Самодельный блок питания на 3 вольта – Плата-конструктор регулируемого блока питания, или правильный блок питания должен быть тяжелым

Блок питания на три напряжения. — Сообщество «Электронные Поделки» на DRIVE2

На оригинальность не претендую.Может кому и мой вариант пригодится. Переделок блоков питания от компьютера в интернете как собак нерезаных.Тоже сделал на три напряжения.Здорово выручает, особенно кто занимается всякими самоделками.Использую в основном напряжение 12 вольт и 5 вольт.3,3 вольта ни разу не приходилось использовать. Переделал такой блок.

Полный размер

Модель блока питания компьютера и его характеристики.

Ничего целенаправленно не покупал.Мини-вольтметры мне друзья из Поднебесной присылали в подарок, набралась целая пригоршня, так же и всевозможные светодиоды, и цветные и двухцветные. Пружинные клеммники от старых колонок.
Их почему-то на Муське ругали, если ставить на блоки питания, то «banana».
Дремелем прорезал отверстия для мини-вольметров, закрепил саморезами.Так же и под пружинные клеммники.Под красный светодиод отверстие было, просто вставил в него.Запускаю блок, дёрнулся вентилятор и тишина.Молчит как партизан.Зелёный провод с чёрным перемкнул, вроде нигде ничего не замкнул.Всё просмотрел не работает хоть умри.Стал рассматривать отрезанные разъёмы.В этом блоке ещё и серый провод перемкнут с чёрным.Очень редко, чуть не один на миллион, но попадаются и такие.Пришлось вскрывать блок, искать этот серый провод и перемыкать с чёрным.Всё запустилось.
Вот и он, светится как новогодняя ёлка)))

Полный размер

Блок питания на три напряжения.

Кто работает с прошивками ЭБУ, удобно его использовать, автомагнитолы проверять, светодиодные ленты и другие устройства работающие от 12;5 и 3,3 вольта.
Здесь использовал его при прошивке ЭБУ.

Полный размер

Использование блока питания при прошивке ЭБУ.



7 мес.

Метки: переделка, блок питания

www.drive2.ru

ПРОСТОЙ БЛОК ПИТАНИЯ

ПРОСТОЙ БЛОК ПИТАНИЯ

     Многие современные девайсы питаются напряжением два — три вольта. Это и цифровые фотоаппараты, и МР3 плееры, и автономные фотовспышки, и карманные игровые приставки и многие другие портативные устройства. Питаются они, в основном, двумя пальчиковыми батарейками или встроенными литий — ионниками. Но так как жрёт эта цифровая братия тока не слабо, то батареек не напасёшся. А литий — ионные аккумуляторы через пару лет благополучно сдыхают. Менять? А не всегда найдёте подходящую замену оригинальным аккумуляторам! Приходится иногда переходить на стационарное питание. И в этом нам поможет простой блок питания на микросхемке LM317 (КР142ЕН12 по русски). Привожу её параметры, для тех, кто забыл:

     Вот на основе этого интегрального стабилизатора, или другого аналогичного, мы и будем делать простой блок питания на напряжение в пределах 1-5 В и ток до 1.5 А. 

     При выборе трансформатора следует помнить, что для нормальной работы данной микросхемы необходимо, чтоб напряжение на входе превышало выходное хотя-бы на 1,5 В. Нужное выходное напряжение (1-5 В, хотя микросхема отлично работает с напряжениями и свыше 30 В) устанавливаем подстроечным резистором на 1 — 2 кОм. Микросхему устанавливаем на радиатор, размер — в зависимости от тока нагрузки. Применённый в схеме этого простого блока питания интегральный стабилизатор, обеспечивает уровень пульсации выходного напряжения всего 1 мВ.

     Выпрямительные диоды любые на ток 1 — 1.5 А, ёмкость конденсатора фильтра выбираем в зависимости от чувствительности подключаемого устройства к фону переменного тока, в некоторых случаях её нужно увеличить. Корпус любой пластмассовый. Автор блока питания для удобства эксплуатации даже снабдил его двумя стрелочными индикаторами от бобинника — вольтметр и амперметр, что очень информативно.

     Материал предоставил ZU77. Обсуждение схем блоков питания на ФОРУМЕ

   Схемы блоков питания

 

elwo.ru

Блок питания для макетной платы 5В 3,3В

Опубликовал admin | Дата 7 июля, 2016

Самодельный блок питания для макетной платы. Схема, описание ее работы, настройка, приводится в данной статье. Данный блок питания предназначен для макетирования схем, включающих в себя микроконтроллеры с модулями аналого-цифрового преобразования, при проектировании схем цифровых вольтметров, амперметров и т.д. и имеет защиту от коротких замыканий. Кроме питающих выходных напряжений 5 В и 3.3 В, блок обеспечивает и опорные напряжения величиной 2,5 В и 1,024 В.

