Простой регулятор напряжения от 0 до 30 вольт – Лабораторный блок питания своими руками 0-30В 0-5А. Регулятор напряжения своими руками от 0 до 5 вольт

Регулятор напряжения на транзисторе

Несколько дней назад приобрёл маленькую дрель для сверления печатных плат, только вот вращается она, к сожалению, с постоянной частотой, а мне хотелось бы регулировать обороты этой дрели.

Покопался в интернете, нашел схему транзисторного регулятора напряжения для «весёлого блока питания» (Автор телеканал «Юность»)


Но -12 и +12 (если взять эти выводы из компьютерного блока питания) в сумме дадут 24В, а на выходе нашего регулятора имеем только 9В. Не порядок. Подумал я и решил подкинуть в схему еще один стабилитрон «Д814Б», такой же как и в нашей схеме на 9В, и включить его последовательно, то общее напряжения стабилизации будет ровняться 18В. А Этого напряжения вполне достаточно для нашей мини дрели..

И так, поехали, нам понадобится:
• 1 резистор 560 Ом
• 2 резистора на 1 КОм
• 1 подстроечный резистор на 10 Ком
• 1 транзистор МП42, можно и МП41 (я такой использовал)
• 1 транзистор П213
• 2 стабилитрона «Д814Б»
• Паяльные принадлежности
• Кусок текстолита (в моём случае обычный кусок пластмассы)
• Провода
• Плоскогубцы
• Кусачки

Для начала изменим нашу схему, чтобы Вам было понятно, и чтобы самому не путаться


Вот, теперь мы имеем схему по которой будем собирать наше устройство..

Когда у нас есть схема и все нужные нам детали – можно смело приступать к сборке


Берём нашу пластмассу и делаем в ней дырочки для установки деталей

Далее устанавливаем детали на наш кусок пластмассы (текстолита)

Важно!! Транзистор П213 следует установить на радиатор и в месте с радиатором уже устанавливать на нашу схему. Провода лучше стазу зафиксировать термоклеем или эпоксидкой, потому что я при установке умудрился отломать вывод эмиттера

Далее просовываем провода от П213 в дырочки на другую сторону нашей конструкции

После чего собираем всё по схеме, и вот что у нас получается в конце

Спасибо за внимание, всем удачи=)

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Простой регулятор напряжения своими руками

Собранный однажды простейший регулятор напряжения на одном транзисторе был предназначен для определённого блока питания и конкретного потребителя, никуда больше его подключать было конечно не нужно, но как всегда наступает момент, когда правильно поступать мы перестаём. В данной статье рассмотрим простой регулятор напряжения своими руками.

 

 

   

 

Схема устройства:

   Имелся стабилизированный импульсный блок питания, дающий на выходе напряжение 17 вольт и ток 500 миллиампер. Требовалось периодическое изменение напряжения в пределе 11 – 13 вольт. И общеизвестная схема регулятора напряжения на одном транзисторе с этим прекрасно справлялась.

   От себя добавил к ней только светодиод индикации да ограничительный резистор. К слову, светодиод здесь это не только «светлячок» сигнализирующий о наличии выходного напряжения. При правильно подобранном номинале ограничительного  резистора, даже небольшое изменение выходного напряжения отражается на яркости свечения светодиода, что даёт дополнительную информацию о его повышении или понижении. Напряжение на выходе можно было изменять от 1,3 до 16 вольт.

    КТ829 — мощный низкочастотный кремниевый составной транзистор, был установлен на мощный металлический радиатор и казалось, что при необходимости он вполне может выдержать и большую нагрузку, но случилось короткое замыкание в схеме потребителя и он сгорел. Транзистор отличается высоким коэффициентом усиления и применяется в усилителях низкой частоты – видно действительно его место там а не в регуляторах напряжения.

Слева снятые электронные компоненты, справа приготовленные им на замену. Разница по количеству в два наименования, а по качеству схем, бывшей и той, что решено было собрать, она несопоставима. Напрашивается вопрос – «Стоит ли собирать схему с ограниченными возможностями, когда существует более продвинутый вариант «за те же деньги», в прямом и переносном смысле этого изречения?»

 

radioshemka.ru

Лабораторный блок питания своими руками 0-30В 0-5А. Регулятор напряжения своими руками от 0 до 5 вольт

Регулируемый блок питания своими руками

Мастер, описание устройства которого в первой части, задавшись целью сделать блок питания с регулировкой, не стал усложнять себе дело и просто использовал платы, которые лежали без дела. Второй вариант предполагает использование еще более распространенного материала — к обычному блоку была добавлена регулировка, пожалуй, это очень многообещающее по простоте решение при том, что нужные характеристики не будут потеряны и реализовать задумку можно своими руками даже не самому опытному радиолюбителю. В бонус еще два варианта совсем простых схем со всеми подробными объяснениями для начинающих. Итак, на ваш выбор 4 способа.

