреть характеристику излучения горизонтального диполя, то можно видеть, что максимум излучения приходится на область, в которой антенна запитана. Внешние (концевые) части диполя электромагнитную энергию почти не излучают и требуются антенне, грубо говоря, для достижения резонанса. Этот факт можно использовать при конструировании 160-метровой антенны без заметных потерь своих позитивных излучающих свойств.

Вертикальный четвертьволновый излучатель, в принципе, является не чем иным, как «полудиполем», поэтому упомянутые свойства в полной мере относятся и к этой, очень полюбившейся многим радиолюбителям антенне. Здесь максимум излучения также располагается вблизи точки питания:

Резонансным диполем, который имеет достаточно низкий угол излучения, является антенна Inverted V:

Конструкция в форме перевернутой латинской буквы V нуждается только в одной опорной мачте. Оба проволочных излучателя располагаются под наклоном к земле и должны заканчиваться приблизительно в 3 м от нее, с тем чтобы исключить прикосновение к ним, т.к. при работающем передатчике на концах излучателей присутствует высокое ВЧ напряжение.

Угол между излучателями — не менее 60°, общая длина обоих излучателей для центральной частоты 1,85 МГц — 76,7 м, для центральной частоты 1,9 МГц — 74,68 м.

Как известно, высоко установленный горизонтальный диполь имеет входное сопротивление 72 Ом, но оно уменьшается тем сильнее, чем ближе к поверхности земли располагается антенна. Поэтому, согласно опытным данным, полное сопротивление антенны Inverted V составляет около 50 Ом, и такую антенну можно запитать 50-омным коаксиальным кабелем через 1:1 симметрирующее устройство (балун).

Во многих публикациях, посвященных антенне Inverted V, утверждается, что она успешно работает без симметрирующего устройства и может быть запитана 50-омным кабелем напрямую. Однако на практике такое упрощение часто приводит к появлению тока на внешней стороне оплетки кабеля, и он становится ненужной составной частью антенной системы. Антенна Inverted V является абсолютно симметричной, поэтому при ее питании коаксиальным кабелем настоятельно рекомендуется применять симметрирующее устройство.

Ранее уже указывалось, что максимум излучения антенны приходится на те места, в которых протекает большой ток. У одних антенн (например, у четвертьволнового вертикала) — это нижняя часть, т.е. непосредственно у точки питания. В верхней части антенны ток слабее, и поэтому эта часть антенны не играет большой роли в излучении. Если изготовить верхнюю часть антенны из проволоки и разместить ее горизонтально, то излучающие свойства антенны существенно не ухудшатся:

Такая антенна получила название Inverted L (в русскоязычной литературе широко применяется другое название — Г-образная антенна). Антенна Inverted L излучает преимущественно под низкими углами к горизонту. Для этой антенны справедливо правило: «Чем выше вертикальная часть антенны, тем лучшими являются ее DX-свойства». Поэтому следует всегда стремиться вертикальную часть антенны размещать как можно выше. Ориентировочная полная длина такой антенны составляет 39 м.

Если на местности имеются высокие деревья, то их можно использовать при установке антенны Inverted L. Кроме того, современные фибергласовые шесты — весьма подходящий опорный материал для такой антенны.

Для антенны Inverted L, как и для любого другого четвертьволнового излучателя, обязательно требуются противовесы длиной 38—41 м — в зависимости от частоты настройки антенны и условий размещения противовесов. Если они закопаны в землю, то чем больше противовесов, тем лучше. А вот число противовесов, изолированных от земли (а тем более, располагающихся над ней), может быть значительно меньше—двух-четырех проводов будет вполне достаточно.

Несколько улучшить работу системы противовесов может металлический прут (прутья), закопанный(ые) в землю на глубину 2—3 м.

Полное сопротивление этой антенной системы в идеальных условиях составляет 38 Ом. В действительности оно несколько выше, поэтому имеется возможность запитать антенну Inverted L 50-омным коаксиальным кабелем.

Если увеличить длину четвертьволнового вертикала или антенны Inverted L до 50 м, то тем самым увеличится ее активное сопротивление в точке питания (примерно до 50 Ом). Правда, это приведет к тому, что антенна перестанет быть резонансной, и реактивная составляющая полного входного импеданса будет иметь индуктивный характер. Для компенсации этой реактивности достаточно установить в точке питания конденсатор переменной емкости с максимальной емкостью около 500—600 пФ. Здесь вполне подойдет даже конденсатор от старых ламповых приемников, который может не иметь большой диэлектрической прочности, т.к. он служит для электрического укорочения антенны, чтобы получить резонанс системы в диапазоне 160 м. Подстройкой емкости конденсатора переменной емкости антенну настраивают в резонанс в выбранном участке диапазона.

Еще одной популярной антенной диапазона 160 м является Sloper «слопер». Название «слопер» (от англ. slope — наклон) характеризует как форму установки антенны (под наклоном к земле), так и вид ее излучения (под наклоном к горизонту). На низкочастотных KB диапазонах слопер представляет, собой эффективную, относительно малогабаритную DX-антенну, которая успешно используется многими радиолюбителями. Токоведущая часть системы находится высоко и удалена от мешающих объектов на земле, а поляризация излучения — преимущественно вертикальная.

Следует различать четвертьволновый:

и полуволновый слопер:

Для установки любой из этих антенн достаточно одной мачты. При этом нижний конец антенны, по требованиям техники безопасности, должен заканчиваться на высоте 2—3 м над землей.

В направлении натянутого провода слопер имеет небольшое усиление (по некоторым данным оно составляет 2—3 дБ), в то время как с тыльной стороны наблюдается ослабление сигнала. Следовательно, рекомендуется устанавливать слопер в предпочтительном направлении.

Четвертьволновый слопер (рис.выше) имеет длину около 40 м (38,51 м для частоты 1,85 МГц, 37,5 м — для 1,9 МГц). Заземленная мачта играет роль противовеса. Такая антенна запитывается 50-омным коаксиальным кабелем. Внутренний проводник кабеля соединяется с проволочным излучателем, а оплетка кабеля — с мачтой.

Согласно опытным данным, настройка четвертьволнового слопера не так уж и проста. Нередко, чтобы настроить систему на требуемую частоту и добиться полного входного сопротивления около 50 Ом, требуются основательные затраты времени и сил. Дело в том, что резонанс антенны зависит от размеров мачты, проводимости почвы, длины излучателя, угла его наклона к земле и т.д. Исходя из этого, угол наклона излучателя и его высота над землей являются решающими факторами при формировании полного входного сопротивления антенны.

Многие четвертьволновые слоперы начинают работать сразу после установки, так что не стоит бояться браться за изготовление этой антенны. Следует помнить, что она изготавливается для долговременной эксплуатации, и, однажды ее настроив, потом можно наслаждаться ее работой.

Полуволновой слопер (рис. выше) фактически является классическим полуволновым диполем, установленном под наклоном к земле. Такая антенна выгодно отличается от четвертьволного слопера стабильно предсказуемыми параметрами, поэтому кропотливая настройка, как это имеет место с четвертьволновым слопером, не требуется.

Общая длина полуволного слопера составляет около 77 м для частоты 1,85 МГц (75 м — для частоты 1,9 МГц).

В полуволновом слопере осознанно отказываются от применения симметрирующего устройства, т.к. оно, скорее всего, нивелировало бы позитивные свойства этой антенны. Дело в том, что при несимметричном питании диаграмма направленности диполя слегка «косит», характеристика излучения искажается в направлении «горячего» плеча, которое соединено с внутренним проводником коаксиального кабеля. Этот эффект можно использовать для дополнительного «прижима» излучения к земле.

Еще одним преимуществом полуволнового слопера является то, что его можно оптимально «подогнать» к имеющимся местным условиям. Для этого «холодный» конец антенны пускают через направляющий ролик и натягивают вертикально вниз (обычно на расстоянии 1—2 м от здания или мачты):

Ролик закрепляют на самой высокой точке. Тем самым, можно менять длину антенны и оптимально «вписать» ее в местные условия.

При установке описанных антенн следует иметь в виду, что очень редко антенна резонирует на расчетной частоте, поэтому, как правило, антенна нуждается в точной настройке. В этой связи полезно знать, что длину четвертьволного излучателя следует изменить на 208 см, чтобы достичь сдвига резонанса на 100 кГц. В полуволновом диполе для этого потребуется изменить длину на 416 см, а в антенне Delta Loop — на 832 см.

Интересное по этой теме:

www.ruqrz.com

приемная антенна на диапазон 160 метров

Холахуп – антенна (в переводе с английского – обруч, кольцо)
предназначена для приема слабых сигналов любительских радиостанций в
условиях эфирной обстановки индустриального города на 160 метровом KB
диапазоне.

Как известно, простые антенны типа GP, Sloper, LVV, всевозможные
рамки и прочие антенны хорошо работают на передачу, но плохо работают
на прием, так как в условиях большого города воспринимают всевозможные
индустриальные помехи, что, в итоге выражается в большой зашумленности
эфира (диапазона).

В таких условиях на низкочастотных диапазонах очень трудно
реализовать предельную чувствительность своего приемника или трансивера
(обычно 0,5…1,0 мкВ). Реальная чувствительность трансивера на диапазоне
1,8 /МГц в условиях большого города ограничивается 10… 15 мкВ. Для
отстройки от помех приходиться включать аттенюаторы, применять
направленные антенны, специальные фильтры и т.п. Аналогичная картина,
хотя и в меньшей степени, наблюдается и на остальных KB диапазонах. На
более высокочастотных диапазонах 14 – 28 МГц помех меньше, но они все
равно присутствуют и ухудшают условия приема. В сельской местности
(вдали от цивилизации) индустриальных помех почти нет, поэтому
возможность реализации максимальной чувствительности своего трансивера
больше. При этом не происходит модуляции одной принимаемой радиостанции
другой и, используя качественный приемник, на одной частотe можно
одновременно слушать две-три станции различая их по тембру звучания.

В целях реализации максимально возможной чувствительности
радиоприемного устройства на диапазоне 1,8 МГц предлагаю простую
кольцевую антенну (хулахуп), работающую только на прием.
Указанная антенна отличается повышенной помехозащищенностью, так как не
воспринимает магнитную составляющую электромагнитного поля помехи H,
уменьшая на эту величину суммарные помехи на входе трансивера.