Схема блока питания представлена на рисунке 1.

В качестве сетевого трансформатора я использовал трансформатор выходной звука от старого лампового телевизора «Рекорд». Такие трансформаторы проверены годами работы. Сколько я сделал блоков питания из них, я уж и не помню, но отказов в их работе не было. Смотрим фото 1.

Трансформатор имеет две обмотки. Обмотка с числом витков 3000, используется в качестве сетевой обмотки. Три тысячи витков вполне достаточно для обеспечения малого тока холостого хода данного трансформатора. Вторая обмотка, с числом витков 91, используется в качестве обмотки вторичной. Она обеспечивает ток нагрузки до 500мА, что вполне достаточно для работы с микроконтроллерами и индикаторами. Ее выходное напряжение без нагрузки равно 6,5 В, что тоже нам подходит. После выпрямления и фильтрации постоянное напряжение будет соответствовать амплитудному значению переменного напряжения ≈ 6,5 В т.е. 6,5 ∙ √2 = 6,5 ∙1,41 ≈ 9,2 В. Этой величины нам вполне достаточно. При использовании этого трансформатора не забудьте перебрать его сердечник. Дело в том, что изначально сердечник ТВЗ собран с зазором, а надо собрать сердечник «в перекрышку», без зазора.

Конечно, можно использовать и другие трансформаторы или просто импульсные блоки зарядки от телефонов с соответствующими выходными напряжениями. По крайней мере, входное напряжения основного стабилизатора 5В должно быть не менее 7,5 В. В качестве выпрямительного моста можно использовать малогабаритный мост DB101. Мост рассчитан на ток 1 А. Основой стабилизатора 5 В является микросхема К157ХП2, в состав которой, помимо всего входит источник опорного напряжения – ИОН. В этой статье я не буду повторяться в описании работы основного стабилизатора. Про эту часть схемы вы можете прочитать в статье «Стабилизатор 5В» и есть еще одна статья «Блок питания на 5в 2а своими руками». Хочу только заметить, что с помощью подстроечного резистора R6, можно изменять выходное напряжение основного стабилизатора до 5,12 В, что также необходимо для работы с АЦП микроконтроллеров, когда для преобразования в качестве опорного, используется общее напряжение питания. В качестве стабилизаторов на напряжения 2,5 и 3,3 вольта использованы микросхемные стабилизаторы в MSD корпусах серии 1117 – AMS1117-2,5 и AMS1117-3,3. Вывод 8 – выход ИОНа микросхемы DA1, он очень маломощный, поэтому пришлось вводить в схему буфер, в качестве которого используется один из ОУ популярной микросхемы LM358N. В данном случае ОУ работает в качестве повторителя со стопроцентной отрицательной обратной связью. Нагрузкой повторителя служат два последовательно включенных резистора R4 и R5. Резистором R4 можно подстраивать ИОН с напряжением 1,024 вольта. Да, защита от КЗ применима только к источнику пяти вольт. Вроде все. Успехов.

К.В.Ю. скачать статью.

 

Обсудить эту статью на — форуме «Радиоэлектроника, вопросы и ответы».

Просмотров:3 269

www.kondratev-v.ru

Самодельный регулируемый блок питания от 0 до 14 Вольт. Окончание.

Здравствуйте уважаемые читатели сайта sesaga.ru. Вот и подошла к завершению статья о самодельном регулируемом блоке питания, и сегодня мы произведем окончательную сборку и наладку, так сказать, наведем лоск.

В предыдущей статье мы собрали корпус, разместили все элементы на свои места и подготовили блок питания для окончательной сборки.

Остался еще один момент, про который хотелось сказать отдельно.
Мощный транзистор VT3 необходимо разместить на радиатор (теплоотвод), так как при работе на нем выделяется большое количество тепла, и транзистор может выйти из строя из-за перегрева. Радиатор используйте заводского изготовления или самодельный, сделанный из алюминиевой или дюралевой пластины. Я использовал заводского изготовления.

Между транзистором и радиатором ставим изоляционную прокладку, которая способствует отводу тепла от корпуса транзистора к радиатору и изолирует коллектор транзистора от радиатора.

На выводы транзистора надеваем трубки из хлорвиниловой изоляции или термоусадки — это не даст выводам замкнуться между собой или на радиатор.

Еще раз внимательно проверяем монтаж, и если есть ошибки – исправляем. Особое внимание уделите транзисторам, так как при неправильной распайке выводов транзистор может выйти из строя.