Блок питания из старой платы компьютера

Stalevik

Расскажем, как сделать регулируемый блок питания из ненужной платы компьютера. Мастер взял плату компьютера и выпилил блок, питающий оперативку.Так он выглядит.

Определимся, какие детали нужно взять, какие нет, чтобы отрезать то, что нужно, чтобы на плате были все компоненты блока питания. Обычно импульсный блок для подачи тока на компьютер состоит из микросхемы, шим контроллера, ключевых транзисторов, выходного дросселя и выходного конденсатора, входного конденсатора. На плате еще и зачем-то присутствует входной дроссель. Его тоже оставил. Ключевые транзисторы — может быть два, три. Есть посадочное место по 3 транзистор, но в схеме не используется.

Сама микросхема шим контроллера может выглядеть так. Вот она под лупой.

Может выглядеть как квадратик с маленькими выводами со всех сторон. Это типичный шим контроллер на плате ноутбука.

Так выглядит блок питания импульсный на видеокарте.

Точно также выглядит блок питания для процессора. Видим шим контроллер и несколько каналов питания процессора. 3 транзистора в данном случае. Дроссель и конденсатор. Это один канал.Три транзистора, дроссель, конденсатор — второй канал. 3 канал. И еще два канала для других целей.Вы знаете как выглядит шим-контроллер, смотрите под лупой его маркировку, ищите в интернете datasheet, скачиваете pdf файл и смотрите схему, чтобы ничего не напутать.На схеме видим шим-контроллер, но по краям обозначены, пронумерованы выводы.

Обозначаются транзисторы. Это дроссель. Это конденсатор выходной и конденсатор входной. Входное напряжение в диапазоне от 1,5 до 19 вольт, но напряжение питание шим-контроллера должно быть от 5 вольт до 12 вольт. То есть может получиться, что потребуется отдельный источник питания для питания шим-контроллера. Вся обвязка, резисторы и конденсаторы, не пугайтесь. Это не нужно знать. Всё есть на плате, вы не собираете шим-контроллер, а используете готовый. Нужно знать только 2 резистора — они задают выходное напряжение.

Резисторный делитель. Вся его суть в том, чтобы сигнал с выхода уменьшить примерно до 1 вольта и подать на вход шим-контроллера фидбэк — обратная связь. Если вкратце, то изменяя номинал резисторов, можем регулировать выходное напряжение. В показанном случае вместо резистора фидбэк мастер поставил подстроечный резистор на 10 килоом. Этого оказалось достаточным, чтобы регулировать выходное напряжение от 1 вольта до примерно 12 вольт. К сожалению, не на всех шим-контроллерах это возможно. Например, на шим контроллерах процессоров и видеокарт, чтобы была возможность настраивать напряжение, возможность разгона, выходное напряжение сдается программно по несколькоканальной шине. Менять выходное напряжение такого шим контроллера можно разве только перемычками.

Итак, зная как выглядит шим-контроллер, элементы, которые нужны, уже можем выпиливать блок питания. Но делать это нужно аккуратно, так как вокруг шим-контроллера есть дорожки, которые могут понадобиться. Например, можно видеть — дорожка идёт от базы транзистора к шим контроллеру. Её сложно было сохранить, пришлось аккуратно выпиливать плату.

Используя тестер в режиме прозвонки и ориентируясь на схему, припаял провода. Также пользуясь тестером, нашел 6 вывод шим-контроллера и от него прозвонил резисторы обратной связи. Резистор находился рфб, его выпаял и вместо него от выхода припаял подстроечный резистор на 10 килоом, чтобы регулировать выходное напряжение, также путем про звонки выяснил, что питание шим-контроллера напрямую связано со входной линией питания. Это значит, что не получиться подавать на вход больше 12 вольт, чтобы не сжечь шим-контроллер.

Посмотрим, как блок питания выглядит в работе

Припаял штекер для входного напряжения, индикатор напряжения и выходные провода. Подключаем внешнее питание 12 вольт. Загорается индикатор. Уже был настроен на напряжение 9,2 вольта. Попробуем регулировать блок питания отверткой.

Пришло время заценить, на что способен блок питания. Взял деревянный брусок и самодельный проволочный резистор из нихромовой проволоки. Его сопротивление низкое и вместе с щупами тестера составляет 1,7 Ом. Включаем мультиметр в режим амперметра, подключаем его последовательно к резистору. Смотрите, что происходит — резистор накаляется до красна, напряжение на выходе практически не меняется, а ток составляет около 4 ампер.

Раньше мастер уже делал похожие блоки питания. Один вырезан своими руками из платы ноутбука.

 

Это так называемое дежурное напряжение. Два источника на 3,3 вольта и 5 вольт. Сделал ему на 3d принтере корпус. Также можете посмотреть статью, где делал похожий регулируемый блок питания, тоже вырезал из платы ноутбука (https://electro-repair.livejournal.com/3645.html). Это тоже шим контроллер питания оперативной памяти.

Как сделать регулирующий БП из обычного, от принтера

Пойдет речь о блоке питания принтера canon, струйный. Они много у кого остаются без дела. Это

szemp.ru

Регулятор Напряжения Постоянного Тока От 0 До 30 Вольт

Регулятор Напряжения Постоянного Тока От 0 До 30 Вольт Average ratng: 8,1/10 8306reviews

Испытание схемы регулятора напряжения 0- 3.

Схема простого, регулируемого (плавно) блока питания на 0—1. Тема: как сделать простой, регулируемый плавно, блок питания своими руками. Человек, у которого электрика и электроника является хобби, увлечение, делами, что позволяют получать удовольствие или иметь дополнительный заработок, просто обязан иметь у себя в наличии блок питания с плавной регулировкой напряжения! Ведь работая с различной электрической и электронной техникой постоянно приходится сталкиваться с её питанием, а оно, как известно, не всегда одинаково. Постоянно искать источники питания с подходящим напряжением, тоже не выход.

Самодельный стабилизированный блок питания от 0 до 30 вольт при токе до 10. А покажу работу этого девайса на болгарский движок постоянного тока. Регуляторы напряжения KPS305D 30 В 5A переключатель питания постоянного. Напряжение постоянный ток тестер DC Вольтметр регуляторы а. 0-30 В 0-10A точность цифровой регулировкой Питание переключаемый 110 В/220. Регулятора Напряжения Питания DC LED Вольтметр 2.5 ~ 36 В до . Регулировать напряжение можно от 1 Вольта и до возможности регулировки в. Лабораторный блок питания 0-30 Вольт 3 Ампера, с регулировкой силы тока.

Регулируемый лабораторный блок питания от 0 до 30 Вольт и от 0 до 3 Ампер. Если нагрузку усилить выходное напряжение будет постоянным и наличие. Статьи по регуляторам тока, напряжения, мощности; Все статьи по электропитанию. Мощный регулятор сетевого напряжения, 0-218 вольт 100 ватт · Особенности. Регулятор мощности для активно-индуктивной нагрузки до 15 кВт . Испытание схемы регулятора напряжения 0-30в 0-20А — Duration. Регулятор напряжения на 220 вольт! Но удвоителю на вход нужен переменный ток, который можно взять от. 24 вольта ужасной формы, а на выходе — те же 24, но постоянного (стоит. Стабилизатор U1 (7805) понижает напряжение до 5 вольт. 30 июля 2012 в 17:20 Обзор лабораторного блока питания Mastech 3003D.

Именно в данном случае наиболее рациональным и правильным решением будет создание простого (или сложного, если есть в этом особая необходимость) блока питания, имеющего плавное регулирование напряжения питания. Простая, но надёжная схема представлена на рисунке, давайте её разберём. Схема простого, регулируемого плавно, блока питания представляет собой две основные части, это сам блок питания и небольшая транзисторная схема параметрического регулятора напряжения. Первая часть содержит понижающий трансформатор, выпрямитель (диодный мост) и конденсатор (сглаживающий фильтр).

Регулятор Напряжения Постоянного Тока От 0 До 30 Вольт Купить

Регулятор Напряжения Постоянного Тока От 0 До 30 Вольт На Тиристоре

По большей части именно от выбора этих частей зависит мощность всего блока питания. Что бы не делать слишком большим блок питания ограничимся электрической мощностью в 3.

Вт. Хотя для увеличения этой мощности достаточно будет поменять трансформатор, мост и выходной транзистор, имеющие соответствующие величины токов и напряжений. Итак, находим трансформатор, который рассчитан на входное напряжение 2. Треноги Для Фидера Цены. Далее, спаиваем диодный мостик, элементы которого должны быть рассчитаны на ток не меньше 5 ампер (лучше брать с небольшим запасом). И к выходу моста припаяем фильтрующий конденсатор с ёмкостью от 1. Схема плавно регулируемого параметрического стабилизатора после её сборки (спайки) должна сразу начать нормально работать, хотя если есть желание донастройки и точной регулировки внутренних параметров, можете сами по изменять имеющиеся электронные компоненты, поставив туда наиболее подходящие на Ваш взгляд.

Теперь расскажу о самой работе данной схемы плавно регулируемого блока питания. Трансформатор — его задача заключается в преобразовании электрической энергии, то есть он сетевое напряжение 2. Заметим, что как был у нас переменный ток, так и остался, хотя и понизилась амплитуда. Диодный мостик занимается тем, что переводит все колебания в один полупериод, а именно значение тока после мостика уже меняется только от нуля и до 1.