Наличие ярко выраженного максимума в диаграмме направленности
антенны позволяет в ряде случаев даже ослабить помехи. Кроме того,
вращая антенну в различных плоскостях можно дополнительно отстроиться
от помехи, идущей с определенного направления.

Изменяя положение антенны в горизонтальной и вертикальной плоскости,
можно улучшить качество приема и в том случае, когда сигнал и помеха
приходят с одного направления, но под разными углами к горизонту. Более
того, благодаря настройки антенны в резонанс повышается избирательность
приемника, по зеркальным и другим побочным каналам.

Конструкция антенны довольно простая. Для ее изготовления необходим
отрезок коаксиального кабеля (РК-75, РК-50) длиной; 4,0 м и диаметром
7-10 мм, у которого, по середине вырезается внешняя виниловая оболочка
и медная оплетка («чулок») на расстоянии 10 мм, рис.1.

После чего, указанный отрезок кабеля сматывается в бухту из 4-х
витков. Между витками кабеля прокладывается петля связи (незамкнутое
кольцо) из любого тонкого монтажного провода.

В результате получается компактное кольцо (хулахул) диаметром около
32 см, которое для фиксации в нескольких местах обматывают изолентой
или скотчем, рис. 2.

К двум концам центральной жилы коаксиального кабеля подключается
переменный конденсатор С1 обязательно с воздушным диэлектриком (для
повышения добротности) и емкостью около 1000 пф. Подойдет 2-х
секционный конденсатор от старых радиовещательных приемников 2х495 пф,
обе секции которого включены параллельно.

Вход трансивера или радиоприемника подключается к одному концу витка
связи, другой конец витка соединяется с корпусом (общим провод или
клемма «земля»), рис. 2.

Для сужения полосы пропускания антенны, и, следовательно, лучшей
отстройки от помех последовательно с петлёй связи можно включить
конденсатор небольшой емкости С2, от величины которого будет зависит
добротность всей антенной системы и полоса пропускания.

Как показали эксперименты без конденсатора С2, полоса перекрываемых
частот составляет от 1830 до 1870 кГц. При подключении конденсатора С2
= 20пФ полоса пропускания антенны сужается до: 5-10 кГц в центе DX
участка 160 метрового любительского диапазона.

Переменным конденсатором С1 вся антенная система настраивается в
резонанс, по максимальной громкости принимаемого сигнала. При этом
резонанс отчетливо воспринимается на слух. Диаграмма направленности
антенны имеет вид восьмерки с ярко выраженным минимумом и максимумом,
рис. 3.

Если чувствительности трансивера недостаточно, то на его входе можно
добавить усилитель высокой частоты (УВЧ) с коэффициентом усиления К =
20-30 dB. Однако, не следует увлекаться большим усилением УВЧ, так как
в этом случае снижается верхняя граница динамического диапазона
приемника.

Электрические схемы УВЧ Неоднократно публиковались в
радиолюбительской литературе, например, рис.5 и 6. Здесь трансформатор
Т1 наматывается на ферритовом кольце 1000 НМ, диаметром 7-10 мм,
скрученным вдвое проводом ПЭВ 0,2 мм. Конец одного провода соединяется
с началом другого, образуя среднюю точку. Лучшим из транзисторов,
работающих в УВЧ является КТ93ЭА (вместо КТ606А), он наиболее линеен из
ранее выпускавшихся. Детали, обозначенные звездочкой, влияют на
коэффициент усиления УВЧ и подбираются при настройке. В остальном схема
особенностей не имеет. При работе с указанной антенной ее можно вращать
в пространстве в различных плоскостях, ориентируясь по наиболее
уверенному приему DX станции.

С целью исключения экранирования антенны железобетонными
перекрытиями антенну нужно вынести хотя бы на подоконник на балкон,
конструкция антенны может быть любой, например, такой как приведено на
рис 4.

Холахуп устанавливается сверху металлической коробки (дюраль или
двухсторонний стеклотекстолит), в которой размещается конденсатор
переменной емкости. Ручка настройки выводится на переднюю панель,
коаксиальный разъем для подключения приёмника на заднюю панель. Если
будет применяться УВЧ, то необходимо предусмотреть выводы для его
питания.

Изменив размеры коаксиального кабеля, антенну можно перестроить и на другие любительские или вещательные диапазоны.

Заключение

Раньше в зимнее время на диапазоне 1,8 МГц, особенно, на восходе и
заходе солнца получалось так, что я (US0IZ), работая на CQ (общий
вызов) не слышал многих корреспондентов: К, W, PY, VK, J А и других,
которые меня вызывали. Теперь же получается наоборот — я слышу даже
намного больше, чем мне отвечают. Следовательно, предстоит «новый виток
спирали» – совершенствование своего передатчика ТХ и передающих антенн.

Творческий процесс продолжается… и так до бесконечности. Такова уж доля радиолюбителя-коротковолновика.

rfanat.ru

Любительский радиоприемник на 160 метров

  Поляков Владимир Тимофеевич — доцент кафедры физики Московского ордена Ленина института инженеров геодезии, аэрофотосъемки и картографии, кандидат технических наук, родился в 1940 году. Уже в девять лет собрал свою первую радиоконструкцию — детекторный приемник, а в двенадцать — ламповый усилитель. Учась в старших классах, освоил супергетеродинный приемник, смонтировал телевизор. Затем — учеба в Московском физико-техническом институте, увлечение магнитной записью, работа на коллективной радиостанции, постройка личной радиостанции. Его позывной RA3AAE сегодня известен радиоспортсменам всех континентов. Он — автор 10 изобретений, 100 публикаций, в том числе нескольких книг.

  Более десяти лет назад в журнале “Радио” было опубликовано описание приемника коротковолновика-наблюдателя [1—4], выполненного по супергетеродинной схеме на широкодоступных деталях. Многие радиолюбители начали свой путь в эфир с его постройки. Сегодня, когда радиоспортсмены получили новый диапазон — 160 м, а также стали более доступными многие совершенные радиодетали, автор предлагает читателям новую разработку приемника, рассчитанного на работу именно в этом диапазоне. Структурная схема приемника не изменилась — это тоже супергетеродин с одним преобразованием частоты и детектором смесительного типа. Но благодаря использованию полевых транзисторов и электромеханического фильтра (ЭМФ) в тракте приема в работе он практически не уступает более сложным приемникам современных любительских радиостанций.

  Чувствительность составляет единицы микровольт, что на диапазоне 160 м достаточно для приема весьма удаленных радиостанций, а селективность определяется ЭМФ и достигает 60…70 дБ при расстройке на 3 кГц выше или ниже полосы пропускания. Реальная же селективность (способность приемника противостоять помехам от мощных радиостанций, частота которых может и не совпадать с частотой настройки приемника) значительно повышена благодаря применению в смесителе двухзатворного полевого транзистора с линейными характеристиками.

  Разберем устройство и работу приемника по его принципиальной схеме, приведенной на рис. 1. Приемник состоит из смесителя на транзисторе VT1, первого гетеродина на транзисторе VT2, усилителя промежуточной частоты (УПЧ) на транзисторе VT3 и микросхеме DA1, детектора смесительного типа на транзисторе VT4, второго гетеродина на транзисторе VT5, усилителя звуковой частоты (УЗЧ) на микросхеме DA2 и транзисторах VT6, VT7. Входной сигнал любительского диапазона 160 м (полоса частот 1830…1930 кГц) поступает от антенны (ее подключают в гнездо XS1 или XS2) на входной двух-контурный полосовой фильтр, образованный катушками индуктивности LI, L2 и конденсаторами СЗ, С2, С4. Для подключения высокоомной антенны в виде отрезка провода длиной значительно меньше четверти длины волны служит гнездо XS1, соединенное с первым контуром (L1C3) входного фильтра через конденсатор С1. Низко-омную антенну (четвертьволновый “луч” длиной около 40 м, диполь или “дельта” с фидером из коаксиального кабеля) подключают через гнездо XS2 к отводу контурной катушки L1. Противовес, заземление или оплетку фидера антенны подключают к гнезду XS3, соединенному с общим проводом приемника. Способ подключения каждой антенны подбирают экспериментально по максимальной громкости и качеству приема. При смене антенн может понадобиться некоторая подстройка контура L1C3.

  Двухконтурный входной фильтр обеспечивает хорошую избирательность по зеркальному каналу приема, а также практически устраняет перекрестные помехи от мощных средневолновых радиовещательных станций. Выделенный фильтром сигнал подается на первый затвор полевого транзистора VT1. На второй его затвор поступает через конденсатор С5 напряжение гетеродина. Делитель R1R2 задает необходимое напряжение смещения на этом затворе. Сигнал промежуточной частоты (500 кГц), являющийся разностью частот гетеродина и сигнала, выделяется в цепи стока смесителя контуром, образованным индуктивностью обмотки ЭМФ Z1 и конденсатором С9. Первый гетеродин приемника выполнен по схеме индуктивной трехточки на транзисторе VT2. Контур гетеродина составлен из катушки индуктивности L3 и конденсатора С7. Частоту гетеродина можно перестраивать в диапазоне 2330…2430 кГц конденсатором переменной емкости С6. Резисторы R4 и R5 определяют режим работы транзистора по постоянному току. Развязывающие цепочки R3C10 и R5C13 защищают общую цепь питания от попадания в нее сигналов гетеродина и промежуточной частоты.

  Основную селекцию сигналов в приемнике выполняет ЭМФ Z1 с полосой пропускания 3 кГц. С его выходной обмотки, настроенной конденсатором СП в резонанс на промежуточную частоту, сигнал поступает на усилитель ПЧ. Он выполнен на полевом транзисторе VT3 и микросхеме (каскодном усилителе) DA1. Общее усиление получается достаточно большим, и для выбора его оптимального значения в цепь истока транзистора VT3 включен регулятор — подстроечный резистор R8. При увеличении его сопротивления уменьшается ток через транзистор, а с ним и крутизна переходной характеристики. Одновременно возрастает отрицательная обратная связь, и усиление уменьшается. Высокое входное сопротивление первого каскада УПЧ на полевом транзисторе позволило получить минимально возможное затухание сигнала в ЭМФ основной селекции.

  Чтобы избежать перегрузки УПЧ сильными сигналами, применена простейшая цепь автоматической регулировки усиления (АРУ). Напряжение ПЧ с выходного контура L4C17 подается через конденсатор связи С16 на параллельный диодный детектор (диод VD1). Продетектированное напряжение отрицательной полярности поступает через сглаживающую цепочку R7C12 на затвор транзистора VT3 и подзакрывает его, уменьшая тем самым усиление. Время срабатывания системы АРУ определяется постоянной времени R7C12, а время отпускания — постоянной времени R6C12 и составляет соответственно 10 и 50 мс. Усиленный сигнал ПЧ с контура L4C17 поступает через катушку связи L5 на детектор, выполненный на полевом транзисторе VT4. Сигнал второго гетеродина частотой около 500 кГц поступает на затвор этого транзистора через цепочку C18R12, создающую необходимое отрицательное напряжение смещения благодаря детектированию напряжения гетеродина р-n переходом затвора транзистора. Положительные полуволны напряжения гетеродина открывают транзистор, и сопротивление его канала (промежутка исток — сток) становится малым. Отрицательные полуволны закрывают транзистор, и сопротивление канала резко возрастает. Таким образом транзистор работает в режиме управляемого активного сопротивления. В цепи его канала образуется ток биений со звуковыми частотами, равными разности частот сигнала и гетеродина. Спектр однополосного сигнала переносится с ПЧ в область звуковых частот. Сигнал ЗЧ, сглаженный конденсатором С21, поступает на регулятор громкости R11, а с движка его — на усилитель ЗЧ.

  Второй гетеродин приемника выполнен на транзисторе VT5 по такой же схеме, что и первый. Нередко в подобных приемниках во втором гетеродине используют кварцевый резонатор на 500 кГц. Это удобно, но удорожает приемник. В то же время стабильность частоты обычного LC генератора на данной частоте оказывается вполне достаточной по сравнению с кварцевой. Кроме того, появляется возможность использовать широкий ассортимент ЭМФ и подстроить второй гетеродин под любой из них.

  Усилитель ЗЧ выполнен на микросхеме DA2 (двух-каскадный усилитель напряжения) и транзисторах VT6, VT7 (составной эмиттерный повторитель). Цепочка R13C23 на входе УЗЧ служит для подавления сигнала ПЧ. Диод VD2, через который протекает коллекторный ток второго транзистора микросхемы, задает некоторое начальное смещение на базах выходных транзисторов. Это уменьшает искажения типа “ступенька”. Низкое выходное сопротивление составного эмиттерного повторителя позволяет подключать к приемнику как высокоомные, так и низкоомные головные телефоны и даже динамическую головку со звуковой катушкой сопротивлением не менее 4 Ом. При использовании динамической головки емкость разделительного конденсатора С27 нужно увеличить до 50…100 мкФ, чтобы избежать чрезмерного ослабления низших частот.

  Для питания приемника подойдет любой сетевой блок питания, обеспечивающий напряжение 9…12 В при токе до 40…50 мА. Правда, такой ток приемник потребляет лишь при максимальной громкости звучания подключенной к его выходу динамической головки. В режиме же покоя или при работе на высокоомные головные телефоны приемник потребляет не более 10 мА. Поэтому с такой нагрузкой питать приемник можно от батареи гальванических элементов или аккумуляторов общим напряжением около 9 В. В любом варианте питающее напряжение подают на гнезда XS6, XS7 в указанной на схеме полярности.

  Теперь о деталях приемника и их возможной замене. Транзистор VT1 может быть любой из серий KП306, КП350. Для некоторых из этих транзисторов может потребоваться подача небольшого положительного напряжения смещения на первый затвор. Тогда в цепь его устанавливают разделительный конденсатор емкостью 75…200 пФ и два резистора сопротивлением 100 кОм…1 МОм по схеме, аналогичной схеме цепи второго затвора. Подбором резисторов добиваются тока стока 1…2 мА. Для гетеродинов подойдут транзисторы КТ306, КТ312, КТ315, КТ316 с любыми буквенными индексами. Полевые транзисторы УПЧ и второго смесителя могут быть любые из серий КП303, однако при использовании транзисторов с большим напряжением отсечки (буквенные индексы Г, Д и Е) последовательно с резистором R8 в цепь истока полезно включить постоянный резистор сопротивлением 330…470 Ом, зашунтировав его конденсатором емкостью 0,01…0,1 мкФ. В этих каскадах можно также использовать транзисторы с изолированным затвором серии КП305. Микросхема КН8УН2Б (старое обозначение К1УС182Б) заменима на К1УС222Б, а КИ8УН1Д (К1УС181Д) — на К1УС221Д или другие микросхемы этих серий. В качестве выходных подойдут любые германиевые низкочастотные маломощные транзисторы соответствующей структуры. На месте VD1, и VD2 могут быть установлены маломощные германиевые диоды, например серий Д2, Д9, Д18, Д20, Д311. Для описываемого приемника подойдет любой ЭМФ со средней частотой 460…500 кГц и полосой пропускания 2,1…3,1 кГц. Это может быть, скажем, ЭМФ-11Д-500-3,0 или ЭМФ-9Д-500-3,0 с буквенными индексами В, Н, С (например, ЭМФ-11Д-500-3,0С, использованный автором). Буквенный индекс указывает, какую боковую полосу относительно несущей выделяет данный фильтр — верхнюю (В) или нижнюю (Н), или же частота 500 кГц приходится на середину (С) полосы пропускания фильтра. В нашем приемнике это не имеет значения, поскольку при налаживании частоту второго гетеродина устанавливают на 300 Гц ниже полосы пропускания фильтра, и в любом случае будет выделяться верхняя боковая полоса.

  Возможно, у читателя возникнет вопрос: почему ЭМФ в приемнике должен выделять верхнюю боковую полосу, тогда как любительские радиостанции в диапазоне 160 м работают с излучением нижней боковой полосы? Дело в том, что при преобразовании частоты в данном приемнике спектр сигнала инвертируется, поскольку частота гетеродина установлена выше частоты сигнала, а промежуточная частота образуется как их разность.

  Для катушек индуктивности использованы готовые каркасы с подстроечниками и экранами от контуров ПЧ малогабаритных транзисторных радиоприемников (в частности, от радиоприемника “Альпинист”). Эскиз такого каркаса приведен на рис. 2. После намотки катушки в секциях на каркас 3 надевают цилиндрический магнитопровод 2, а внутрь каркаса ввинчивают подстроечник 1. Затем эта конструкция заключается в алюминиевый экран размерами 12x12X20 мм. Можно использовать каркасы с другим магнитопроводом и экраном. Число витков катушек в этом случае уточняют экспериментально. Например, при намотке катушек в броневых сердечниках СБ-9 число витков следует уменьшить на 10 %. Наматывают катушки суррогатным “литцендратом” — четырьмя слегка скрученными проводниками ПЭЛ 0,07. Удобно использовать тот провод, которым были намотаны использованные катушки от контуров ПЧ. Лишь катушку первого гетеродина (L3) можно намотать одножильным проводом ПЭЛ 0,17…0,25. При намотке витки катушек равномерно распределяют по секциям каркаса. Катушку связи L5 наматывают поверх контурной L4. Катушки входных контуров L1 и L2 содержат по 62 витка, отвод у L1 сделан от 15-го витка, считая от нижнего по схеме вывода. Катушка L3 содержит 43 витка с отводом от 9-го витка, также считая от нижнего по схеме вывода.

  Контур ПЧ с катушками L4 и L5 использован готовый, без переделки. Его катушка L4 содержит 86 витков провода ЛЭ 4X0,07, a L5—15 витков одножильного провода ПЭЛШО 0,07…0,1. Катушка второго гетеродина L6 содержит 86 витков ЛЭ 4X0,07 с отводом от 15-го витка. Здесь можно использовать готовую катушку контура ПЧ с катушкой связи, включив их по схеме на рис. 3 (L6 контурная катушка, L6a — катушка связи). При монтаже нужно строго соблюдать полярность подпайки выводов, иначе гетеродин не возбудится. Если возникнут трудности с намоткой входных катушек, их можно заменить контурами ПЧ. Емкость конденсаторов входного фильтра при этом уменьшается: С1 — до 10 пФ, С2 — до 1…1.5 пФ, СЗ и С4 — до 75 пФ. Правда, фильтр при этом получится не совсем оптимальным, поскольку контура будут обладать высоким характеристическим сопротивлением, но работать приемник будет вполне удовлетворительно. Катушка связи первого контура (Lla) используется в таком варианте для подключения низкоомной антенны (рис. 4), катушка связи второго контура не используется.

  Постоянные резисторы — любого типа мощностью рассеивания 0,125 или 0,25 Вт. Регулятор громкости R11—переменный резистор СП-1, желательно с функциональной характеристикой В, а регулятор усиления (подстроечный резистор R8) — СП5-16Б либо другой малогабаритный. Конденсатор настройки С6 — подстроечный с воздушным диэлектриком (типа КПВ), содержащий 5 статорных и 6 роторных пластин. Число пластин подобрано экспериментально для получения диапазона перестройки ровно 100 кГц. При большем диапазоне затрудняется настройка на SSB станции — ведь в приемнике нет верньера. При отсутствии такого конденсатора можно использовать малогабаритный КПЕ транзисторного радиовещательного приемника, включив последовательно с ним “растягивающий” конденсатор емкостью 40… 50 пФ. Конечно, конденсатор настройки полезно было бы оснастить простейшим верньером с замедлением 1:3… 1:10. Постоянные конденсаторы малой емкости, используемые в высокочастотных цепях (С1 — С9, С11, С14, С16 — С20),—керамические, типа КД, КТ, КМ, КЛГ, КЛС, К10-7 или подобные. Подойдут также слюдяные спрессованные конденсаторы КСО и пленочные ПО или ПМ. Конденсатор С2 можно выполнить в виде отрезка провода ПЭЛ 0,8…1,0 (одна обкладка) с намотанными на нем 10…15-ю витками провода ПЭЛШО 0,25 (другая обкладка). Емкость получившегося конденсатора легко подбирать, отматывая или доматывая витки провода. После настройки витки закрепляют клеем или лаком.

  В колебательных контурах приемника, особенно гетеродинных, желательно установить конденсаторы с малым температурным коэффициентом емкости (ТКЕ) — групп ПЗЗ, М47 или М75. Остальные конденсаторы, в том числе и оксидные (электролитические), могут быть любого типа. Следует отметить, что емкость многих конденсаторов можно изменять в широких пределах без ухудшения качества работы приемника. Так, конденсаторы С14 и С16 могут быть емкостью 500…3300 пФ, С21 и С23 —2700 . 10000 пФ, С10, С12, С13, C15, C24 — 0.01…0.6 мкФ. Емкость оксидных конденсаторов может отличаться в 2…3 раза от указанной на схеме. Конденсатор С26 сравнительно большой емкости полезен при питании приемника от сильно разряженной батареи с высоким внутренним сопротивлением, а также от выпрямителя с недостаточной фильтрацией пульсирующего выпрямленного напряжения. В остальных случаях его емкость можно уменьшить до 50 мкФ. При отсутствии необходимых деталей в приемнике могут быть некоторые изменения. Можно отказаться, например, от системы АРУ, исключив детали С16, VD1, R6, R7, С12. Нижний по схеме вывод выходной обмотки ЭМФ соединяют в этом случае с общим проводом. Регулятор усиления по ПЧ в приемнике без АРУ лучше вынести на переднюю панель, а чтобы длинный провод к регулятору не был подвержен наводкам, на плате приемника следует установить блокировочный конденсатор, соединяющий исток транзистора VT3 с общим проводом. Емкость его может быть 0,01…0,5 мкФ. Если приемник будет работать только с высокоомными телефонами, можно исключить выходной каскад — транзисторы VT6, VT7 и диод VD2. Выводы 9 и 10 микросхемы DA2 в этом случае соединяют вместе и подключают к конденсатору С27, емкость которого можно уменьшить до 0,5 мкФ.

  Все детали приемника, кроме гнезд, переменного резистора, конденсатора переменной емкости, смонтированы на плате (рис. 5) из одностороннего фольгированного стеклотекстолита. Схема соединений составлена под микросхемы серии К118, но переделки не потребуется при использовании микросхем серии К122 — их гибкие выводы пропускают в имеющиеся отверстия в соответствии с цоколевкой микросхем. Для повышения стабильности работы приемника и устойчивости к самовозбуждению площадь фольги, образующей общий провод, оставлена максимальной.

  Печатный монтаж можно выполнить по любой технологии — вытравить, прорезать канавки ножом или резаком. В последнем варианте удобно пользоваться специально заточенным резаком из отрезка ножовочного полотна (рис. 6). Изолирующие канавки в фольге прорезают, часто покачивая инструмент из стороны в сторону и относительно медленно продвигая вперед. При некотором навыке плата “гравируется” таким способом довольно быстро.

  При монтаже полевых транзисторов следует соблюдать меры по их защите от пробоя статическим электричеством и напряжениями наводок. Выводы транзисторов перемыкают между собой тонким гибким проводником, который удаляют после распайки выводов на плате. Корпус паяльника соединяют проводником с общим проводом платы. Желательно использовать низковольтный паяльник, питающийся от сети через понижающий трансформатор. Непосредственно при пайке выводов транзистора VT1 вилку питания паяльника желательно вынимать из сетевой розетки.

  Печатную плату укрепляют на шасси приемника (рис. 7), изготовленном из мягкого дюралюминия толщиной 2 мм. На передней панели (она закрыта декоративной накладкой) укреплены конденсатор переменной емкости С6, регулятор громкости R11 и гнезда XS4, XS5. Остальные гнезда, регулятор усиления R8 размещены на задней стенке шасси. П-образная крышка шасси изготовлена из более тонкого полужесткого дюралюминия. Расположение платы и деталей на шасси показано на рис. 8, а внешний вид готового приемника — на рис. 9.


  Конструкция корпуса (шасси) может быть и иной, важно лишь соблюсти следующие правила: конденсатор настройки расположить возможно ближе к катушке первого гетеродина, гнезда антенн — около входных контуров, а регулятор усиления — около транзистора VT3. Регулятор громкости и телефонные гнезда можно расположить в любом месте, но если длина соединительных проводников к ним составит несколько сантиметров, следует применить экранированный провод, оплетку которого соединить с общим проводом платы и с шасси. Перед налаживанием приемника нужно тщательно проверить монтаж и устранить ошибки. Затем, включив приемник, проверить авометром режимы работы транзисторов и микросхем. Напряжение на эмиттерах выходных транзисторов (VT6 и VT7) должно составлять около 5,5 В (все значения указаны для напряжения питания 9 В). Работоспособность усилителя ЗЧ проверяют, прикоснувшись пинцетом к правому по схеме выводу резистора R13,— в головных телефонах должен прослушиваться фон переменного тока.

  Напряжение на стоке транзистора VT3 должно изменяться от 2…5 В до 8,5 В при перемещении движка подстроечного резистора R8. Ток транзистора VT1 определяют, измерив напряжение на резисторе R3,— оно должно составлять 0,3…1 В, что соответствует току 0,8…2,5 мА. При недостаточном токе придется подать смещение на первый затвор, как описано выше, а при излишнем- увеличить сопротивление резистора R1. Работоспособность гетеродинов проверяют, присоединив щупы авометра к выводам конденсаторов С13 или С24. Напряжение на них должно составлять 5…7 В. Замыкание выводов катушек L3 и L6 должно вызывать уменьшение напряжения на 0,5…1,5 В, что укажет на наличие генерации. При отсутствии генерации следует искать неисправную деталь (обычно ей оказывается катушка индуктивности или транзистор). Все вышеописанные операции удобно выполнить до установки платы на шасси приемника. Конденсатор настройки С6 и регулятор громкости при этом можно не подключать.

  Дальнейшее налаживание сводится к настройке контуров приемника на нужные частоты. При этом желательно пользоваться хотя бы простейшим генератором стандартных сигналов (ГСС). Установив плату на шасси и выполнив недостающие соединения, подают (через конденсатор емкостью 20…1000 пФ) с ГСС на затвор транзистора VT3 немодулированный сигнал частотой 500 кГц. Контур ПЧ L4C17 настраивают по максимуму напряжения АРУ, которое измеряют авометром на конденсаторе С12. Амплитуду выходного сигнала ГСС следует поддерживать такой, чтобы напряжение АРУ не превышало 0,5…1 В. Регулятор усиления R8 при этом устанавливают в положение, при котором напряжение на стоке транзистора VT3 составляет 5…6 В. Второй . гетеродин подстраивают до получения биений — громкого свистящего звука в телефонах, подключенных к выходу усилителя 34. Контур L4C17 можно настроить и по максимальной громкости биений. Подав сигнал ГСС через тот же конденсатор связи на первый затвор транзистора VT1 (входной контур отключать не нужно), настраивают ГСС на среднюю частоту полосы пропускания ЭМФ и подбирают емкость конденсаторов С9 и С11 по максимуму напряжения АРУ или по максимальной громкости тона биений на выходе приемника. Одновременно подстроечником катушки L6 следует установить частоту второго гетеродина вблизи нижней граничной частоты полосы пропускания ЭМФ. Если использован фильтр ЭМФ-9Д-500-3.0В, а генератор перестраивается от частоты 500 кГц и выше, низкий тон биений должен появляться при частоте 500,3 кГц, затем тон должен повышаться и исчезать при частоте 503 кГц. В случае использования другого фильтра частоты настройки ГСС соответственно сдвинутся, но картина явлений останется прежней.

  Последний этап налаживания — настройка контуров первого гетеродина и входного фильтра. Подав с ГСС сигнал частотой 1880 кГц на гнездо XS2, настраивают на эту частоту приемник — вращением подстроечника катушки L3. Ротор конденсатора настройки С6 при этом должен находиться в среднем положении. Подстроечниками катушек L1 и L2 устанавливают максимальную громкость приема. В заключение измеряют диапазон перестройки приемника (он должен охватывать, весь любительский диапазон 160 м) и проверяют уменьшение чувствительности на краях диапазона. Если оно не превышает 1,4 раза, полоса пропускания входного фильтра достаточна. В противном случае для ее расширения несколько увеличивают емкость конденсатора связи С2. Окончательно подстраивают входные контура приемника и устанавливают оптимальное усиление по ПЧ при приеме сигналов любительских станций. В случае отсутствия ГСС тракт ПЧ настраивают по максимуму шума на выходе приемника, а частоту второго гетеродина устанавливают по тону этого шума. При настройке второго гетеродина на центр полосы пропускания ЭМФ шум имеет наиболее низкий тон. На этом этапе настройки следует убедиться, что основная доля шума поступает с первого каскада на транзисторе VT1. С этой целью замыкают выводы входной обмотки ЭМФ (к ним припаян конденсатор С9) — громкость шума должна значительно уменьшиться. По максимуму шума подбирают конденсаторы С9 и СП, установив движок резистора R8 в положение максимального усиления. Контур гетеродина и входные контура настраивают при приеме любительских станций. Чтобы обнаружить их, антенну можно подключить через конденсатор емкостью 20…40 пФ к первому затвору транзистора VT1. Установив диапазон приемника подстроечником катушки L3, подстраивают контур L2C4 по максимальной громкости приема, а затем, переключив антенну в гнездо XS2, окончательно подстраивают оба контура входного фильтра. Уточнить установку частоты второго гетеродина можно, найдя в эфире немодулированную несущую и перестраивая приемник конденсатором С9. При уменьшении его емкости приемник перестраивается вверх по частоте, и тон биений должен появляться с частотой около 300 Гц и пропадать с частотой около 3 кГц. Усиление по ПЧ устанавливают подстроенным резистором R8 таким, чтобы собственный шум приемника негромко прослушивался без антенны, а при подключении наружной антенны длиной не менее 10 м заметно возрастал — это и будет признаком достаточной чувствительности приемника. При испытаниях этот радиоприемник в вечернее время принимал на комнатную антенну сигналы многих любительских радиостанций, расположенных в европейской и азиатской частях СССР, включая Карелию, Прибалтику, Закавказье, Поволжье и Западную Сибирь.

  Литература:
1. Поляков В. Приемник коротковолновика-наблюдателя.— Радио, 1976, № 2, с. 49—52.
2. Поляков В. Усовершенствование приемника коротковолновика-наблюдателя.— Радио, 1976, № 7, с. 55, 56.
3. Поляков В. Полосовые фильтры на входе приемника коротковолновика-наблюдателя.— Радио, 1976, № 10, с. 56.
4. Казанский И. В., Поляков В. Т. Азбука коротких волн.— М.: ДОСААФ, 1978.

В. ПОЛЯКОВ (RA3AAE)
В помощь радиолюбителю. Выпуск №100
Статью подготовил Бойко Алексей

Источник: shems.h2.ru

www.qsl.kiev.ua