Расчет гасящего конденсатора – расчет гасящего конденсатора — Что такое балластный конденсатор? Что такое гасящий конденсатор? Объясните доступно, что это, зачем его применяют. — 22 ответа

Расчет емкости гасящего конденсатора для паяльника



радиоликбез

В статье приводится методика расчета емкости гасящего конденсатора и напряжения но его выводах в цепи активной нагрузки,в частности паяльника, которая позволяет существенно сократить объем вычислений ,сведя их до минимума, что упрощает расчеты и сокращает время, необходимое для выбора гасящего конденсатора требуемой емкости и соответствующего номинального напряжения.

 

 

В приведенном материале предлагается методика расчета емкости конденсатора и напряжения на нем при его последовательном включении с паяльником, причем рассматриваются два варианта. В первом варианте необходимо уменьшить мощность паяльника на требуемую величину с помощью гасящего конденсатора, а во втором — включить низковольтный паяльник в сеть 220 В, погасив излишек напряжения конденсатором.

Осуществление первого варианта (рис.1) предполагает два вычисления с исходными данными (ток, потребляемый паяльником из сети I и сопротивление паяльника R1), затем два промежуточных вычисления (ток, потребляемый паяльником при меньшей его мощности на требуемую величину II и емкостное сопротивление конденсатора Rc) и, наконец, два последних вычисления, которые дают искомые

рис.1

величины емкость конденсатора С на частоте 50 Гц и напряжение на выводах конденсатора Uc). Таким образом, для решения задачи по первому варианту необходимо осуществить 6 вычислений.

По второму варианту (рис.2), чтобы решить задачу, необходимо произвести с исходными данными два вычисления, как и в первом варианте, а именно: найти ток

I, потребляемый паяльником из сети, и сопротивление паяльника R, затем следует одно промежуточное вычисление, из которого, как и в первом варианте, находится емкостное сопротивление конденсатора Rc и, наконец, два последних вычисления, из которых определяют емкость конденсатора С при частоте 50 Гц и на-

рис.2

пряжение на выводах конденсатора Uc. Таким образом, для решения задачи по второму варианту необходимо осуществить пять вычислений.

Решение задач по обоим вариантам требует определенных затрат во времени. Методика не позволяет сразу в одно действие, минуя исходные и промежуточные расчеты, определить емкость гасящего конденсатора и соответственно напряжение на его выводах.

Удалось найти выражения, которые позволяют сразу в одно действие вычислить емкость гасящего конденсатора, а затем напряжение на его выводах для первого варианта. Подобным образом получено выражение для определения емкости гасящего конденсатора для второго варианта.

Вариант 1. Располагаем паяльником 100 Вт 220 В и желаем эксплуатировать его при мощности 60 Вт, используя при этом последовательно включенный с ним гасящий конденсатор. Исходные данные: номинальная мощность паяльника Р = 100 Вт; номинальное напряжение сети U = 220 В; требуемая мощность паяльника Р1 = 60 Вт. Требуется вычислить емкость конденсатора и напряжение на его выводах согласно рис.1. Формула для расчета емкости гасящего конденсатора имеет вид:

С = Р∙106/2πf1U2(P/P1 — 1)0,5(мкФ).

При частоте питающей сети = 50 Гц формула принимает вид:

С =3184,71 Р/U2(Р/Р1— 1)0,5 =

=3184,71-100 /2202( 100/60-1 )=8,06 мкФ.

В контрольном примере емкость конденсатора равняется 8,1 мкФ, т.е. имеем полное совпадение результата. Напряжение на выводах конденсатора равно

Uс = (РР1)0,5 ∙106/2πf1СU (В).

При частоте сети f1 = 50 Гц формула упрощается:

Uc = 3184,71 (PP1)0,5/CU =

= 3184,71(60∙100)0,5/8,06 • 220 =

= 139,1 В.

