Шим 3528 переделка atx блока питания – Микросхема ШИМ-контроллера FSP3528 и субмодуль управления системным блоком питания на ее основе

Еще проще переделка ATX питателя 350Вт на ШИМ FSP3528

Смотрите новое на видеоканале

Внимание! Все работы с силовыми цепями необходимо проводить соблюдая технику безопасности!

В сети интернет можно найти очень много описаний и способов переделок БП АТХ под свои нужды, от зарядных устройств до лабораторных блоков питания.  Схема вторичных цепей БП ATX от брэнда производителя FSP примерно одинакова:

Описывать подробности работы схемы нет смысла, так как все есть в сети, отмечу лишь,  что в этой схеме есть регулировка тока защиты от К.З. — триммер VR3, что избавляет от необходимости добавления цепи детектора тока и шунта. Впрочем, если есть такая необходимость, то всегда можно добавить такой участок цепи, например на простом и распространенном ОУ LM358.  Часто, в таких БП как FSP, каскад ШИМ контроллера выполнен в виде модуля:

 

Как всегда вторичные цепи на плате выпаиваются:

 

Проверяем работоспособность «дежурки» и исправность силового инвертора, иначе  предварительно произвести ремонт!

Принципиальная схема переделанного блока питания на 15-35 вольт выглядит так:

 

Подстроечным резистором на 47к выставляется необходимое напряжение на выходе питателя. Выделенное красным цветом на схеме — удалить.

В собранном виде

Радиатор диодов выпрямителя маловат по площади, поэтому лучше его увеличить. По результатам измерений на напряжении 28в переделанный БП легко отдавал 7А, учитывая его изначальную мощность 350Вт, расчетное  напряжении нагрузки:

  •  при 30в максимальный ток —  не менее 12,5А
  •  при 40в  —  не менее 7А.

Конечно же всегда есть возможность купить готовый блок питания такой мощности, но учитывая стоимости таких устройств, необходимо реальное экономическое обоснование этих затрат…

texvedkom.org

переделка ATX 350Вт на ШИМ FSP3528

Внимание! Все работы с силовыми цепями необходимо проводить соблюдая технику безопасности!

В сети интернет можно найти очень много описаний и способов переделок БП АТХ под свои нужды, от зарядных устройств до лабораторных блоков питания.  Схема вторичных цепей БП ATX от брэнда производителя FSP примерно одинакова:

Описывать подробности работы схемы нет смысла, так как все есть в сети, отмечу лишь,  что в этой схеме есть регулировка тока защиты от К.З. — триммер VR3, что избавляет от необходимости добавления цепи детектора тока и шунта. Впрочем, если есть такая необходимость, то всегда можно добавить такой участок цепи, например на простом и распространенном ОУ LM358.  Часто, в таких БП как FSP, каскад ШИМ контроллера выполнен в виде модуля:

 

Как всегда вторичные цепи на плате выпаиваются:

 

Проверяем работоспособность «дежурки» и исправность силового инвертора, иначе  предварительно произвести ремонт!

Принципиальная схема переделанного блока питания на 15-35 вольт выглядит так:

 

Подстроечным резистором на 47к выставляется необходимое напряжение на выходе питателя. Выделенное красным цветом на схеме — удалить.

В собранном виде

Радиатор диодов выпрямителя маловат по площади, поэтому лучше его увеличить. По результатам измерений на напряжении 28в переделанный БП легко отдавал 7А, учитывая его изначальную мощность 350Вт, расчетное  напряжении нагрузки:

  •  при 30в максимальный ток —  не менее 12,5А
  •  при 40в  —  не менее 7А.

Конечно же всегда есть возможность купить готовый блок питания такой мощности, но учитывая стоимости таких устройств, необходимо реальное экономическое обоснование этих затрат…

atreds.pw

Переделка Бп На Шим 3528

Переделка атх на шим 3. Завантаження списк.

Средняя точка делителя подключается к выв.13 FSP3528, вывод. Частота ШИМ – 42 кГц, при ней глубина проникновения тока в медь . Еще проще переделка ATX питателя 350Вт на ШИМ FSP3528. