Припои низкотемпературные – . ?

Содержание

температура плавления олова для пайки, состав и технические характеристики

Большинство начинающих радиолюбителей, не сталкивавшихся ранее с пайкой, задаются вопросом о том, какие могут быть припои, и чем они отличаются друг от друга.

Припой ПОС является оловянно-свинцовым сплавом. В зависимости от соотношения данных элементов существуют различные маркировки. Самая распространенная – припой ПОС 61.

Разновидности припоев

Припой не всегда обязательно приобретать. Можно использовать старую радиодеталь и собрать его с дорожек платы при помощи жала паяльника. Такой вариант отлично подойдет тем, кто живет далеко от города, где нет возможности приобрести материал в магазине.

Стандартные свинцовые припои.

Однако они бывают разные и отличаются своими свойствами и характеристиками. В связи с этим каждый опытный мастер должен разбираться в данном вопросе. Для спаивания деталей необходимо использование специальных сплавов – припоев.

Последние обладают более низкой температурой плавления, чем отдельные части изделий.

Подобные сплавы делятся на две основные категории в зависимости от температуры плавления: мягкие и твердые. Первый тип широко используется в радиоэлектронике, как любителями, так и профессионалами.

К легкоплавким относят припои с температурой плавления менее 450°С. Их изготавливают из: галлия, индия, олова, висмута, свинца и кадмия. Высокотемпературные плавятся при нагреве, превышающем 450°С. В любом случае он представляет собой, как правило, сплав, состоящий из нескольких металлов и примесей.

Самым распространенным вариантом является оловянно-свинцовый сплав, который называется ПОС. Числа, стоящие после аббревиатуры, свидетельствуют о процентном содержании олова.

Отличить один сплав от другого можно и не зная марки. Например, при большем содержании олова появляется характерный металлический блеск, а при большей концентрации свинца цвет становится темно-серым.

Кроме того, температура плавления ПОСов не превышает 265°С. Еще одной отличительной особенностью сплавов с большей долей свинца является их пластичность и возможность легко согнуть руками.

Классификация сплавов осуществляется в соответствии с ГОСТами.

Физико-механические свойства припоев.

Наиболее распространенными являются:

  • припой ПОС 90;
  • ПОС 61;
  • ПОС 40;
  • ПОС 30.

На самом деле маркировок существенно больше. Их насчитывается несколько десятков. Каждая записывается таким образом, что уже из ее названия становится понятен состав сплава, все изготавливаются по ГОСТу 21930-76 припой оловянно-свинцовый.

Стоит отметить, что сплавы отличаются между собой не только химическим составом. В зависимости от формы выпуска они бывают в чушках, проволоке, трубке с канифолью или в прутке.

Например, припой ПОС 61 может продаваться в прутках или в форме проволоки различного диаметра. Необходимо понимать, что соотношение свинца и олова влияет на температуру плавления. Данный параметр в большей мере определяет выбор необходимого сплава.



Кроме того, сплав может выпускаться с флюсом, например, с ФРК525-2-Т1 – безгалоидным канифольным флюсом низкой активности.

В данном флюсе отсутствуют галогены. Благодаря этому факту он оказывает значительно меньше вреда на здоровье мастеров.

Использование сплавов различных марок определяется сферой их применения. ПОС тридцать и сорок относятся к мягким. Их температура плавления не превышает 300°С. Применяются в соединении оцинкованных изделий, лужения, ремонта электроприборов и т.д.

Низкотемпературные припои

Химический состав припоев разных видов.

Низкотемпературные сплавы используются для пайки радиодеталей, чувствительных к действию высокой температуры. К ним относятся: припой ПОС 40 и припой ПОС 30. Они широко применяются в промышленности, но их также берут и для частного использования.

ПОС 30 отлично подходит для пайки меди и сплавов не ее основе. Он используется и как присадочный материал и в целях лужения деталей. Особенностью данной марки является отсутствие в ее составе сурьмы.

ПОС 30 позволяет получать надежные герметичные соединения, что обусловило активное применение материала для трубопроводных систем. Кроме того, он характеризуется хорошей проводимостью и низким сопротивлением, что позволяет использовать его с целью получения мелких контактов.

Низкая температура плавления позволяет избежать перегрева радиодеталей при пайке. В то же время, после застывания, он надежно фиксирует части изделия.

С технической точки зрения выполнять пайку данным сплавом достаточно легко. Однако следует иметь в виду, что в случае его использования детали не должны работать при высоких температурах.

Выпускается ПОС 30 в форме проволоки различного диаметра от 0,5 до 8 мм. Толщину выбирают исходя из задач, которые необходимо решить. Чтобы соединить мелкие провода и детали, отлично подойдет наименьший вариант. А вот ремонт корпусов и спайку крупных изделий проще осуществлять 8 мм проволокой.

Припой ПОС 40 имеет близкие технические характеристики к ПОС 30. В состав также не входит сурьма. Он относится к низкотемпературному классу. Плотности отмеченных сплавов и начало температуры плавления также одинаковы.

Отличаются они друг от друга, конечно же, составом. Об этом свидетельствуют цифры в конце их маркировки.

Разновидности бессвинцовых припоев.

ПОС 40 позволяет получать качественные и надежные соединения. При работе с ним не появляются трещины, а также отсутствуют не пропаянные места и другие дефекты. Незначительное сопротивление и хорошая проводимость позволяют применять ПОС для пайки электроники.

Как уже было отмечено выше, данный припой имеет низкую температуру плавления. Это также накладывает ограничения на использование изделий паяемых с его применением.

Наиболее распространенная форма выпуска сплава – проволока. Ее диаметр варьируется от 0,5 до 7 мм. Однако он существует и в виде прутков, ленты фольги, небольших трубок.

Еще одним низкотемпературным припоем является ПОС 61. Однако у него в составе присутствует сурьма. Сплав отличается достаточно хорошей пластичностью. Наиболее широко используется для пайки полупроводниковой техники. Удельное сопротивление припоя ПОС 61 составляет 0,139 Ом*мм2/м.

Выпускается в виде металлических слитков весом около 25 кг, прутков с сечением от 8 до 15 мм, проволоки с диаметром от 0,5 до 6 мм. Существуют также такие форм-факторы, как ленты, аноды и трубки.

Паяльная паста

Пайку наиболее часто осуществляют с использованием припоя и флюса. В целях качественного выполнения работы необходимо выбирать правильную марку сплава для каждой конкретной задачи.

Паста отличается от обычного припоя тем, что в ней содержится сразу два компонента: припой и флюс, что значительно ускоряет процесс спаивания деталей, особенно когда речь идет о smd элементах.

Любая паста представляет собой густую плотную смесь различных веществ. Она получила широкое распространение в промышленности. Производители электроники активно используют ее на своем производстве.

Разновидности паяльных паст.

В зависимости от состава пасты различают следующие виды:

  • отмывочные;
  • водорастворимые;
  • галогеносодержащие;
  • безотмывочные;
  • без галогенов.

Ее свойства определяются типом флюса, который в нее добавляют. Если речь идет о первом типе, тогда там используется канифоль. Чтобы очистить изделие от такой пасты применяют растворитель.

Важно выбирать правильную пасту в зависимости от выполняемой работы. Например, если предстоит паять множество мелких деталей на плате, тогда лучше отдать предпочтение более густой пасте.

Для качественной пайки необходимо произвести подготовительные работы. Плату следует очистить и обезжирить. Все контакты следует залудить, используя легкоплавкий припой.



При работе с smd элементами необходимо наносить тонкий слой пасты. В противном случае можно замкнуть контакты микросхем.

При использовании платы большого размера целесообразно использовать нижний подогрев. Это лучше всего осуществить с помощью паяльной станции. Также в этих целях можно использовать термофен или другие средства, чтобы обеспечить нагрев до 150°С. Если об этом не позаботиться, тогда ее может «повести».

После окончания работы все излишки пасты удаляются, что можно легко осуществить с помощью паяльника с различными насадками.

Итог

Температура плавления олова делает этот материал отличным припоем для пайки. Особо широкое распространение получили припои марки ПОС. Они используются и в промышленности, и в частных мастерских, и радиолюбителями.

Множество марок данного припоя позволяет выбрать необходимый сплав, который идеально подойдет для решения практически любой задачи.

tutsvarka.ru

Низкотемпературная пайка | Мир сварки

Назначение

Настоящая инструкция распространятся на пайку электромонтажных схем ХИТ с помощью электропаяльника.

Инструкцией надлежит руководствоваться при разработке технологических процессов, пайке, ремонте, контроле и приемке паяных конструкций.

Отступления (ужесточенные или сниженные требований) от настоящей инструкции могут быть внесены в маршрутные карты (или другие технологические документы) по согласованию с главным технологом и представителем заказчика. Вспомогательные материалы, приспособления, оборудование и инструмент, необходимые для низкотемпературной пайки даны в Приложении.

Выполнение низкотемпературной пайки с помощью электропаяльника должно производиться при соблюдении правил техники безопасности, изложенных в инструкции по ТБ.

Подготовка электропаяльника и его обслуживание в процессе работы

Включить электропаяльник в сеть и нагреть его до температуры плавления канифоли (120 °С).

Удалить окалину с рабочей части паяльника с помощью напильника или корщетки.

Погрузить рабочую часть паяльника в канифоль и облудить ровным слоем припоя.

Не допускать охлаждения паяльника процессе работы, т.к. при этом происходит окисле припоя и ухудшаются условия пайки.

Не допускать охлаждение паяльника до температуры плавления припоя, так как пайка таким паяльником ухудшает качество паяного шва.

Считать нормальным температурным режимом паяльника такой, при котором припой быстро плавится, но не скатывается с жала паяльника, флюс при этом не сгорает мгновенно, а остается в виде кипящих капель.

Работать с электропаяльником, включенным в сеть через регулятор температуры необходимо в тех случаях, когда это требование оговорено маршрутной картой на пайку изделия.

Подготовка поверхности деталей под пайку

Обезжирить поверхность деталей, имеющих масляные или другие загрязнения, гальваническим путем.

Зачистить механическим путем до полного удаления покрытия (в зоне пайки) с поверхности деталей, к паяным швам которых предъявляются требования герметичности.

Не подвергать зачистке детали с луженой поверхностью.

Зачистить механическим путем до металлического блеска зону пайки деталей (не предусмотренных предыдущим пунктом):

  • имеющие лакокрасочные покрытия;
  • не имеющие гальванопокрытий в виде лужения, серебрения, меднения, цинкования;
  • с никелированной поверхностью, конструкция которых не позволяет удалять остатки флюса (после лужения) методом промывки.

Обезжирить поверхность всех деталей одним из следующих способов:

  • гальваническим;
  • погружением в ванну с растворителем;
  • протиркой зоны пайки бязевым тампоном, смоченным в растворителе.

Хранить детали в чистом и сухом помещение не более трех суток.

Выполнить повторную зачистку, если время хранения превысило трое суток.

Направить детали на сплошной контроль ОТК согласно требований таблицы 1.

Лужение

Подготовить электропаяльник к работе согласно требованиям, изложенным в разделе «Подготовка электропаяльника и его обслуживание в процессе работы».

Покрыть с помощью кисточки тонким слоем флюса зону пайки детали.

Использовать в качестве флюса 5-7%-ный раствор хлористого цинка и этилового спирта при лужении стальных и никелированных деталей, конструкция которых позволяет удалять остатки флюса методом промывки. В остальных случаях пользоваться флюсом ЛТИ-1 или ЛТИ-120.

Прогреть с помощью паяльника поверхность детали до температуры плавления припоя.

Погрузить рабочую часть паяльника в канифоль и набрать на нее избыточное количество припоя.

Применять для лужения припой той же марки, что и при пайке узла.

Прижать паяльник к детали и растереть припой по обслуживаемой поверхности.

Выполнить работы при интенсивном нагреве детали и при минимальном времени лужения.

Покрыть зону лужения ровным и тонким слоем припоя.

Внести в зону лужения дополнительное количество флюса, если припой не растекается по обрабатываемой поверхности.

Не подавать в зону лужения избыточного количества (сверх необходимого) припоя и флюса.

Прекратить лужение после того, как обрабатываемая поверхность детали будет покрыта ровным и тонким слоем припоя.

Разрешить лужение деталей выполнять методом погружения в ванну с расплавленным припоем.

Удалить остатки флюса с деталей после лужения методом промывки в растворителе. Разрешить удалять остатки флюса методом протирки бязевым тампоном смоченным в спирте.

Направить детали на сплошной контроль ОТК согласно требованиям таблицы 1.

Хранить детали после лужения в чистом и сухом помещении.

Подготовка проводов к пайке и лужение

Нарезать провода и изоляционные трубки в размер согласно чертежу.

Удалить с проводов изоляцию на длину, указанную в чертеже.

Удалять изоляцию разрешается техническим путем или инструментом исключающим надрез жил провода (например с помощью электроприспособления под вытяжной вентиляцией).

Закрепить концы изоляционной оплетки проводов с помощью нитроклея АК-20 или с помощью маркировочной бирки на клее или маркировочной ленты.

Зачистить шлифовальной шкуркой концы проводов не имеющие гальванопокрытий.

Выполнить лужение концов проводов (если такое предусмотрено маршрутной картой) согласно требований изложенных в разделе «Лужение».

Пайка

Произвести сборку узлов и деталей под пайку соблюдая следующие требования:

Выдержать зазор между собранными деталями 0,1-0,15 мм – для нелуженых поверхностей и не более 0,05 мм – для луженых;

Выполнить сборку таким образом, чтобы полностью исключалась возможность смещения деталей друг относительно друга, как в момент пайки, так и в процессе охлаждения узла после пайки.

Установить на паяемый узел приспособление для теплоотвода, если это предусмотрено маршрутной картой.

Обезжирить бязевым тампоном, смоченным в спирте, поверхность паяемых деталей. Не производить обезжиривание только в том случае, если в маршрутной карте имеются соответствующие указания.

Покрыть с помощью кисточки тонким слоем флюса зону пайки деталей.

Подготовить к работе электропаяльник согласно требованиям изложенным в разделе «Подготовка электропаяльника и его обслуживание в процессе работы».

Прогреть с помощью паяльника поверхность деталей до температуры плавления припоя, обеспечивая наибольший тепловой контакт между паяльником и деталями.

Прогревать более интенсивно детали с большей массой или детали, изготовленные из материала с меньшей теплопроводностью.

Погрузить рабочую часть паяльника в канифоль, а затем набрать на нее избыточное количество припоя. Марка припоя указана в чертеже.

Прижать паяльник к паяемым деталям и растереть припой по соединяемым поверхностям.

Покрыть зону пайки ровным и тонким слоем припоя.

Внести в зону пайки дополнительное количество флюса, если припой не растекается по обрабатываемой поверхности.

Разрешить непосредственную подачу припоя в зону пайки при значительной протяженности паяемого шва и малой площади теплоконтакта между паяльником и деталями.

Не подавать в зону пайки избыточного количества припоя (сверх необходимого для обеспечения чертежных размеров).

Разрешить пайку изоляторов узла ИКЗ, и других мелких деталей, выполнять под кожухом электроплитки включенной в сеть через регулятор температуры, при обязательном контроле температуры в зоне пайки с помощью термопары. Считать рабочей температурой такую которая превышала бы на 50-70 °С температуру плавления припоя.

Выполнить работы при интенсивном нагреве и минимальном времени пайки.

Контролировать время пайки только в том случае, если в маршрутной карте имеются соответствующие указания.

Прекратить пайку после того, как припой заполнит зазоры между паяемыми деталями, а зона пайки окажется покрыта тонким слоем расплавленного припоя.