В контрольном примере Uc = 138 В, т.е. практическое совпадение результата. Таким образом, для решения задачи по первому варианту вместо шести вычислений нужно сделать всего два (без промежуточных расчетов). При необходимости емкостное сопротивление конденсатора можно сразу вычислить по формуле:

Rc = U2(P/P, — 1)0,5/Р =

= 2202( 100/60 — 1)0,5/100 = 395,2 Ом.

В контрольном примере Rc = 394 Ом, т.е. практическое совпадение.

Вариант 2. Располагаем паяльником мощностью 25 Вт, напряжением 42 В и хотим включить его в сеть 220 В. Необходимо рассчитать емкость гасящего конденсатора, последовательно включенного в цепь паяльника, и напряжение на его выводах согласно рис.2. Исходные данные: номинальная емкость паяльника Р = 25 Вт; номинальное напряжение Ur = 42 В; напряжение сети U = 220 В. Формула для расчета емкости конденсатора имеет вид:

С = Р∙106/2πf1Ur(U2 — Ur2)0,5 мкФ.

При частоте сети f1 = 50 Гц формула принимает вид:

С = 3184,71 P/Ur(U2 — Ur2)0,5 =

= 3184,71 -25/42(2202 — 422) =

= 8,77 мкФ.

Напряжение на выводах конденсатора легко определить, пользуясь исходными данными, по теореме Пифагора:

Uc = (U2 — Ur2)0,5 = (2202 — 422) =

= 216 В.

Таким образом, для решения задачи по второму варианту вместо пяти вычислений необходимо осуществить только два. При необходимости величину емкостного сопротивления конденсатора, для данного варианта, можно определить по формуле:

Rc = Ur(U2 — Ur2)0,5/P =

= 42(2202 — 422)/25 = 362,88 Ом.

По контрольному примеру Rc = 363 Ом. Гасящий конденсатор С на приведенных рисунках желательно зашунтировать разрядным резистором МЛТ-0,5 номиналом 300…500 кОм.

Выводы. Предлагаемая методика расчета емкости гасящего конденсатора и напряжения на его выводах позволяет существенно сократить объем вычислений, сведя их до минимума.

К. В. Коломойцев.

Читайте также: Расчет бестрансформаторного блока питания

 

 

radiopolyus.ru

Расчет понижающего конденсатора

Полученные параметры понижающего конденсатора


 


Если у Вас когда нибудь возникала задача понизить напряжение до какого либо уровня, например с 220 Вольт то 12В, то это статья для Вас.


Есть масса способов это сделать подручными материалами. В нашем случае  мы будем использовать одну деталь — ёмкость.


В принципе мы можем использовать и обычное сопротивление, но  в этом случае, у нас возникнет  проблема перегрева данной детали, а там и до пожара недалеко.


 


В случае, когда в виде понижающего элемента используется ёмкость, ситуация другая.


Ёмкость, включенная в цепь переменного тока обладает (в идеале) только реактивным сопротивлением, значение котрого находится по общеизвестной формуле.


Кроме этого в нашу цепь мы включаем какую то нагрузку ( лампочку, дрель, стиральную машину),  которая обладает тоже каким то сопротивлением R


 


Таким образом общее сопротивление цепи будет находиться как 


 


Наша цепь последовательна, а следовательно общее напряжение цепи есть сумма напряжений на конденсаторе и на нагрузке


 


По закону ома, вычислим ток, протекающий в этой цепи.


Как видите  легко зная параметры цепи, вычислить недостающие значения.


А вспомнив как вычисляется мощность  легко рассчитывать параметры конденсатора основываясь на потребляемую мощность нагрузки.


 


Учитывайте что в такой схеме нельзя использовать полярные конденсаторы то есть такие что включаются в электронную схему в строгом соответствии с указанной полярностью.


Кроме этого необходимо учитывать и частоту сети f. И если у нас в России частота 50Гц, то например в Америке частота 60Гц. Это тоже влияет на окончательне расчеты.


Примеры расчета


 


Необходимо запитать лампочку мощностью 36Вт, рассчитанное на напряжение 12В. Какая ёмкость понижающего конденсатора тут необходима?


Если речь идет об электрических сетях в России, то входное напряжение 220 Вольт, частота 50Гц.


 


Ток проходящий через лампочку  равен  3 Ампера (36 делим на 12). Тогда ёмкость по вышенаписанной формуле будет равна:




Полученные параметры понижающего конденсатора


C = 4.334146654694E-5 Фарад 

I = 3 Ампер 

P = 36 Ватт 

Ua = 220 Вольт 

Ub = 12 Вольт 

f = 50 Герц 


 


Что бы не переводит степени минус пятой степени в микро или мимли Фарады, воспользуемся вот этим ботом и получим 






Полученный результат конвертации


полученное число = 0.0433414665469миллиФарад


Альтернативное представление


что нам нужен конденсатор  ёмкостью 43 мкФ.


 

  • Сопротивление. Зависимость от температуры >>

www.abakbot.ru

Гасящий конденсатор вместо гасящего резистора


Иногда возникает задача понизить переменное напряжение сети 220 вольт до некоторого заданного значения, причем применение понижающего трансформатора (в таком случае) не всегда бывает целесообразным.

Скажем, низкочастотный понижающий трансформатор, выполненный традиционно на трансформаторном железе, способный преобразовать мощность 200 Ватт, весит больше килограмма, не говоря о высокой стоимости. Следовательно в некоторых случаях можно применить гасящий резистор, который ограничит ток, однако при этом на самом гасящем резисторе выделится мощность в виде тепла, а это не всегда является приемлемым.

Например, если нужно запитать 200 Ваттную лампу только на половину ее наминала, потребовалось бы рассеять мощность в 100 Ватт на гасящем резисторе, а это крайне сомнительное решение.

Весьма удобной альтернативой, для данного примера, может служить применение гасящего конденсатора, емкостью около14мкф, (такой можно собрать из трех металлопленочных типа К73-17 по 4,7мкф, рассчитанных на 250в, а лучше – на 400в) это позволит получить нужный ток без необходимости рассеивать значительную мощность в виде тепла.

Рассмотрим физическую сторону этого решения. Как известно, конденсатор, включенный в цепь переменного тока, является реактивным элементом, обладающим емкостным сопротивлением, связанным с частотой переменного тока в цепи, а также с собственной емкостью.

Чем больше емкость конденсатора и чем выше частота переменного напряжения в цепи, тем больший ток проходит через конденсатор, значит емкостное сопротивление конденсатора обратно пропорционально его емкости, а также частоте переменного тока, в цепи, куда он включен.


Это видно и из формулы для емкостного сопротивления конденсатора:


Если в цепь переменного тока включены последовательно резистор (активная нагрузка) и конденсатор, то их общее сопротивление можно найти по формуле:

А поскольку и то


Итак, зная напряжение на нагрузке, силу тока нагрузки и напряжение на гасящем конденсаторе, можно определить емкость гасящего конденсатора, который нужно включить последовательно нагрузке для получения требуемых параметров питания:


Рассмотрим пример: требуется запитать лампу накаливания мощностью 100 Ватт, рассчитанную на напряжение 110 вольт от розетки 220 вольт. В первую очередь найдем значение рабочего тока лампы:

Получим значение тока лампы равное 0,91 А. Теперь можно найти требуемое значение емкости гасящего конденсатора, она будет равна 15,2 мкФ.

Следует отметить, что этот расчет верен для чисто активной нагрузки, когда имеет место эффективное значение. При использовании же выпрямителя, необходимо учесть, что эффективное значение тока будет немного меньше в силу действия пульсаций. Также следует помнить, что в качестве гасящих конденсаторов, полярные конденсаторы применять ни в коем случае нельзя.

Лучшее сочетание вакуумных и          полупроводниковых характеристик — однотактный гибридный усилитель звука.

          Мы не создаём иллюзий,
          Мы делаем звук живым!

grimmi.ru

Расчет сетевого источника питания с гасящим конденсатором

РАСЧЕТ СЕТЕВОГО ИСТОЧНИКА ПИТАНИЯ С ГАСЯЩИМ КОНДЕНСАТОРОМ

С. БИРЮКОВ, г. Москва

Методика расчета бестрансформаторных
источников питания с га­сящим конденсатором, предложенная М. Дорофеевым
(«Бестранс­форматорный с гасящим конденсатором» в
«Радио», 1995, Ns 1), во-первых, весьма
сложна, неудобна для проектирования блока пита­ния с выходным напряжением
менее 20 В, а во-вторых, она не во всем безошибочна. Автор помещенной ниже
статьи предлагает аль­тернативную методику, обеспечивающую высокую точность
расче­та, проверенную многолетней практикой.



Для малых значешй выходного на­пряжения

В таком источнике питания к сети
пе­ременного напряжения подключены по­следовательно соединенные конденса­тор и
нагрузка. Рассмотрим вначале ра­боту источника с чисто резистивной на­грузкой
(рис.1,а).

Из курса электротехники известно,
что полное сопротивление последова­тельно включенных конденсатора С1 и
резистора Рн равно:

где Xc1=1/2n*f*C1 —
емкостное сопротив­ление конденсатора на частоте f.
Поэто-

Рис.1

му эффективный переменный
ток в цепи Iэфф=Uс/Z (Uc — напряжение питающей се­ти).
Нагрузочный ток связан с емкостью конденсатора, выходным напряжением источника
и напряжением сети следую

Для малых значений выходного на­пряжения

Iэфф=2л*f*С1*Uс.

В качестве примера, полезного в практике, проведем расчет
гасящего кон­денсатора для включения в сеть 220 В паяльника на 127 В мощностью
40 Вт. Не­обходимое эффективное значение тока нагрузки Iэфф=40/127=0,315 А.
Расчетная емкость гасящего конденсатора

Для работы нагревательных приборов
важно значение именно эффективного то­ка. Однако, если нагрузкой является, на­пример,
аккумуляторная батарея, вклю­ченная в диагональ выпрямительного мос­та (рис. 1
,б), заряжать ее будет уже сред-невыпрямленный (пульсирующий) ток, численное
значение которого меньше Iэфф:

                                               (1)

В радиолюбительской практике
часто используют источник, в котором гасящий конденсатор включен в сеть
последова­тельно с диодным мостом, а нагрузка, за-шунтированная другим
конденсатором, питается от выходной диагонали моста (рис. 2). В этом случае
цепь становится резко нелинейной и форма тока, протека­ющего через мост и
гасящий конденса­тор, будет отличаться от синусоидаль­ной. Из-за этого
представленный выше расчет оказывается неверным.

Каковы процессы, происходящие в
ис­точнике со сглаживающим конденсато­ром С2 емкостью, достаточной для того,
чтобы считать пульсации выходного на­пряжения пренебрежимо малыми? Для гасящего
конденсатора С1 диодный мост (вместе с С2 и Rн) в установившемся ре­жиме
представляет собой некий эквива­лент симметричного стабилитрона. При напряжении
на этом эквиваленте, мень­шем некоторого значения (оно практиче­ски равно
напряжению Uвых на конденса­торе С2), мост закрыт и тока не прово­дит, при
большем — через открытый мост течет ток, не давая увеличиваться на­пряжению на
входе моста.

Рассмотрение начнем с момента ti, когда напряжение сети максимально (рис. 3). Конденсатор
С1 заряжен до амп­литудного напряжения сети Uс.амп за вы­четом напряжения на
диодном мосте uм, примерно равного Uвых. Ток через кон­денсатор
С1 и закрытый мост равен ну­лю. Напряжение в сети уменьшается по
косинусоидальному закону (график 1), на мосте также уменьшается (график 2), а
напряжение на конденсаторе С1 не меня­ется.

Рис. 2

Ток конденсатора останется нулевым до тех пор, пока
напряжение на диодном мосте, сменив знак на противоположный, не достигнет
значения -Uвых (момент t2). В этот момент появится
скачком ток lei через конденсатор С1 и мост. Начиная с
момента t2, напряжение на мосте не ме­няется, а ток определяется скоростью
изменения напряжения сети и, следова­тельно, будет точно таким же, как если бы
к сети был подключен только конден­сатор С1 (график 3).

Когда напряжение сети достигнет от­рицательного амплитудного
значения (момент t3), ток через конденсатор
С1 снова станет равным нулю. Далее про­цесс повторяется каждый полупериод.

Ток через мост протекает лишь в ин­тервале времени от t2 до t3, его
среднее значение может быть рассчитано как площадь заштрихованной части синусои­ды
на графике 3. Несложные расчеты, требующие, однако, знания дифференци­ального и
интегрального исчисления, да­ют такую формулу для среднего тока Iср через
нагрузку Rн:

                      (2)

При малых значениях выходного на­пряжения эта формула и
ранее получен­ная (1) дают одинаковый результат. Если в (2) выходной ток
приравнять к нулю, по­лучим Uвыx=Uc*2^1/2, т. е. при токе нагрузки, равном нулю
(при случайном отключении нагрузки, скажем, из-за ненадежного контакта),
выходное напряжение источ­ника становится равным амплитудному напряжению сети.
Это означает, что все элементы источника должны выдержи­вать такое напряжение.
При уменьшении тока нагрузки, например, на 10%, выход­ное напряжение увеличится
так, чтобы выражение в скобках также уменьши­лось на 10%, т. е. примерно на 30
В (при Uвых=10 В). Вывод — включение стабили­трона параллельно нагрузке Rн (как
по­казано штриховыми линиями на рис. 2) практически обязательно.

Для однополупериодного выпрямите­ля (рис. 4) ток
рассчитывают по следую­щей формуле:

Естественно, при малых значениях выходного напряжения ток
нагрузки бу­дет вдвое меньше, чем для двуполупери-одного выпрямителя, а
выходное напря­жение при нулевом токе нагрузки — вдвое больше — ведь это
выпрямитель с удвое­нием напряжения!

Порядок расчета источников по схеме на рис. 2 следующий.
Вначале задаются выходным напряжением Uвых, максималь­ным Iн max
и минимальным Iнmin значения-ми
тока нагрузки, максимальным Uc max и минимальным Uc
min значениями напря­жения сети. Выше уже было
указано, что при меняющемся токе нагрузки обязате­лен стабилитрон, включенный
парал­лельно нагрузке Rн. Как его выбирать? При минимальном напряжении сети и
максимальном токе нагрузки через ста­билитрон должен протекать ток не менее
допустимого минимального тока стабили­зации 1ст min. Можно задаться значением в
пределах 3…5 мА. Теперь определяют емкость гасящего конденсатора С1 для
двуполупериодного выпрямителя:

С1 =3,5(Iст min+lн
max)/(Uc min-0,7Uвыx).
(3)

Формула получена из (2) подстанов­кой
соответствующих значений. Ток в ней — в миллиамперах, напряжение — в воль­тах;
емкость получится в микрофарадах. Результат расчета округляют до ближай­шего
большего номинала; можно исполь­зовать батарею из нескольких конденса­торов,
включенных параллельно.

Далее рассчитывают максимальный
ток через стабилитрон при максималь­ном напряжении сети и минимальном по­требляемом
от источника токе:

Iст
max=(Uc
mах
-0,7Uвых)С1/3,5-Iн min  
 (4)

При отсутствии стабилитрона на не­обходимое
напряжение Uвых, допускаю­щего рассчитанный максимальный ток стабилизации,
можно соединить несколь­ко стабилитронов на меньшее напряже­ние последовательно
или применить ана­лог мощного стабилитрона [1].

Подставлять в формулу (4) минималь­ный
ток нагрузки Iн mm следует лишь тог­да, когда этот ток
длителен — единицы секунд и более. При кратковременном минимальном токе нагрузки
(доли секун­ды) его надо заменить средним (по вре­мени) током нагрузки. Если
стабилитрон допускает ток, больший рассчитанного по формуле (4), целесообразно
использо­вать гасящий конденсатор несколько большей емкости для уменьшения
требо­ваний к точности его подборки.