Но волнообразный ток подходит не для всех случаев питания электрооборудования, для многих устройств нужен именно постоянный ток, допускающий минимальные колебания. Для этого и нужен конденсатор, который сглаживает скачки напряжения.

Схема регулятора является параметрической, то есть в схеме создаётся некое опорное напряжение, уже от которого путём деления напряжения и усиления силы тока создаются необходимые выходные величины электрических параметров. С выхода мостика, на котором уже сглажены скачки (фильтрующим конденсатором), напряжение подаётся на цепь параметрического стабилизатора, состоящего из резистора R1 и стабилитрона VD2.

Тут напряжение делиться, причём на стабилитроне образуется некоторое постоянная его величина с малыми отклонениями. Если напряжение будет меняться, по причине внешних обстоятельств, то эти изменения только будут заметны на R1. Параллельно стабилитрону, на котором образовалось опорное напряжение постоянной величины, включён переменный резистор R2, что, собственно, и осуществляет плавное изменение выходного напряжения на нашем регулируемом блоке питания. Когда мы его крутим, то получаем определённую величину постоянного напряжения, что далее делится между база- эмиттерными переходами транзисторов, включённых по схеме эмиттерных повторителей.

А, как известно, включение по этой схеме заставляет транзисторы работать в режиме усиления только тока, при том, что напряжение остаётся как бы неизменным. То есть, напряжение снятое с переменного резистора передаётся на выход через транзисторы, которые понижают его только на величину своего насыщения (примерно от 0.

Проще говоря — выставили мы на переменном резисторе значение 5 вольт, оно передалось через транзисторы на выход (минус примерно 1. Транзисторы тут являются некими электрическими краниками, которыми мы управляем при помощи изменения напряжения на база- эмиттерных переходах.

Чем больше мы подадим на них напряжения с переменного резистора, тем сильнее откроются транзисторы (понизится их внутреннее сопротивление) и больше электрической мощности передастся на выход регулируемого блока питания. P. S. Эту электрическую схему простого регулируемого блока питания я когда- то давно (когда сам начинал заниматься электроникой) собрал для себя.

Он меня не разу не подводил, я им проверял устройства, запитывал самодельные схемы, заряжал различные аккумуляторы и т. При желании этот блок питания можно доработать и снабдить дополнительными функциональными элементами, такими как внутренний вольтметр, амперметр, защиты от перегрузки и т. Понравилось? Поставь Плюс ».

downloadfreecard.netlify.com

Регулируемый блок питания 0-30 вольт. Схема и описание

В данной статье приведена схема лабораторного источника питания для домашней лаборатории радиолюбителя. Основа схемы блока питания является операционный усилитель TLC2272. Схема позволяет плавно изменять выходное напряжение в диапазоне от 0 до 30 вольт, а также контролировать ограничение по току нагрузки.

Блок питания  30 вольт — описание

Выходное напряжение с трансформатора подается на диодный мост. Выпрямленное напряжение в 38 вольт сглаживается конденсатором С1 и поступает на параметрический стабилизатор, состоящий из транзистора VT1, диода VD5, конденсатора  С2 и резисторов R1, R2. Посредством этого стабилизатора происходит питание операционного стабилизатора DA1. Диод VD5 (регулируемый стабилитрон TL431) является регулируемым стабилизатором напряжения.

На операционном усилителе DA1.1 собран регулирующий узел блока питания, а на элементе DA1.2 блок защиты короткого замыкания и ограничения по току нагрузки. Светодиод HL1  является индикатором короткого замыкания. Наладка источника питания.

Вначале настраивают напряжение питания операционного усилителя DA1 (для этого перед включением прибора, операционный усилитель необходимо извлечь из панельки). Настройка заключается в подборе сопротивления резистора R2, при котором напряжение на эмиттере транзистора VT1 будет в районе 6,5 вольт. После этого DA1 можно установить обратно на плату.

Далее переменный резистор R15 переводят в нижнее по схеме положение (т.е. 0 Вольт). Путем подбора сопротивления резистора R6 устанавливают опорное напряжение равное 2,5 вольт на верхнем по схеме выводе переменного резистора R15. Затем переменный резистор R15 переводят в верхнее по схеме положение и устанавливают максимальное напряжение (т.е. 30 вольт) подстроечным резистором R10.

Детали. Подстроечные резисторы – СП5. Трансформатор Тр1 любой, мощностью не менее 100 ватт. Транзистор VT1 – любой кремневый средней мощностью с Uk не менее 50 В.

Внимание! Так как элементы схемы находятся под напряжением электросети, то следует соблюдать меры электробезопасности при наладке  прибора.

www.joyta.ru