Удалить остатки флюса с деталей бязевым тампоном (или кистью) смоченным в спирте. Если в маршрутной карте есть указания о недопустимости применения спирта, то удаление флюса производить методом механической зачистки.

Направить детали и узлы после пайки на сплошной контроль ОТК согласно требований таблицы 2.

Исправлять дефекты паяного шва необходимо с учетом следующих требований:

Выполнить подпайку одного и того же дефекта паяного шва разрешается не более двух раз.

Произвести распайку узла с помощью паяльника и очистить поверхность деталей от остатков флюса и припоя.

Произвести подготовку деталей к перепайке с учетом требований предыдущих разделов.

Выполнить перепайку узла с учетом требований данного раздела.

Направить на повторный сплошной контроль ОТК детали и узлы после перепайеи или подпайки.

Выполнить контроль с учетом требований таблицы 2.

Покрыть электроизоляционным лаком типа НЦ-62 или УР-231, слегка подкрашенным родамином паянный шов в том случае, если в маршрутной карте есть соответствующее указание.

Направить на сборку или другие способы контроля, согласно техническим требованиями чертежа, детали и узлы прошедшие контроль качество согласно таблицы 2.

Таблица 1 — Разбраковка деталей поступающих на лужение и после лужения
Наименование дефектаРезультат разбраковкиМетоды исправления
Следы коррозии, ржавчины, окисной планки, краски, масла и других загрязненийНе допускаютсяУстранить механической зачисткой
Заусенцы на кромках паяемых деталейНе допускаютсяУстранить механической зачисткой
Гальванические покрытия (кроме лужения) в зоне пайки на деталях, к паяным швам которых предъявляются требования герметичностиНе допускаютсяУстраняются механической зачисткой
Никелевое покрытие на деталях, конструкция, конструкция которых не позволяет удалять остатки флюса методом промывкиНе допускаютсяУстраняются механической зачисткой
Надрез жил при механической зачистке концов проводов или при удалении с них изоляцииБрак 
Шереховатость лужения поверхностиНе допускаютсяУстранить повторным лужением
Постороние включения в припоеНе допускаютсяУстранить повторным лужением
Не спай (наличие частично не облуженной поверхности)Не допускаютсяУстранить повторным лужением
Наличие остатков флюса на луженой поверхности или деталиНе допускаютсяУстранить повторной промывкой
Таблица 2 — Разбраковка деталей после пайки
Наименование дефектаРезультат разбраковкиМетоды исправления
НепропайНе допускаетсяУстранить подпайкой
НеспайНе допускаетсяУстранить подпайкой
Усадочная пористость в паяном швеНе допускаетсяУстранить подпайкой
Трещины в паяном швеНе допускаетсяУстранить перепайкой
Занижение размеров паяного шваНе допускаетсяУстранить напайкой
Завышение размеров паянного шва:

  • не мешающие элементам дальнейшей сборки
  • при котором дальнейшая сборка невозможна
 
Допускается

Не допускается

 
 
 
Устранить перепайкой
Наличие остатков флюса на паяном шве паяемом материалеНе допускаетсяУстранить повторной очисткой
Протекание флюса по токоотводам при пайке их с борнами:

  • не достигающее изоляционных втулок
  • достигающее изоляционных втулок
 
 
Допускается

Не допускается

 
 
 
 
Устранить повторной очисткой

Материалы

  1. Припои оловянно-свинцовые (проволока диаметром 2-4 мм) ГОСТ 21931-80.
  2. Припои серебряные (проволока диаметром 2-4 мм) ГОСТ 19738-74.
  3. Олово (проволока диаметром 2-4 мм) ГОСТ 860-75.
  4. Флюс ЛТИ-1, приготовленный по ТИ.
  5. Канифоль сосновая, сорт 1, ГОСТ 19113-84.
  6. Цинк хлористый технический, сорт 1, ГОСТ 7345-78.
  7. Спирт этиловый технический ГОСТ 17299-78.
  8. Лак НЦ-62 ТУ 6-21-090502-2-90.
  9. Растворитель марки 646 ГОСТ 18188-72.
  10. Родамин «С» или «6Ж» ТУ6- 09-2463-82.
  11. Лак УР-231, приготовленный по ТИ.
  12. Бензин «галоша» ТУ 38-401-67-108-92.
  13. Ткань х/б бязевый группы ГОСТ 29298-92.
  14. Перчатки трикотажные ГОСТ 5007-87.
  15. Шкурка шлифовальная бумажная водостойкая ГОСТ 10054-82.
  16. Кисть художественная КЖХ №2,2а ТУ 17-15-07-89.
  17. Флюс ЛТИ-120 СТУ 30-2473-64.

Оборудование, приспособления, инструмент

  1. Электропаяльник ГОСТ 7219-83.
  2. Приспособления для зачистки проводов от изоляции ПР 3081.
  3. Приспособление для резки проводов ФК 5113П.
  4. Электроплитка ГОСТ 14919-83.
  5. Малогабаритная паяльная станция типа SMTU NCT 60A.
  6. Сборочные приспособления (указываются в маршрутных картах).
  7. Стол рабочий с вытяжной вентиляцией.
  8. Линейка ГОСТ 427-75.
  9. Кусачки боковые ГОСТ 28037-89.
  10. Пинцет ГОСТ 21214-89.

weldworld.ru

Высокотемпературная и низкотемпературная пайка | Сварка и сварщик

Пайка — это процесс получения неразъемного соединения материалов в твердом состоянии при нагреве ниже температуры их плавления путем смачивания, растекания и заполнения зазора между ними расплавленным припоем с последующей кристаллизацией жидкой фазы и образованием спая.

Преимущества пайки как технологического процесса и преимущества паяных соединений обусловлены главным образом возможностью формирования паяного шва ниже температуры плавления соединяемых материалов. Такое формирование шва происходит в результате контактного плавления паяемого металла в жидком припое, внесенном извне (пайка готовым припоем), либо восстановленным из солей флюса (реактивно-флюсовая пайка), либо образовавшемся при контактно-реактивном плавлении паяемых металлов, контактирующих прослоек или паяемых металлов с прослойками (контактно-реактивная пайка). В отличие от автономного плавления (одностадийного процесса, протекающего в объеме при температуре, равной или выше температуры солидус соединяемых материалов), контактное плавление того же материала протекает при контактном равновесии по поверхности контакта с твердым, жидким, газообразным телом, иными по составу. Это многостадийный процесс, протекающий по разным механизмам; жидкая фаза при контактном плавлении твердого тела образуется ниже его температуры солидус.

Пайка обеспечивает получение бездефектных, прочных и работоспособных в условиях длительной эксплуатации, паяных соединений, если учтены физико-химические, конструктивные, технологические и эксплуатационные факторы.

Возможность образования спая между паяемым металлом и припоем характеризуется паяемостью, т.е. способностью паяемого металла вступать в физико-химическое взаимодействие с расплавленным припоем и образовывать паяное соединение. Практически пайкой можно соединить все металлы, металлы с неметаллами и неметаллы между собой. Необходимо только обеспечить такую активацию их поверхности, при которой стало бы возможным установление между атомами соединяемых материалов и припоя прочных химических связей.

Для образования спая необходимым и достаточным является смачивание поверхности основного металла расплавом припоя, что определяется возможностью образования между ними химических связей. Смачивание принципиально возможно в любом сочетании основной металл — припой при обеспечении соответствующих температур, высокой чистоты поверхности или достаточной термической или другого вида активации. Смачивание характеризует принципиальную возможность пайки конкретного основного металла конкретным припоем. При физической возможности образования спая (физической паяемости) уже в какой-то мере гарантирована паяемость с технологической точки зрения при обеспечении соответствующих условий проведения процесса пайки.