При однополупериодной схеме вы­прямления
(рис. 4) емкость гасящего кон­денсатора и максимальный ток через стабилитрон
рассчитывают по форму­лам:

vunivere.ru

Использование конденсатора в качестве сопротивления

Опубликовал admin | Дата 10 ноября, 2014

     Маломощные зарядные устройства для герметизированных малогабаритных аккумуляторов, блоки питания для светодиодных ламп, блоки питания для низковольтных слаботочных устройств обычно подключают к первичной сети переменного тока 220 вольт через понижающие трансформаторы или добавочные резисторы. При этом на гасящем резисторе выделяется большая бесполезная мощность в виде тепла, а трансформаторы имеют большие габариты и вес.

      Можно конечно применить малогабаритные трансформаторы, но из-за применения в них очень тонких обмоточных проводов, резко уменьшается надежность таких блоков питания. Известно, что конденсатор, установленный в цепи переменного тока, обладает реактивным сопротивлением, которое зависит от частоты переменного тока, протекающего через его обкладки. Использование конденсаторов позволяет гасить излишнее напряжение, при этом мощность на реактивном сопротивлении не выделяется и это является большим преимуществом конденсатора перед резистором. Один из методов расчета гасящего конденсатора я уже приводил ранее, теперь хочу предложить еще один, с использованием номограммы.
     Так как полное сопротивление Z цепи, составленной из последовательно включенных нагрузки с активным сопротивлением Rн и гасящего конденсатора с реактивным сопротивлением Хс равно

то прямой расчет емкости гасящего конденсатора довольно сложен.

     Поэтому проще воспользоваться номограммой. На ней по оси абсцисс отложены величины сопротивлений нагрузки Rн в килоомах, а по оси ординат отложены величины емкостей гасящих конденсаторов в микрофарадах. По оси, проведенной под углом сорок пять градусов – полные сопротивления Z цепи в килоомах.
Чтобы воспользоваться номограммой, надо определить сопротивление нагрузки — Rн. Rн = I2•R = U2/R и полное сопротивление цепи Z.
Пример. Мостовой выпрямитель с выходным напряжением 12 вольт и током нагрузки 120 мА необходимо питать от сети переменного тока 220 вольт. Надо найти емкость гасящего конденсатора, подключенного последовательно выпрямительному диодному мосту.
Для начала нам необходимо определить сопротивление нагрузки. Rн = U/I = 12 В / 0,12 А = 100 Ом. Теперь определяем полное сопротивление цепи в сети переменного тока 220 вольт. Z = 220 В/0,12 А = 1833 Ом. Далее определяем емкость гасящего конденсатора по номограмме. Для этого из точки на оси абсцисс, соответствующей сопротивлению 100 Ом восстановим перпендикуляр. Через точку, находящуюся на оси Z и соответствующей сопротивлению 1833 Ома, проводим дугу В с центром в точке 0, до пересечения с перпендикуляром А. Получаем точку С, которую проектируем на оси Y – ось емкости. Получаем необходимую емкость гасящего конденсатора, примерно 1,8 мкф. Все просто и удобно. Успехов. К.В.Ю.
Используемая литература: журнал «Радио» № 7 за 1970 год. Автор статьи В. Шишков
Скачать рисунок номограммы можно в формате sPlan здесь.

Скачать “Использование конденсатора в качестве сопротивления” Nomogramma.rar – Загружено 1050 раз – 2 KB

Обсудить эту статью на — форуме «Радиоэлектроника, вопросы и ответы».

Просмотров:15 623

www.kondratev-v.ru

Расчет бестрансформаторного блока питания



радиоликбез

Расчет бестрансформаторного блока питания

Некоторые радиолюбители при конструировании сетевых блоков питания вместо понижающих трансформаторов применяют конденсаторы в качестве балластных, гасящих излишек напряжения (рис.1).