1. Проверяем работу блока питания.

Включаем блок питания в сеть и измеряем напряжение на выходе.
Установите движок переменного резистора R3 в крайнее правое положение и измерьте напряжение – оно должно быть в пределах 12 — 14 вольт.
Теперь вращайте движок в левую сторону и следите за напряжением – оно должно плавно уменьшиться почти до нуля. Если при вращении движка резистора вправо напряжение уменьшается, а влево — увеличивается, поменяйте местами проводники, идущие к крайним выводам переменного резистора.

Если напряжение на выходе не изменяется, или оно очень мало, или греется какая-нибудь деталь — отключаем блок питания от сети и еще раз внимательно проверяем монтаж на ошибки.

После устранения возможных ошибок подаем питание на блок и сразу измеряем напряжение на конденсаторе C1 – оно должно быть в пределах 15 – 20 вольт. Если напряжение намного меньше, значит, проверяем исправность и правильность распайки диодов диодного моста VD1VD4.

Если на конденсаторе С1 напряжение нормальное, то проверяем работу стабилитрона VD6. Подключаем к его выводам вольтметр и измеряем напряжение — оно должно быть равно напряжению стабилизации стабилитрона Uст и находиться в пределах 11,5 – 14 вольт. Если же оно ниже, проверяем сопротивление резистора R2.

Напряжение на конденсаторе С1 нормальное, на стабилитроне соответствует напряжению стабилизации Uст, а на выходе блока питания оно так и не изменяется, значит, проверяйте исправность и правильность распайки выводов транзисторов VT2, VT3.

Как блок питания заработает, проверяем автомат защиты от короткого замыкания.
Щупами измерительного прибора подключитесь к выходу блока и установите выходное напряжение равное 6 вольт. Кратковременно замкните между собой «плюс» и «минус» на выходной колодке.

Напряжение на выходе должно упасть, а затем сразу восстановиться до первоначальных 6 вольт. Если это так, то автомат работает исправно, если нет, проверьте исправность транзистора VT1 и правильность подключения его выводов.

Теперь можно приступать к градуировке вольтметра.

2. Подбираем добавочный (токоограничивающий) резистор.

Перед градуировкой необходимо подобрать добавочный резистор, который нужен для ограничения тока через рамку микроамперметра. Обычно ток полного отклонения стрелки микроамперметра составляет не более 100 мкА, и если такого резистора не будет, то возникший ток в электрической цепи, оказавшийся значительно больше 100 мкА может привести к тому, что сгорит обмотка рамки, или стрелка, резко отклонившись за пределы шкалы, погнется или сломается.

Для градуировки микроамперметра понадобится образцовый вольтметр, в качестве которого можно использовать аналоговый или цифровой измерительный прибор, например, стрелочный тестер или мультиметр.

К микроамперметру подсоедините добавочный резистор R6 сопротивлением в пределах 120 — 160 кОм.

Соблюдая полярность, подключите микроамперметр согласно принципиальной схеме и включите блок питания. Используя образцовый вольтметр, установите выходное напряжение блока равное 6 — 7 вольтам.

Стрелка микроамперметра должна подняться ближе к середине шкалы или встать на ее середину. Начинайте плавно поворачивать движок переменного резистора по часовой стрелке, следя по образцовому вольтметру за выходным напряжением. При этом стрелка микроамперметра должна также плавно двигаться и остановиться на конечной отметке шкалы при достижении блоком питания максимального выходного напряжения.

Если показания выходного напряжения на образцовом вольтметре еще не достигли максимального значения 12 -14 вольт, а стрелка микроамперметра уже перешла конечную отметку шкалы — увеличьте сопротивление добавочного резистора еще на 5 – 10 кОм.
Если же показания напряжения на образцовом вольтметре достигли максимального значения 12-14 вольт, а стрелка микроамперметра еще не встала на конечную отметку шкалы — уменьшите сопротивление добавочного резистора на 5 – 10 кОм.

Одним словом, Вы должны добиться такого результата, чтобы при достижении блоком питания максимального выходного напряжения стрелка микроамперметра остановилась напротив последнего деления шкалы.

3. Градуировка шкалы вольтметра.

Градуировать шкалу микроамперметра не требуется, если во время подбора добавочного резистора показания микроамперметра и образцового вольтметра практически совпадали при изменении выходного напряжения блока питания. То есть, стрелка микроамперметра находилась строго напротив или возле деления, соответствующего величине напряжения, на которую указывал образцовый вольтметр. В этом случае точнее подбираем добавочный резистор.

Если же показания расходились на 2-3 вольта по всему диапазону, клеим лист бумаги на шкалу микроамперметра и размечаем свою шкалу.

Снимаем защитную крышку микроамперметра.
Для этого отворачиваем болт в нижней части прибора.

Может получиться так, что герметичная прокладка, расположенная между корпусом и защитной крышкой, не даст сняться крышке. Отделите или прорежьте ее ножом или отверткой по всему периметру крышки.

Наклеиваем бумагу и делаем отметку первого деления – это будет «0».

Подсоединяем на место микроамперметр и подаем напряжение питания на блок.
По образцовому вольтметру устанавливаем на выходе блока питания 1 вольт и напротив конца стрелки наносим риску ручкой или простым карандашом. Далее, на выходе устанавливаем 2 вольта и опять наносим риску. И таким образом доходим до конца шкалы.

Для дальнейшего удобства пользования вольтметром можно через каждые пять вольт выделить риску и напротив нее написать соответствующее цифровое значение напряжения.

На этом градуировка микроамперметра закончена.

4. Увеличиваем выходное напряжение.

Если у Вашего трансформатора напряжение на вторичной обмотке больше четырнадцати вольт, тогда есть возможность еще немного поднять выходное напряжение блока питания, как это сделано у меня. Для этого последовательно стабилитрону VD6 нужно включить еще один стабилитрон VD7.

Допустим, у Вашего трансформатора на вторичной обмотке переменное напряжение составляет около 20 вольт, значит, можно увеличить выходное стабилизированное напряжение до 15 – 17 вольт.

Обязательно оставляем три-четыре вольта трансформатору для запаса, чтобы он не работал с перегрузом.

По таблице параметров стабилитронов, данной в первой статье, подбираем по напряжению стабилизации Uст пару стабилитронов, чтобы сумма их напряжений составила 15–17 вольт. Например, чтобы на выходе получить максимальное выходное напряжение около 16 вольт, берем один стабилитрон Д814А, а второй Д814В.

Только сильно этим не увлекайтесь, так как основная масса радиолюбительских конструкций питается напряжением 1,5 – 15 вольт, и при питании конструкций пониженным напряжением, например, 1,5 вольта, на выходном транзисторе VT3 будет гаситься излишек напряжения 14 — 15 вольт, из-за чего транзистор будет греться. Поэтому, шестнадцати вольт на выходе Вам хватит вполне.

На плате, добавление второго стабилитрона будет выглядеть так:

Ну вот, в принципе и все.
В собранном виде блок питания выглядит так:

На этом заканчиваю эпопею о самодельном регулируемом блоке питания, который поможет начинающему радиолюбителю, делающему первые шаги в увлекательный мир радиоэлектроники, и станет ему настоящим другом. Я сам, когда серьезно увлекся радиоэлектроникой, одной из первых конструкций, которые я собрал, был именно такой блок питания, служащий мне до сих пор.
Удачи!

sesaga.ru

Радиосхемы Схемы электрические принципиальные. Блок питания на 3 вольта

Радиосхемы. — Блок питания на 3V

материалы в категории

Блок питания на 3 Вольта

Ниже приведены сразу две схемы 3-х Вольтовых блоков питания.Они собраны на разных элементах, а конкретную вы сможете выбрать сами, познакомившись с их особенностями и исходя из своих потребностей м возможностей.На первом рисунке приведена простая схема блока питания на 3 В (ток в нагрузкеке 200 мА) с электронной защитой от перегрузки (Iз = 250 мА). Уровень пульсации выходного напряжения не превышает 8 мВ.

Для нормальной работы стабилизатора напряжение после выпрямителя (на диодах VD1…VD4) может быть от 4,5 до 10 В, но лучше, если оно будет 5…6 В, ≈ меньшая мощность источника теряется на тепловыделение транзистором VT1 при работе стабилизатора. В схеме в качестве источника опорного напряжения используется светодиод HL1 и диоды VD5, VD6. Светодиод является одновременно и индикатором работы блока питания.

Транзистор VT1 крепится на теплорассеивающей пластине. Как рассчитать размер теплоотводящего радиатора можно более подробно посмотреть здесь.Трансформатор Т1 можно приобрести из унифицированной серии ТН любой, но лучше использовать самые малогабаритные ТИ1-127/220-50 или ТН2-127/220-50. Подойдут также и многие другие типы трансформаторов со вторичной обмоткой на 5…6 В. Конденсаторы С1…СЗ типа К50-35.

Вторая схема использует интегральный стабилизатор DA1, но в отличие от транзисторного стабилизатора, приведенного на первом рисунке, для нормальной работы микросхемы необходимо, чтобы входное напряжение превышало выходное не менее чем на 3,5 В. Это снижает КПД стабилизатора за счет тепловыделения на микросхеме.

При низком выходном напряжении мощность, теряемая в блоке питания, будет превышать отдаваемую в нагрузку. Необходимое выходное напряжение устанавливается подстроечным резистором R2. Микросхема устанавливается на радиатор. Интегральный стабилизатор обеспечивает меньший уровень пульсации выходного напряжения (1 мВ), а также позволяет использовать емкости меньшего номинала.

 Обсудить на форуме

radio-uchebnik.ru

Самодельный импульсный блок питания 3 вольта 2 ампера

 

Один знакомый человек попросил изготовить импульсный блок питания 3 вольта 2 ампера. Блок питания с такими характеристиками нужен был для питания аккумуляторной электробритвы. Аккумулятор использовался нестандартный, подобрать его было сложно, а так как он уже отслужил свое, нужен был низковольтный мощный блок питания.

Недавно я уже собирал самодельный импульсный блок питания для планшета (5v 2A). Для поиска схемы для него я обращался на форум, где было предложено несколько вариантов. Оригинальная предложенная схема не захотела работать, но после коллективной доработки, начала работать идеально. Данный самодельный импульсный блок питания 3v 2A я решил все же собрать по изначально предложенной пользователем  Starichok51 схеме. После тщательного подбора номиналов радиодеталей, блок питания начал работать как задумывалось.

Трансформатор EE16 для данного блока питания использовался от сгоревшего компьютерного блока питания. Зазор между половинками сердечника переделывать не пришлось, он был порядка 0.3-0.4мм. А вот обмотки нужно было перематывать. Первичная обмотка наматывалась проводом диаметром 0.16мм – 120 витков, вторичная – в два провода диаметром 0.6мм – 3 витка, обмотка обратной связи – проводом диаметром 0.25мм – 8 витков. Порядок намотки следующий: сперва наматывалась пол первичной обмотки, вторичная, остатки первичной, и в завершении, обмотка обратной связи.

Транзистор 13003 после наладки схемы, во время работы блока питания, оставался слегка теплый, но я, для подстраховки, посадил его на небольшой радиатор. Вместо 100mA предохранителя использовал медную жилу диаметром 0.01мм от многожильного провода. Печатная плата разводилась специально для имеющегося корпуса от трансформаторного зарядного устройства мобильного телефона. Разводку печатной платы в формате *.lay6 можно скачать ЗДЕСЬ.

Страницы:

best-chart.ru

Блок питания для макетной платы 5В 3,3В

Опубликовал admin | Дата 7 июля, 2016

Самодельный блок питания для макетной платы. Схема, описание ее работы, настройка, приводится в данной статье. Данный блок питания предназначен для макетирования схем, включающих в себя микроконтроллеры с модулями аналого-цифрового преобразования, при проектировании схем цифровых вольтметров, амперметров и т.д. и имеет защиту от коротких замыканий. Кроме питающих выходных напряжений 5 В и 3.3 В, блок обеспечивает и опорные напряжения величиной 2,5 В и 1,024 В.

Схема блока питания представлена на рисунке 1.

В качестве сетевого трансформатора я использовал трансформатор выходной звука от старого лампового телевизора «Рекорд». Такие трансформаторы проверены годами работы. Сколько я сделал блоков питания из них, я уж и не помню, но отказов в их работе не было. Смотрим фото 1.

Трансформатор имеет две обмотки. Обмотка с числом витков 3000, используется в качестве сетевой обмотки. Три тысячи витков вполне достаточно для обеспечения малого тока холостого хода данного трансформатора. Вторая обмотка, с числом витков 91, используется в качестве обмотки вторичной. Она обеспечивает ток нагрузки до 500мА, что вполне достаточно для работы с микроконтроллерами и индикаторами. Ее выходное напряжение без нагрузки равно 6,5 В, что тоже нам подходит. После выпрямления и фильтрации постоянное напряжение будет соответствовать амплитудному значению переменного напряжения ≈ 6,5 В т.е. 6,5 ∙ √2 = 6,5 ∙1,41 ≈ 9,2 В. Этой величины нам вполне достаточно. При использовании этого трансформатора не забудьте перебрать его сердечник. Дело в том, что изначально сердечник ТВЗ собран с зазором, а надо собрать сердечник «в перекрышку», без зазора.

Конечно, можно использовать и другие трансформаторы или просто импульсные блоки зарядки от телефонов с соответствующими выходными напряжениями. По крайней мере, входное напряжения основного стабилиза

xn—-7sbeb3bupph.xn--p1ai

Как самому сделать мощный регулируемый лабораторный блок питания 0-30 вольт 0-3 ампер

Всем привет. Сегодня заключительный обзор, сборка лабораторного линейного блока питания. Сегодня много слесарных работ, изготовление корпуса и финальная сборка. Обзор размещен в блоге «DIY или Сделай Сам», надеюсь я тут никого не отвлекаю и не кому не мешаю тешить свой взгляд прелестями Лены и Игоря))). Всем кому интересны самоделки и радиотехника — Добро пожаловать!!!
ВНИМАНИЕ: Очень много букв и фото! Трафик!

Добро пожаловать радиолюбитель и любитель самоделок! Для начала давайте вспомним, этапы сборки лабораторного линейного блока питания. Непосредственно к данному обзору не имеет отношения, потому разместил под спойлер:

Этапы сборки

Первый обзор. Сборка силового модуля. Плата, радиатор, силовой транзистор, 2 переменных многооборотных резистора и зеленый трансформатор (из Восьмидесятых ®) Как подсказал мудрый kirich, я самостоятельно собрал схему, которую китайцы продают в виде конструктора, для сборки блока питания. Я сначала расстроился, но потом решил, что, видать схема хороша, раз китайцы её копируют… В то же время вылезли и детские болячки этой схемы (которые полностью были скопированы китайцами), без замены микросхем на более «высоковольтные», на вход нельзя подавать больше 22 вольт переменного напряжения… И несколько более мелких проблем, которые подсказали мне наши форумчане, за что им огромное спасибо. Совсем недавно будущий инженер «AnnaSun» предложила свою версию избавления от трансформатора. Конечно каждый может модернизировать свой БП как угодно, можно и импульсник поставить в качестве источника питания. Но у любого импульсника (быть может кроме резонансных) на выходе куча помех, и эти помехи частично перейдут на выход ЛабБП… А если там имульсные помехи, то (ИМХО) это не ЛабБП. Потому я не буду избавляться от «зеленого трансформатора».

Поскольку это линейный блок питания, у него есть характерный и существенный недостаток, вся лишняя энергия выделяется на силовом транзисторе. Для примера, на вход мы подаем 24В переменного напряжения, которое после выпрямления и сглаживания превратится в 32-33В. Если на выход присоединить мощную нагрузку, потребляющую 3А при напряжении 5В, вся оставшаяся мощность (28В при токе 3А), а это 84Вт, будет рассеиваться на силовом транзисторе, переходя в тепло. Одним из способов предотвратить эту проблему, и соответственно повысить КПД, это поставить модуль ручного или автоматического переключения обмоток. Данный модуль был рассмотрен в 2-м моем обзоре:
Для удобства работы с блоком питания и возможности мгновенного отключения нагрузки, с схему был введен дополнительный модуль на реле, позволяющий включать или выключать нагрузку. Этому был посвящен мой третий обзор.

К сожалению, из-за отсутствия нужных реле (нормально замкнутых), данный модуль работал некорректно, потому он будет заменен другим модулем, на D-триггере, позволяющий включать или выключать нагрузку при помощи одной кнопки.

Вкратце расскажу про новый модуль. Схема довольно известная (прислали мне ссылку в личку):


Немножко модифицировал её под свои нужды и собрал такую плату:


С обратной стороны:


На это раз никаких проблем не было. Все работает очень четко и управляется одной кнопкой. При подаче питания, на 13 выходе микросхемы всегда логический ноль, транзистор (2n5551) закрыт и реле обесточено — соответственно нагрузка не подключена. При нажатии кнопки, на выходе микросхемы появляется логическая единица, транзистор открывается и реле срабатывает подключая нагрузку. Повторное нажатие на кнопку возвращает микросхему в исходное состояние.

Какой же блок питания без индикатора напряжения и тока? Потому в 4-м обзоре я попытался сделать ампервольтметр самостоятельно. В принципе получился неплохой прибор, однако он имеет некоторую нелинейность в диапазоне от 0 до 3.2А. Эта погрешность никак не будет влиять при использовании данного измерителя, скажем в зарядном устройстве для АКБ автомобиля, но недопустима для Лабораторного БП, потому, я заменю этот модуль, китайскими щитовыми прецизионными вольтметром и амперметром с дисплеями, имеющими 5 разрядов… А собранный мною модуль найдет применение в какой-нибудь другой самоделке.


Наконец-то приехали из Китая более высоковольтные микросхемы, о чем я Вам рассказал в 5-ом обзоре. И теперь можно подавать на вход 24В переменного тока, не опасаясь, что пробьет микросхемы…

Теперь дело осталось за «малым», изготовить корпус и собрать все блоки вместе, чем я и займусь в этом финальном обзоре по данной тематике.