Паяемость того или иного материала нельзя рассматривать как способность его подвергаться пайке различными припоями. Можно рассматривать только конкретную пару, и в конкретных условиях пайки. Важным моментом в оценке паяемости, как физической, так и технической, является правильный выбор температуры пайки, которая нередко является решающим фактором не только для обеспечения смачивания припоем поверхности металла, но и дополнительным важным резервом повышения свойств паяных соединений. При оценке паяемости нужно учитывать температурный интервал активности флюсов.

Паяльный флюс — это активное химическое вещество, предназначенное для очистки и защиты поверхности паяемого металла и припоя, в первую очередь, от окисных пленок. Однако флюсы не удаляют посторонние вещества органического и неорганического происхождения (лак, краску). Механизм флюсования флюсами, самофлюсующими припоями, контролируемыми газовыми средами, в вакууме, физико-механическими средствами может выражаться:

1. В химическом взаимодействии между основными компонентами флюса и окисной пленкой, образующиеся при этом соединения растворяются во флюсе, либо выделяются в газообразном состоянии;
2. В химическом взаимодействии между активными компонентами флюса и основным металлом, в результате происходит постепенный отрыв окисной пленки от поверхности металла и переход ее во флюс;
3. В растворении окисной пленки во флюсе;
4. В разрушении окисной пленки продуктами флюсования;
5. В растворении основного металла и припоя в расплаве флюса.

Окисные флюсы взаимодействуют преимущественно с окисной пленкой. Основой флюсования галоидными флюсами является реакция с основным металлом. Для повышения активности оксидных флюсов вводят фториды и фторборы, в результате одновременно с химическим взаимодействием между окислами происходит растворение окисной пленки во фторидах.

К активным газовым средам относятся газообразные флюсы, которые работают самостоятельно или как добавка в нейтральные или восстановительные газовые среды для повышения их активности. При пайке металлов в активных газовых средах удаление окисной пленки с поверхности основного металла и припоя происходит в результате восстановления окислов активными компонентами сред или химического взаимодействия с газообразными флюсами, продуктами которого является летучие вещества или легкоплавкие шлаки, к восстановительным средам относятся водород и газообразные смеси, содержащие водород и окись углерода в качестве восстановителей окислов металлов.

В качестве нейтральных газовых сред используют азот, гелий и аргон, роль газовой среды сводится к защите металлов от окисления. Как газовая среда вакуум защищает металлы от окисления и способствует удалению с их поверхности окисной пленки. При пайке в вакууме, в результате разрежения, парциальное давление кислорода становится ничтожно малым и, следовательно, уменьшается возможность окисления металлов. При высокотемпературной пайке в вакууме создаются условия для диссоциации окислов некоторых металлов.

По условиям заполнения зазора способы пайки разделяются на капиллярные и некапиллярные.

Капиллярная пайка по методу образования спая разделяется на пайку готовым припоем, контактно-реактивную, диффузионную и реактивно-флюсовую. При капиллярной пайке расплавленный припой заполняет зазор между паяемыми деталями и удерживается в нем под действием капиллярных сил. Капиллярная пайка, при которой используется готовый припой и затвердевание шва происходит при охлаждении, называется пайкой готовым припоем. Контактно-реактивной называется капиллярная пайка, при которой припой образуется в результате контактно-реактивного плавления соединяемых материалов, промежуточных покрытий или прокладок с образованием эвтектики или твердого раствора. При контактно-реактивной пайке нет необходимости в предварительном изготовлении припоя. Количество жидкой фазы можно регулировать изменением времени контакта, толщиной покрытия или прослойки, т.к. процесс контактного плавления прекращается после расходования одного из контактирующих материалов.

Диффузионной называется капиллярная пайка, при которой затвердевание шва происходит выше температуры солидус припоя без охлаждения из жидкого состояния. Припой, применяемый при диффузионной пайке, может быть полностью или частично расплавленным, может образовываться при контактно-реактивном плавлении соединяемых металлов с одной или несколькими прослойками других металлов, нанесенных гальваническими способами, напылением или уложенных в зазор между соединяемыми деталями, или в результате контактного твердо-газового плавления. Цель диффузионной пайки — проведение процесса кристаллизации таким образом, чтобы обеспечить наиболее равновесную структуру соединения, повысить температуру распайки соединений.

При реактивно-флюсовой пайке припой образуется в результате восстановления металла из флюса или диссоциации одного из его компонентов. В состав флюсов при реактивно-флюсовой пайке входят легковосстанавливаемые соединения. Образующиеся в результате реакции восстановления металлы в расплавленном состоянии служат элементами припоев, а летучие компоненты реакции создают защитную среду и способствуют отделению окисной пленки от поверхности металла.

Некапиллярная пайка разделяется на пайку-сварку и сварку-пайку. Пайко-сварка относится к процессам исправления дефектов в чугунных, алюминиевых и др. деталях, выравнивания поверхности, устранения вмятин, т.е. заливку расплавленным припоем с использованием технических возможностей низко- и высокотемпературной пайки. Обычно используется для изделий из чугуна и выполняется припоями из латуни с добавлением кремния, марганца, аммония. Сварко-пайка применяется при соединении разнородных металлов за счет расплавления более легкоплавкого металла и смачивания им поверхности более тугоплавкого металла. Необходимая температура подогрева поверхности тугоплавкого металла достигается за счет регулирования величины смещения электрода от оси шва к более тугоплавкому металлу. При подготовке изделий к пайке, при необходимости, на паяемую поверхность наносят металлические покрытия. Технологические покрытия (медь, никель, серебро) наносят на поверхность труднопаяемых металлов, либо металлов, поверхность которых при пайке интенсивно растворяется в припое, что вызывает ухудшение смачивания и капиллярного течения припоя в зазоре, хрупкость в соединениях, по месту нанесения припоя появляется эрозия, подрезы основного металла. Назначение покрытия — предотвращение нежелательного растворения основного металла в припое и улучшение смачивания; в процессе пайки покрытие должно полностью растворяться в расплавленном припое.

При капиллярной пайке используются нахлесточные, стыковые, косостыковые, тавровые, угловые, соприкасающиеся соединения. Нахлесточные соединения наиболее распространены, т.к. изменяя длину нахлестки, можно изменять характеристики прочности изделия. Нахлесточные паяные соединения обладают некоторыми преимуществами перед нахлесточными сварными, передача усилий в которых происходит по периметру элемента. В сварных конструкциях любые швы являются источником концентрации напряжений в переходной зоне от основного металла к шву, и при неблагоприятных очертаниях шва концентрация достигает значительных величин. Сопоставление механических свойств паяных и сварных соединений позволяет сделать следующие выводы:

1. Применение пайки наиболее эффективно в тонкостенных конструкциях, толщиной не более 10 мм;
2. Производительность технологического процесса пайки оказывается часто более высокой;
3. Паяные соединения вызывают, как правило, меньшие остаточные деформации;
4. Паяные конструкции в большинстве случаев имеют меньшую концентрацию напряжений по сравнению со сварными.

Прочность паяных соединений определяется также влиянием дефектов, которые могут образовываться при несоблюдении оптимальных условий и режима пайки. Типичные дефекты, которые снижают прочность паяных соединений — поры, раковины, трещины, флюсовые и шлаковые включения, непропаи.

Все дефекты сплошности в паяных соединениях разделяются на дефекты, связанные с заполнением жидким припоем капиллярных зазоров, и дефекты, возникающие при охлаждении и затвердевании паяных швов. Возникновение первой группы дефектов определяется особенностями движения расплавов припоев в капиллярном зазоре (поры, непропаи). Другая группа дефектов появляется из-за уменьшения растворимости газов в металле при переходе из жидкого состояния в твердое (газо-усадочная пористость). К этой группе относится также пористость кристаллизационного и диффузионного происхождения.

Трещины в паяных швах могут возникнуть под действием напряжений и деформаций металла изделий или шва в процессе охлаждения. Холодные трещины возникают в зоне спаев при образовании прослоек хрупких интерметалидов. Горячие трещины образуются в процессе кристаллизации; если в процессе кристаллизации скорость охлаждения высока и возникающие при этом напряжения велики, а деформационная способность металла шва мала, то возникают кристаллизационные трещины. Полигонизационные трещины в металле шва возникают уже при температурах ниже температуры солидус после затвердевания сплава по так называемым полигонизационным границам, которые образуются при выстраивании дислокации в металле в ряды и образовании сетки дислокации под действием внутренних напряжений. Неметаллические включения типа флюсовых или шлаковых могут возникать в результате недостаточно тщательной подготовки поверхности изделия к пайке или при нарушении режима пайки. При слишком длительном нагреве под пайку флюс реагирует с основным металлом с образованием твердых остатков, которые плохо вытесняются из зазора припоем.

weldering.com

Низкотемпературный припой — Большая Энциклопедия Нефти и Газа, статья, страница 1

Низкотемпературный припой

Cтраница 1

Низкотемпературные припои ( оловянно-свинцовые, висмутовые, кадмиевые и др.) имеют низкую температуру плавления ( табл. 13.1) и невысокую механическую прочность.
 [1]

Низкотемпературные припои применяют в тех случаях, когда требуется низка. В состав низкотемпературных припоев входят, кроме свинца и олова, висмут и кадм ий. Эти припои более хрупки, чем оловянно-свинцо-вые, особенно если содержат значительное количество висмута.
 [3]

Обозначение низкотемпературных припоев ( например, ПОССу 18 — 2) расшифровывается так: П — припой, ОС — оловянно-свинцовый, Су — легирован сурьмой, 18 и 2 — соответственно содержание олова и сурьмы в процентах.
 [4]

Пайка низкотемпературными припоями в индукторах или газовом пламени повышает надежность крепления, но прочность самого соединения мала из-за наличия больших напряжений в паяном шве вследствие разницы в КЛТР материалов. Кроме того, неконтролируемые скорости нагрева и охлаждения в процессе пайки приводят к появлению микротрещин на поверхности твердого сплава, которые впоследствии вызывают разрушение инструмента.
 [5]

Пайка низкотемпературными припоями осуществляется обычным способом с использованием нагревательного элемента паяльника.
 [7]

Пайку низкотемпературными припоями используют почти дл всех металлов. Эти припои состоят в основном из олова.
 [8]

Пайку низкотемпературными припоями используют почти для всех металлов. Эти припои состоят в основном из олова.
 [9]

Пайка низкотемпературными припоями менее надежна, чем высоко температурными. Ее применяют в тех случаях, когда не требуется высокой прочности соединения.
 [10]

Пайку низкотемпературными припоями используют почти для всех металлов. Эти припои состоят в основном из олова.
 [11]

В качестве низкотемпературных припоев в последнее время применяют сплавы индия с оловом, цинком, кадмием и другими металлами. Индий наряду с низкой температурой плавления обладает хорошей смачивающей способностью по отношению к металлам, керамике, стеклу, полупроводникам.
 [12]

Основные материалы низкотемпературных припоев ( ГОСТ 21930 — 76) — сплавы олова и свинца. Дополнительное легирование низкотемпературных ( мягких) припоев с целью повышения температуры плавления выполняется сурьмой ( до 6 %) или кадмием.
 [13]

В качестве низкотемпературных припоев применяют сплавы индия с оловом, цинком, кадмием и другими металлами.
 [14]

Рекомендуется пайка низкотемпературными припоями.
 [15]

Страницы:  

   1

   2

   3

   4




www.ngpedia.ru

Мир современных материалов — Припои

Припои принято делить на две группы — мягкие и твердые. Это деление связано с их температурой плавления. К мягким относятся припои с температурой плавления ниже 300 °С, к твердым — выше 300 °С. Кроме температуры плавления, припои существенно различаются механической прочностью. Мягкие припои имеют предел временного сопротивления разрыву 16…100 МПа, твердые — 100……500 МПа.

 Выбирают припой в соответствии с типом паяемого металла (или металлов, если они разнородны), требуемой механической прочностью, коррозионной стойкостью и стоимостью.

При пайке токоведущих частей очень важно учитывать значении удельной проводимости припоя.

Название припоя, как правило, определяется металлами, входящими в него в наибольшем количестве. Название припоев, содержащих драгоценные или редкие металлы даже в небольших количествах, происходят от этих металлов.

Условные обозначения марок припоев содержат букву П (припой) и одну из последующих букв русского названия основных компонентов, а также количество их в процентах. Сокращения наименования компонентов следующие: олово — О, сурьма — Су, свинец — С, алюминий — А, серебро — Ср, никель — Н, палладий — Пд, индий — Ин, медь — М, золото — Зл, германий — Г, кремний — Кр,висмут — Ви, кадмий — К, титан — Т. Чистые металлы, применяемые в качестве припоев, обозначаются такими же марками, как в ГОСТ на поставку (например, 02 означает олово, С1 — свинец и т. д.).

Наиболее распространенными мягкими припоями, изготовляемыми промышленностью, являются оловянно-свинцовые. На них распространяется ГОСТ 21931—76. В соответствии с этим ГОСТ оловянно-свинцовые припои, не содержащие сурьму, называют бессурмянистыми, а припои, содержащие сурьму 1…5 %,—сурьмянистыми.

 

Примеры условных обозначений марок оловянно-свинцовых припоев:

ПОС-61 — припой оловянно-свинцовый, содержит 61 % олова, остальное свинец.

ПОССу-61-0,5 — припой оловянно-свинцовый, малосурьмянистый, содержит 61 % олова, 0.5 % сурьмы, остальное — свинец.

ПОС-61М — припой оловянно-свинцовый, содержит 61 % олова, небольшой процент меди и свинец.

ПОСК-50-18 — припой оловянно-свинцовый, содержит 50 % олова, 18 % кадмия, остальное — свинец.

 

Применение оловянно-свинцовых припоев в электротехнике и радиотехнике:













МаркаНазначение
ПОС-90для пайки деталей, подвергающихся в дальнейшем гальваническим покрытиям
ПОС-61для лужения и пайки тонких проводов и спиральных пружин в измерительных приборах, монтажных соединений обмоточных проводов диаметром 0,05…0,08 мм и литцендрата, резисторов, конденсаторов, герметичных швов стеклянных проходных изоляторов, печатных схем и при производстве полупроводниковых приборов, т. е. там, где не допустим перегрев.
ПОС-40для пайки токопроводящих деталей, проводов, наконечников, для соединения проводов с лепестками; при производстве полупроводниковых приборов
ПОС-10для лужения и пайки контактных поверхностей электрических аппаратов, приборов, реле; при производстве полупроводниковых приборов
ПОСК-50-18для пайки деталей, чувствительных к перегреву, в металлизированной керамике, для ступенчатой пайки конденсаторов; для герметизации. Для лужения пассивной части интегральных микросхем с покрытием медью, серебром

ПОССу-61 -0,5

для лужения и пайки деталей электроаппаратуры, обмоток электрических машин при жестких требованиях к температуре. Для лужения и пайки пассивной части интегральных микросхем и выводов с покрытием никелем, медью, серебром, оловом; для герметизации.
ПОССу-40-0,5для лужения и пайки обмоток электрических машин
ПОССу-35-0,5для лужения и пайки свинцовых кабельных оболочек электрических изделий неответственного назначения
ПОССу-18-0,5для лужения и пайки трубок теплообменников электроламп
ПОССу-95-5для пайки в электропромышленности

ПОССу-40-2

ПОССу-8-3

припой широкого назначения. Для пайки наружных деталей и сборочных единиц электровакуумных приборов

 

В табл. 1 приведены физико-механические свойства оловянно-свинцовых припоев.

 

Таблица 1. Физико-механические свойства оловянно-свинцовых припоев.






