 

Неполярный конденсатор, включенный в цепь переменного тока, ведет себя как сопротивление, но, в отличие от резистора, не рассеивает поглощаемую мощность в виде тепла, что позволяет сконструировать компактный блок питания, легкий и дешевый. Емкостное сопротивление конденсатора при частоте f описывается выражением:

Величина емкости балластного конденсатора Cб определяется с достаточной точностью по формуле:

где Uc — напряжение сети, В;

IН — ток нагрузки, А;

UH — напряжение на нагрузке, В. Если UH находится в пределах от 10 до 20 В, то для расчета вполне приемлемо выражение:

Подставив значения Uc=220 В и UH=15 В, при Iн=0,5 А получим значения Сб=7,28 мкФ (1) и Сб=7,27 мкФ (2). Для обоих выражений получается весьма приличное совпадение, особенно если учесть, что емкость обычно округляют до ближайшего большего значения. Конденсаторы лучше подбирать из серии К73-17 с рабочим напряжением не ниже 300 В.

Используя эту схему, всегда нужно помнить, что она гальванически связана с сетью, и вы рискуете попасть под удар электрическим током с потенциалом сетевого напряжения. Кроме того, к устройству с бес-трансформа-торным питанием следует очень осторожно подключать измерительную аппаратуру или какие-нибудь дополнительные устройства, иначе можно получить совсем не праздничный фейерверк.

Для питания даже маломощных устройств лучше все-таки применять понижающие трансформаторы. Если напряжение его вторичной обмотки не соответствует требуемому (превышает), то вполне безопасно применить гасящий конденсатор в цепи первичной обмотки трансформатора для снижения напряжения или для включения трансформатора с низковольтной первичной обмоткой в сеть (рис.2) Балластный конденсатор в этом случае подбирается из расчета, чтобы при максимальном токе нагрузки выходное напряжение трансформатора соответствовало заданному.

Литература

1. Бирюков С.А. Устройства на микросхемах. — М., 2000.

И.СЕМЕНОВ,

г.Дубна Московской обл.

Читайте также: Источники питания

 

radiopolyus.ru

Бестрансформаторные сетевые источники питания с гасящим конденсатором

Автор: Лупенко Александр

Несколько схем и расчет бестрансформаторных блоков питания с гасящим конденсатором

Сетевой источник питания с гасящим конденсатором (рис. 1), по сути, есть делитель напряжения, у которого верхнее плечо – конденсатор, а нижнее представляет собой сложную нелинейную диодно-резисторно-конденсаторную цепь. Этим и определены недостатки (и достоинства, конечно) таких устройств.

Рисунок 1:

Для того чтобы источник мог работать в широком интервале тока нагрузки с высоким КПД, достаточно входной делитель напряжения выполнить чисто реактивным, например, конденсаторным (рис. 2).

Рисунок 2:

Он позволяет дополнительно стабилизировать выходное напряжение источника последовательно включенным компенсационным или импульсным стабилизатором, чего нельзя делать в обычном источнике с гасящим конденсатором. Как показано в статье С. Бирюкова “Расчет сетевого источника питания с гасящим конденсатором” – “Радио”, 1997, N 5, с. 48-50, – последовательный стабилизатор можно использовать только при ограничении напряжения на его входе, что опять-таки заметно снижает КПД.

Источник с конденсаторным делителем напряжения целесообразно использовать для совместной работы с импульсными стабилизаторами. Идеально подходит он для устройства, длительно потребляющего малый ток, но требующего в определенный момент резкого его увеличения. Пример – квартирное сторожевое устройство на микросхемах “МОП с исполнительным узлом на реле и звуковом сигнализаторе.

Ток, потребляемый конденсаторным делителем, будет иметь фазовый сдвиг в 90 град. относительно напряжения сети, поэтому делитель напряжения на реактивных элементах не требует охлаждения. Исходя из вышесказанного, ток через делитель вроде бы можно выбрать сколь угодно большим. Однако неоправданное увеличение тока делителя приведет к активным потерям в проводах и к увеличению массы и объема устройства. Поэтому целесообразно принять ток через делитель напряжения в пределах 0,5…3 от максимального тока нагрузки.