Поискав готовый корпус, ничего подходящего не нашел. У китайцев есть неплохие коробки, но, к сожалению, цена их, а особенно стоимость доставки — запредельная…


Отдать китайцам 60 баксов мне «жаба» не позволила, да и глупо такие деньги отдавать за корпус, можно еще немного добавить и купить готовый ЛабБП. По крайней мере, корпус из этого Бп выйдет хороший.

Потому я поехал на строительный базар и купил 3 метра алюминиевого уголка. С его помощью будет собран каркас прибора.

Подготавливаем детали нужного размера. Расчерчиваем заготовки и спиливаем уголки при помощи отрезного диска. Обзор на мою версию дремеля.



Затем выкладываем заготовки верхней и нижней панели, чтобы прикинуть, что получится.


Пробуем расположить модули внутри


Сборка идет на потайных винтах (под шляпку зенкером, разенковывается отверстие, что бы головка винта не выступала над уголком), и гайках с обратной стороны. Потихоньку появляются очертания каркаса блока питания:


И вот каркас собран… Не очень ровный, особенно по углам, но думаю, что покраска скроет все неровности:


Размеры каркаса под спойлером:

Измерение размеров

К сожалению времени мало свободного, потому слесарные работы продвигаются медленно. Вечерами за неделю изготовил лицевую панель из листа алюминия и панельку под вход питания и предохранитель.




Расчерчиваем будущие отверстия под Вольтметр и Амперметр. Посадочное гнездо должно быть размерами 45.5мм на 26.5мм

Обклеиваем посадочные отверстия малярным скотчем:


И отрезным диском, при помощи дремеля делаем пропилы (скотч нужен, что бы не выйти за размеры гнезд, и не испортить панель царапинами) Дремель быстро справляется с алюминием, но на 1 отверстие уходит 3-4 отрезных диска

Опять была заминка, банально, кончились отрезные диски для дремеля, поиск по всем магазинам Алматы ни к чему не привел, потому пришлось ждать диски из Китая… Благо пришли быстро за 15 дней. Дальше работа пошла более весело и быстро…

Пропилил дремелем отверстия под цифровые индикаторы, и обработал напильником.


Ставим на «уголки» зеленый трансформатор


Примеряем радиатор с силовым транзистором. Он будет изолирован от корпуса, так как на радиаторе установлен транзистор в корпусе ТО-3, а там сложно изолировать коллектор транзистора от корпуса. Радиатор будет стоять за декоративной решеткой с вентилятором охлаждения.



Обработал наждачкой на бруске лицевую панель. Решил примерить все что будет на ней закреплено. Получается вот так:


Два цифровых измерителя, кнопка включения нагрузки, два многооборотных потенциометра, выходные клеммы и держатель светодиода «Ограничение тока». Вроде ничего не забыл?


С обратной стороны лицевой панели.

Разбираем все и красим черной краской с баллончика каркас блока питания.


На заднюю стенку прикрепляем на болты декоративную решетку (куплено на авторынке, анодированный алюминий для тюнига воздухозабора радиатора 2000 тенге (6.13USD))


Вот так получилось, вид с обратной стороны корпуса блока питания.


Ставим вентилятор для обдува радиатора с силовым транзистором. Я прикрепил его на пластиковые черные хомуты, держит хорошо, внешний вид не страдает, их почти не видно.


Возвращаем на место пластиковое основание каркаса с уже установленным силовым трансформатором.


Размечаем места крепления радиатора. Радиатор изолирован от корпуса прибора, т.к. на нем напряжение равное напряжению на коллекторе силового транзистора. Думаю, что он хорошо будет обдуваться вентилятором, что позволит значительно снизить температуру радиатора. Вентилятор будет управляться схемой снимающей информацию с датчика (терморезистора) закрепленного на радиаторе. Таким образом вентилятор не будет «молотить» в пустую, а будет включатся при достижении определенной температуры на радиаторе силового транзистора.


Прикрепляем на место лицевую панель, поглядеть что получилось.


Декоративной решетки осталось много, потому решил попробовать сделать П-образную крышку корпуса блока питания (на манер компьютерных корпусов), если не понравится, переделаю на что-нибудь другое.


Вид спереди. Пока решетка «наживлена» и еще не плотно прилегает к каркасу.


Вроде неплохо получается. Решетка достаточно прочная, можно смело ставить сверху что-либо, ну а про качество вентиляции внутри корпуса, даже не стоит говорить, вентиляция будет просто отличная, по сравнению с закрытыми корпусами.

Ну чтож, продолжаем сборку. Подключаем цифровой амперметр. Важно: не наступайте на мои грабли, не используйте штатный разъем, только пайка непосредственно к контактам разъема. Иначе будет в место тока в Амперах, показывать погоду на Марсе.