МаркаТемпература кристаллизации, °Сρ,
мкОм×м

l,

Вт×м-1×К-1

σ,

МПа

Δl/l,

%

 началаконца  
Олово чистое2322320,11563_
ПОС-90200 0,120544940
ПОС-611901830,139504346
ПОС-40238 0,159423852
ПОС-102992680,200353244
ПОС-61М1921830,143494540
ПОСК-50-181451420,1335440

 

ПОССу-61-0,5

 

189

 

 

0,140

 

50

 

45

 

35

 
ПОССу-50-0,5216 0,149473862
ПОССу-40-0,5235 0,169 4050
 

 

42

ПОССу-35-0,52451830,1723847

 

ПОССу-30-0,5

ПОССу-25-0,5

ПОССу-18-0,5

 

255

266

 

 

0,179
0,182

   
 383645
277 0,198353650
 
ПОССу-95-52402340,145464046

 

ПОССу-40-2

 

299

 

 

0,172

 

42

 

43

 

48

 

ПОССу-35-2

ПОССу-30-2

ПОССу-25-2

ПОССу-18-2

243

250

 0,179
0,182

    38                 40         40

 

                               38

185
260 0,185
2701860,206343635
ПОССу-15-22751840,2083336 
 
ПОССу-8-32902400,207344043

Обозначения в таблице:

ρ – удельное сопротивление;

l — коэффициент теплопроводности;

σ — временное сопротивление разрыву;

Δl/l – относительное удлинение.

 

 

Стандартными твердыми припоями являются медно-цинковые и серебряные припои. Медно-цинковые припои, изготовляемые промышленностью, должны удовлетворять ГОСТ 23137—78, а серебряные — ГОСТ 19738—74:

ПМЦ-36 — припой медно-цинковый, 36% меди.

ПСр-50 — припой серебряный, Ag50 %

ПСр-25Ф — припой серебряный, Ag25 %, содержит фосфор.

ПСр-50К — припой серебряный, Ag50 %, содержит кадмий.

В табл. 2 приведены температуры кристаллизации и назначение некоторых стандартных твердых припоев. В качестве твердых припоев иногда применяют стандартные сплавы меди с фосфором (ГОСТ 451.5—81). В некоторых случаях они заменяют дорогостоящие серебряные припои.

Таблица 2. Свойства и назначение некоторых стандартных серебряных и медно-цинковых припоев













 Температура кристаллизации, °СПлотность, Мг×м-3Материалы, подвергаемые пайкеНазначение
Марка   
     
 началаконца   
ПСр-2,530529511,0Медь, ее сплавы, нержавеющаяДля пайки наружных деталей
ПСр-330530011,3сталь, углеродистая стальи сборочных единиц электровакуумных приборов
ПСр-158106358,3  
ПСр-406055958,4  
ПСр-457256009,1  
  
ПМЦ-Зв9508257,7Латунь, содержащая до
68 % меди
Для соединений, не подверженных ударной нагрузке
или изгибу
Г1МЦ-549708608,3Медь, медные сплавыТам, где не требуется хорошей затекаемости припоя

 

Фосфорные припои относятся к группе самофлюсующихся припоев, так как пайка ими меди производится без применения флюса. При нагревании припоя фосфор окисляется в фосфорный ангидрид, который и является флюсом. Однако при пайке этими припоями латунных деталей с медными применение флюса обязательно. Недостатком фосфорных припоев является хрупкость паяного шва. Для пайки стали и чугуна фосфорные припои непригодны. В табл. 3 приведены температуры плавления и назначение медно-фосфорных припоев.

Таблица 3. Свойства и назначение в качестве припоев стандартных сплавов медь — фосфор





Марка припояСодержание
фосфора, %
Температура
плавления, °С
Назначение
МФ18,5… 10725…850Для пайки медных, латунных и бронзовых деталей,
МФ28,5… 10725…850работающих в условиях небольших
МФЗ8,5725…860статических нагрузок

 

Примечание. Сплавы МФ1 и МФ2 отличаются друг от друга содержанием примеси висмута и сурьмы.

 

 

Пайка алюминия и его сплавов производится специально разработанными для этой цели припоями и флюсами. Главным препятствием при пайке алюминия является пленка оксида, которая почти мгновенно образуется при ее удалении механическим способом. Оксидная пленка алюминия очень стойкая, ее не удается растворить или восстановить обычными флюсами, применяемыми при пайке меди или стали. В табл. 4 приведены припои, применяемые при пайке алюминия и его сплавов.

При пайке алюминия низкотемпературными припоями его поверхность предварительно покрывают никелем.

Таблица 4. Характеристики припоев, применяемых для пайки алюминия и его сплавов







МаркаКомпонентыСодержание, %Плотность, Мг×м-3Температура
плавления, °С
П425А

А1

Сu
Zn

19,0…21,0
14,0—16,0
64,0—66,0
5,70415-425
П34АSi
Сu
Al
5,5-6,5
14,0… 16,0
Остальное
3,30525
ПСИЛО*

Al

Si

90,0…87,0
10,0..13,0
2,58…2,66577
АВИА 1Sn
Cd
Zn
55
20
22
 200
АВИА 2Sn
Cd
Zn
Al
40
20
25
15
 250

* Силумии (ГОСТ 1521—76)

 

В некоторых случаях в качестве припоев используют чистые металлы. В частности, кадмий применяют для пайки и лужения ковара, никеля. Чистое олово применяется для пайки и лужения меди и ее сплавов, низкоуглеродистой стали, платины, ковара. Медь применяется для пайки никеля, низкоуглеродистой стали.

Кроме описанных выше припоев, на которые распространяются государственные стандарты, в радиоэлектронной промышленности применяют припои, состав и назначение которых определяется требованием отраслевого стандарта. Здесь есть большая группа серебряных, золотых, а также небольшое число медно-никелевых, медно-германиевых и других припоев. В табл.5 приведены сведения только о тех, которые существенно отличаются от стандартных по своему назначению.

Таблица 5. Характеристики некоторых нестандартных припоев












МаркаКомпо-
ненты
Содержание, %Плот-
ность d,
Mr-м-3
Температура плавления, °СНазначение
ПОСМ-0,5Sn
Sb
Сu
Pb

59…61,0
Heболее 0,8

0,5…0,7
Остальное

8,50184Для лужения пассивной ча-
сти микросхем с тонкими
медными покрытиями
(0,5…0,6 мкм)
ПСрОС-3-58Sn
Sb
Ag
Pb

66,8…58.8
He более 0,8

2.6…3,4
Остальное

2,50190Для лужения пассивной ча-
сти схем специального наз-
начения с покрытием
медью, серебром
ПСр-3Ин

In

Ag

96,5…97,6
2,5…3,5
7,36141Для пайки золота и серебра,
а также металлизирован-
ных материалов в микро-
электронике
Фольга никелево-медная вакуумной плавкиNi
Сu
75±2
25±2
8,771150…1210Для пайки сплава ВТ1-00 с
металлизированной керамикой
ППдН-60-40Pd
Ni
40
60
10,611237Для пайки никеля, низкоугле-
родистой стали, молибде-
на, вольфрама
ПСрМ-72-28Ag
Сu
72±0,5
28±0,5
9,90779Для пайки меди, никеля,
сплавов ЭП-333, ковара
29НК, стали 08, медно-
молибденовых сплавов, ке-
рамики
ПСр-72В

Ag

Сu

72±0,5
Остальное
9,90789Для пайки никеля, меди,
мельхиора, константа на
сплавов МО-19, МН-45,
29НК-ВИ, монсля, кера-
мики
ПМГ-9Ge
Ni
В
Сu
8,7 ±0.4
0.5 ±0.5
0,2 ±0,1
Остальное
8,70950…1005Для пайки электротехничес-
кой стали, нержавеющей
стали, никеля
ПМТ-45Cu
Fe
Si
Ti
49,0…52,0
1,0-3,0
0,7… 1,0
45,0…49,3
6.02955Для панки титана и его спла-
вов
       

 

Литература:

  1. Справочник по электротехническим материалам/ под ред. Корицкого Ю.В., Пасынкова В.В., Тареева Б.М. – М.: Энергоатомиздат, т.2, 1987. – 464 с.

Вас также может заинтересовать:

worldofmaterials.ru

припой для низкотемпературной пайки — патент РФ 2219030

Изобретение относится к пайке, в частности к составу припоя на основе олова, применяемому для выравнивания лицевой поверхности кузовов автомобилей в условиях конвейерной сборки автомобилей и при ремонтных работах. Предложен состав припоя для низкотемпературной пайки, содержащий олово, медь, цинк, сурьму и никель, при этом он дополнительно содержит железо, висмут, кадмий, марганец, серебро, кремний, при следующем соотношении компонентов, мас.%: медь 8-20, цинк до 2,1, железо 0,05-2,0, никель 0,1-1,0, сурьма 0,1-0,5, висмут до 0,1, кадмий до 0,05, марганец до 0,05, серебро до 0,05, кремний до 0,05, олово остальное. Предложенный припой удовлетворяет требованиям напайки его на вертикальные поверхности изделий из стали и цветных сплавов, в частности стыковых швов кузовов автомобилей с выравниванием лицевой поверхности, а также имеет широкий температурный интервал в пределах 200-400oC для пайки газовой горелкой. 1 табл.

Изобретение относится к области пайки, в частности к составу припоя на основе олова, применяемому для выравнивания лицевой поверхности кузовов автомобилей в условиях конвейерной сборки автомобилей и при ремонтных работах. Известен припой для низкотемпературной пайки (см. авт. свид. N14799250, МКИ В 23 К 35/26), обладающий коррозионной стойкостью и механической прочностью паяного соединения, содержащий следующий состав, мас.%:
Индий — 34-35
Медь — 11-12
Германий — 0,8-1,0
Кобальт — 5-6
Олово — Остальное
Недостатком данного припоя является то, что в его состав входят индий, германий и кобальт, снижающие температурный интервал, начало которого всего 113 С. Это совершенно не удовлетворяет требованиям современных процессов нанесения лакокрасочных покрытий на кузова, когда изделия должны выдерживать нагрев до температуры 234oC. Известен также способ повышения прочности легкоплавких припоев на основе олова (см. авт. свид. 310764, МКИ B 23 K 35/26) путем введения в них металлических добавок, в качестве которых использовались частицы железа размером от 4-100 мк, при этом легкоплавкий припой имеет следующий состав, вес. %:
Железо — 5-10
Сурьма — 1-2
Олово — Остальное
Недостатком этого припоя является небольшой температурный интервал и температура полного расплавления припоя, всего 234oC. Наиболее близким аналогом по совокупности существенных признаков и по назначению (прототип) является припой для пайки изделий на основе олова (см. авт. свид. 498134, МКИ В 23 К 35/26), обладающий повышенной смачиваемостью и прилипаемостью к поверхности из стали и цветных металлов, содержащий следующий состав, мас.%:
Никель — 0,3-2,2
Цинк — 24-26
Сурьма — 3,5-5,6
Медь — 0,8-1,3
Олово — Остальное
У этого припоя недостаток заключается в том, что не удовлетворяет требованиям прочности паяных соединений, так как склонен к трещинообразованию из-за высокого содержания цинка в составе припоя. Технический результат, получаемый предлагаемым изобретением, заключается в разработке состава припоя, который в отличие от прототипа дополнительно содержал железо, висмут, кадмий, марганец, серебро для придания припою лучших технологических свойств (пластичности, смачиваемости), кремний предохранял цинк от испарения и способствовал образованию плотного прочного паяного соединения, то есть в итоге получили такой состав припоя, который удовлетворял требованиям напайки его на вертикальные поверхности изделия из стали и цветных сплавов, в частности стыковых швов кузовов автомобилей с выравниванием лицевой поверхности, обладающего широким температурным интервалом в пределах 200-240oС для пайки газовой горелкой. Для достижения указанного результата в состав припоя, содержащий олово, медь, цинк, сурьму и никель, дополнительно вводится железо, висмут, кадмий, марганец, серебро, кремний при следующем соотношении компонентов, мас.%:
Медь — 8-20
Цинк — До 2,1
Железо — 0,05-2,0
Никель — 0,1-1,0
Сурьма — 0,1-0,5
Висмут — До 0,1
Кадмий — До 0,05
Марганец — До 0,05
Серебро — До 0,05
Кремний — До 0,05
Олово — Остальное
Предложенный состав припоя работает в режимах пайки при температуре от 200 до 400oС. При пайке заявляемым припоем используются паяльные флюсы на основе хлористых солей, например хлористого цинка, или паяльные пасты. Примеры различных составов предлагаемого припоя и физико-механические свойства приведены в таблице. При снижении в припое меди ниже 8% резко ухудшается технологические свойства пайки, а именно: повышается жидкотекучесть припоя и затрудняется напайка припоя на вертикальные стенки деталей, поэтому нецелесообразно содержание меди в припое ниже 8%. При содержании меди выше максимального значения — 20% -повышается температура начала плавления (температура солидуса) до 230oС, следовательно, повышается температура пайки, что также нецелесообразно (при перегреве детали до температуры выше 300oС начинает заметно окисляться олово). Сурьма в малом количестве вводится для предупреждения возможности аллотропных превращений в олове и для снижения окисляемости олова. Составы 1, 2, 3 менее твердые по сравнению с составом 4, в котором содержание меди максимальное. Никель и железо вводятся для упрочнения припоя и повышения его стойкости. Так как никель взаимодействует с оловом, образуя хрупкие интерметаллические включения, повышающие температуру плавления, содержание никеля выше 1% нецелесообразно. Выбранное количественное соотношение компонентов припоя обеспечивает предлагаемому припою способность нанесения его на вертикальные стенки деталей при температуре 200-400oС в стационарных условиях при ремонте и в условиях конвейерной сборки кузовов автомобилей. Добавление малых количеств висмута, марганца, кадмия, серебра, кремния упрочняет припой. Оптимальное соотношение компонентов в указанных пределах позволяет придать заявленному припою кашицеобразное состояние в широком интервале температур от 100 до 400oС. Именно такие свойства нужны припою при пайке на вертикальных поверхностях кузовов автомобилей газовой горелкой в условиях конвейерной сборки и в стационарных условиях при ремонте. Качественная пайка осуществляется благодаря тому, что в интервале температур 200-400oС припой хорошо смачивает как сталь, так и цветные сплавы (бронзы, латуни и т.д.). Отсутствие в составе припоя свинца делает припой экологически безвредным. Наряду с повышением технологичности припоя одновременно улучшаются экологические условия рабочего места. Применение такого состава паяного припоя улучшит экологию цеха.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Припой для низкотемпературной пайки, содержащий олово, медь, цинк, сурьму, железо и никель, отличающийся тем, что он дополнительно содержит висмут, кадмий, кремний, марганец, серебро при следующих соотношениях компонентов, мас.%:Медь 8-20Цинк до 2,1Железо 0,05-2,0Никель 0,1-1,0Сурьма 0,1-0,5Висмут До 0,1Кадмий До 0,05Марганец До 0,05Серебро До 0,05Кремний До 0,05Олово Остальное

www.freepatent.ru

Припой для пайки металлов: информация только по существу

Определение термина

Припой для пайки – низкотемпературный металл или сплав, предназначением которого является заполнение зазоров между соединяемыми путем пайки металлами. Основной целью рассматриваемого материала является получение качественного, прочного и надежного монолитного соединения. По сути, припой – наполнитель, температура плавления которого значительно меньше температуры плавления основного металла.

Прочность и качество пайки по большей части зависит от тиноля. Таким образом, параметры соединения определяют выбор наиболее подходящего припоя для того или иного металла (стали, латуни, меди, чугуна и т. п.). Может производиться пайка мягкими припоями, а также пайка твердыми припоями.

Как выбрать припой для пайки?