Расчет источника с емкостным делителем несложен. Как следует из ф-лы (2) в упомянутой статье, выходное напряжение Uвых и полный выходной ток (стабилитрона и нагрузки Iвых) источника по схеме 1,а связаны следующим образом:

Iвых = 4fC1(2Uc-Uвых)

Эта формула пригодна и для расчета источника с конденсаторным делителем, в ней просто надо заменить С1 на суммарную емкость параллельно соединенных конденсаторов С1 и С2, показанных на рис. 2. a Uc – на Uc2x (напряжение на конденсаторе С2 при RH = °°), т. е.

Uc2x = Uc-C1/(C1+C2)

Тогда
Iвых = 4f(C1+C2)x x[Uc-C1-i/2/(C1+C2)-Unbix]
или после очевидных преобразований
Iвых = 4f-C1 [Uc^2 -ивых(1+С2/С1)].

Поскольку падение напряжения на диодах моста Uд при малых значениях Квых становится заметным, получим окончательно

Iвых = 4f-C1 [Uc^/2- (Цвых + 2Цд) (1 + С2/С1)].

Из формулы видно, что при Рн=0 (т. е. при Uвых=0) ток Iвых, если пренебречь падением напряжения на диодах, остается таким же, как у источника питания, собранного по схеме 1 ,а. Напряжение же на выходе без нагрузки уменьшается:
Uaux = =Uc-C1^/2/(C1+C2)-2Un.

Емкость и рабочее напряжение конденсатора С2 выбирают исходя из необходимого выходного напряжения – соотношение значений емкости С1/С2 обратно пропорционально значениям падающего на С1и С2 напряжения. Например, если С1″ =1 мкф, а С2=4 мкФ, то напряжение Uc1 будет равно 4/5 напряжения сети, a Uc2=Uc/5, что при напряжении сети Uc = 220 В соответствует 186 и 44 В. Необходимо учесть, что амплитудное значение напряжения почти в 1,5 раза превышает действующее, и выбрать конденсаторы на соответствующее номинальное напряжение.

Несмотря на то, что теоретически конденсаторы в цепи переменного тока мощности не потребляют, реально в них из-за наличия потерь может выделяться некоторое количество тепла. Проверить заранее пригодность конденсатора для использования в источнике можно, просто подключив его к электросети и оценив температуру корпуса через полчаса. Если конденсатор С1 успевает заметно разогреться, его следует счесть непригодным для использования в источнике.

Практически не нагреваются специальные конденсаторы для промышленных электроустановок – они рассчитаны на большую реактивную мощность. Такие конденсаторы используют в люминесцентных светильниках, в пускорегулирующих устройствах асинхронных электродвигателей и т. п.

Ниже представлены две практические схемы источников питания с конденсаторным делителем: пятивольтный общего назначения (рис. 3) на ток нагрузки до 0,3 А и источник бесперебойного питания для кварцованных электронно-механических часов (рис. 4).

Рисунок 3:

Рисунок 4:

Делитель напряжения пятивольтного источника состоит из бумажного конденсатора С1 и двух оксидных С2 и СЗ, образующих нижнее по схеме неполярное плечо емкостью 100 мкФ. Поляризующими диодами для оксидной пары служат левые по схеме диоды моста. При номиналах элементов, указанных на схеме, ток замыкания (при Rн=0) равен 600 мА, напряжение на конденсаторе С4 в отсутствие нагрузки – 27 В.

Электронно-механические часы обычно питают от одного гальванического элемента напряжением 1,5 В. Предлагаемый источник вырабатывает напряжение 1,4 В при среднем токе нагрузки 1 мА. Напряжение, снятое с делителя С1С2, выпрямляет узел на элементах VD1, VD2. СЗ. Без нагрузки напряжение на конденсаторе СЗ не превышает 12В.



radio-stv.ru