Провода для подключения амперметра, да и всех остальных вспомогательных устройств должны быть максимально короткими.

Между выходными клеммами (плюс-минус) установил панельку из фольгированного текстолита. Очень удобно прочертив изолирующие бороздки в медной фольге, создавать площадки для подключения всех вспомогательных устройств (амперметр, вольтметр, плата отключения нагрузки и т.п.)

Основная плата установлена рядом с радиатором выходного транзистора.

Плата переключения обмоток установлена над трансформатором, что позволило значительно сократить длину шлейфа проводов.

Наступил черед собрать модуль дополнительного питания для модуля переключения обмоток, амперметра, вольтметра и т.п.

Поскольку у нас линейный — аналоговый БП, будем использовать так же вариант на трансформаторе, никаких импульсных блоков питания. 🙂

Вытравливаем плату:


Впаиваем детали:


Тестируем, ставим латунные «ножки» и встраиваем модуль в корпус:

Ну вот, все блоки встроены (кроме модуля управления вентилятором, который будет изготовлен позже) и установлены на свои места. Провода подключены, предохранителя вставлены. Можно проводить первое включение. Осеняем себя крестом, закрываем глаза и даем питание…

Бабаха и белого дыма нет — уже хорошо… Вроде на холостом ходу ничего не греется… Нажимаем кнопку включения нагрузки — зажигается зеленый светодиод и щелкает реле. Вроде все пока нормально. Можно приступать к тестированию.

Как говорится, «скоро сказка сказывается, да не скоро дело делается». Опять выплыли подводные камни. Модуль переключения обмоток трансформатора работает некорректно с силовым модулем. При напряжении переключения с первой обмотки на следующую происходит скачек напряжения, т.е при достижении 6.4В происходит скачек до 10.2В. Потом конечно можно уменьшить напряжение, но это не дело. Сначала я думал, что проблема в питании микросхем, поскольку их питание тоже от обмоток силового трансформатора, и соответственно растет с каждой последующей подключенной обмоткой. Потому попробовал дать питание на микросхемы с отдельного источника питания. Но это не помогло.

Потому есть 2 варианта: 1. Полностью переделать схему. 2. Отказаться от модуля автоматического переключения обмоток. Начну с 2 варианта. Полностью без переключения обмоток я остаться не могу, потому как вариант мириться с печкой мне не нравится, потому поставлю тумблер- переключатель позволяющий выбирать подаваемое напряжение на вход БП из 2-х вариантов 12В или 24В. Это конечно «полумера», но лучше чем вообще ничего.

Заодно решил поменять амперметр на другой подобный, но с зеленым цветом свечения цифр, поскольку красные цифры амперметра светятся довольно слабо и при солнечном свете их плохо видно. Вот что получилось:


Вроде так получше. Возможно, так же, что я заменю вольтметр на другой, т.к. 5 разрядов в вольтметре явно избыточно, 2 разряда после запятой вполне достаточно. Варианты замены у меня есть, так что проблем не будет.

Ставим переключатель и подключаем к нему провода. Проверяем.

При положении переключателя «вниз» — максимальное напряжение без нагрузки составило около 16В

При положении переключателя вверх — доступно максимальное напряжение для данного трансформатора 34В (без нагрузки)

Теперь ручки, долго не стал придумывать варианты и нашел пластмассовые дюбели подходящего диаметра, как внутреннего, так и внешнего.


Отрезаем трубочку нужной длины и надеваем на штоки переменных резисторов:


Затем надеваем ручки и фиксируем винтами. Поскольку трубка дюбеля достаточно мягкая, ручка фиксируется очень хорошо, что бы сорвать её необходимы значительные усилия.

Обзор получился очень большим. Потому не буду отнимать Ваше время и вкратце протестируем Лабораторный блок питания.

Помехи осциллографом мы уже смотрели в первом обзоре, и с тех пор ничего не изменилось в схемотехнике.

Потому проверим минимальное напряжение, ручка регулировки в крайнем левом положении:

Теперь максимальный ток

Ограничение тока в 1А

Максимальное ограничение тока, ручка регулировки тока в крайне правом положении:

На этом Всё мои дорогие радиогубители и сочувствующие… Спасибо всем, кто дочитал до конца. Прибор получился брутальный, тяжелый и я надеюсь надежный. До новых встреч в эфире!

UPD: Осциллограммы на выходе блока питания при включении напряжения:


И выключения напряжения:

UPD2: Друзья с форума «Паяльник» дали идею, как с минимальными переделками схемы запустить модуль переключения обмоток. Спасибо всем за проявленный интерес, буду доделывать прибор. Поэтому — продолжение следует.

mysku.ru