По химическому составу они подразделяются на свинцово-оловянные, медно-фосфорные, цинковые, титановые, серебряные и другие. По температуре плавления они разделены на низкотемпературные (до 450 гр. С), а также высокотемпературные (температура плавления выше 450 гр. С). Если вам нужен припой для пайки алюминия, то с большой вероятностью подойдет тот, который предназначен для соединения медных деталей, так как они нередко бывают универсальными.

Также выбор осуществляется в зависимости от метода обработки металла, тонкости работы. Например, пайка волной припоя – метод соединения, применяемый чаще в пайке плат, когда плата прямолинейно проводится сквозь гребень волны, тем самым требуя соответствующего «наполнителя». Таким образом, волна остается свободной от окислов.

Выбор осуществляется в зависимости от характеристик соединяемого металла (меди, алюминия, стали, чугуна), нормы расхода так называемого наполнителя для соединения металлических изделий. Обратите внимание на то, что у каждого припоя для конкретных металлов существуют свои нормы расхода, которые желательно знать. Узнать информацию относительно нормы расхода можно из специальной таблицы. Например, для пайки труб из меди применяются соответствующие тиноли – для соединения меди, а также сплавов меди.

В роли основы тинолей, необходимых для пайки меди, а также ее сплавов применяется часто композиционный состав тиноля: медь-цинк, медь-фосфор, медь-никель, медь-кадмий. С целью получения нужных свойств в композиции могут добавляться: марганец, олово, железо, алюминий и другие материалы.

Стоит отметить, что соединения, производимые посредством применения материалов на основе меди, способны выдерживать значительные механические нагрузки. Медно-цинковые материалы для пайки могут похвастать сравнительно низкой температурой плавления. При высоком содержании цинка (более 40%) они могут становиться пластичными.

В связи с этим подобные материалы следует использовать преимущественно для скрепления металлических деталей, не подвергающихся механическим нагрузкам, ударам, изгибам. Также при выборе припоя, необходимого для пайки, следует обращать внимание на нормы расхода припоя. Обратите внимание на то, что нормы расхода припоя могут быть разными в зависимости от обрабатываемого металла (стали, меди и др.), а также других параметров работы.

Классификация припоев

Припои подразделены на три основные группы в зависимости от температуры плавления:

  • Мягкие. Предназначены для пайки обладают температурой плавления до 400°С;
  • Температура плавления твердых составляет свыше 500°С;
  • Полутвердые – материалы, обладающие температурой плавления в диапазоне от температуры плавления чистого олова до 400°С.

Говоря о том, чем паять, мягким или твердым припоем, стоит сказать, что оба владеют пределом прочности до 50-70 МПа при растяжении. Они применяются в большинстве случаев для токоведущих частей, которые не являются одновременно несущими конструкциями аппаратов и машин. Работа с металлами мягким, а также на половину твердым материалом производится посредством паяльника, либо при помощи погружения металлических деталей в расплавленный тиноль.

Относительно твердых тинолей, предназначенных для пайки, то они имеют предел прочности до 500 МПа, используются в качестве тинолей первой категории прочности во время пайки токоведущих частей, допускающих высокое нагревание деталей, которые воспринимают основную механическую нагрузку. Работа производится с помощью электроконтактного способа, с применением графитовых или электродов из меди, а также не без участия электрической сварки. Детали незначительных размеров допустимо соединять металл автогеном.

Система обозначения

В большинстве случаев обозначение (маркировка) припоя начинается с буквы «П», которая символизирует первую букву определения. Числовые обозначения в маркировке припоя показывают на содержание компонентов, и идут после буквы «П». Содержание компонентов тиноля указывается в процентах (округленно).

Стоит также обратить внимание на то, что буква или буквосочетание, стоящие в конце маркировки тиноля, указывает на то, что данный компонент составляет содержание припоя (оставшееся).

Обозначения компонентов:

  • А – состав содержит алюминий;
  • Ж – состав содержит железо;
  • И — состав содержит индий;
  • К или Кд – в состав входит кадмий;
  • М – состав содержит медь;
  • О – в состав входит олово;
  • С — в состав входит свинец;
  • Ср – в состав входит серебро;
  • Су – в состав входит сурьма;
  • Ф – состав содержит фосфор;
  • Ц – в состав входит цинк.

Сфера применения

В разных отраслях народного хозяйства применяются различные материалы для пайки, на основе разнообразных металлов: меди, олова, цинка, сурьмы и т. д. Чаще всего тиноли можно встретить в форме чашек, проволоки, анодов, трубок, листов. Наиболее распространенными являются, пожалуй, мягкие, а также бессвинцовые тиноли для пайки различных металлов: стали, меди.

Мягким припоем чаще всего можно воспользоваться в электричестве, микроэлектронике. Мягкий материал имеет широкое разнообразие форм, химических составов.

Среди множества форм следует выделить основные, наиболее распространенные:

  • Цилиндры;
  • Пасты;
  • Литые;
  • Стержни;
  • Порошки;
  • Проволочные;
  • Стержни;
  • Полосы и фольга;
  • Формованные.

Если вы решились воспользоваться мягким припоем, знайте, что его температура плавления достаточно высокая (в пределах 400-500 гр. С). Пожалуй, самым популярным является на сегодняшний день сплав свинца и олова, однако могут применяться и другие сплавы.

Несмотря на преимущества классических тинолей, в будущем с большой вероятностью лидерство получат бессвинцовые материалы, поскольку они имеют одно очень выгодное преимущество – экологичность, к которой так все стремятся. Таким образом, в состав так называемого наполнителя не входит вредный для организма и здоровья человека свинец.

Огромного внимания заслуживает тот факт, что подобное преимущество в будущем позволит использовать экологический материал в пайке практически повсеместно, где обрабатываемые и соединяемые материалы будут безвредно контактировать с продуктами питания, питьевой водой, с человеком. Не сложно догадаться, что экологичность позволит значительно расширить круг применения данного бессвинцового материала.

Тиноль для стали и меди

Пайка меди, стали может осуществляться твердым припоем, поскольку для соединения стали и меди требуется высокая температура плавления тиноля в пределах 840-880 гр. С. Твердым припоем помимо стали и меди также может производиться пайка такого металла, как томпак. При выборе припоя для соединения стали, меди следует проявляться высокую осторожность и внимательность. Не стоит забывать том, что нормы расхода припоя — достаточно важно в работе. Стоит отметить, что есть специальная таблица, в которой указаны нормы расхода на соединяемые металлические детали.

Расход припоя во время пайки

Нормы расхода – отдельная тема для разговора. Существующие для подсчета нормы расхода серебряного тиноля формулы позволяют взглянуть на величины, которые не соответствуют такому понятию, как нормы расхода материала в процессе газовой обработки.

В результате ряда проведенных экспериментов по соединению серебряным тинолем ПСр-45 стали известны нормы расхода: на один квадратный сантиметр соединяемых деталей при обработке металла вполне хватает 0,3 грамм материала.

Такой нормы расхода материала должно хватать для пайки качественного и долговечного соединения металлических деталей из стали, меди, а также других металлов. Стоит отметить, что применение тиноля свыше нормы расхода не даст более качественный результат.

Так, можно дать совет и порекомендовать следующую формулу для вычисления нормы расхода серебряного тиноля для работы с газовой горелкой: Gпр=0,3Fпр, где Gпр — данные нормы расхода низкотемпературного материала в граммах двух поверхностей, а Fпр является площадью спаиваемых поверхностей в сантиметрах квадратных.

Во время соединения иными серебряными тинолями нормы расхода на сантиметр квадратный площади будут меняться соответственно изменениям удельного веса тиноля. Данный способ подсчета нормы расхода для пайки не является абсолютно точным, поскольку технологии не в силах точно определить выход тиноля на поверхность в зоне создания соединения металлических деталей, а, следовательно, становится допустимой какая-либо ошибка в определении площади и нормы расхода материала в процессе пайки стали и др. металлов. Помимо всего, потери материала зависят по большей части от квалификационного уровня паяльщика, и определение нормы расхода становится делом сугубо индивидуальным.

Похожие статьи

goodsvarka.ru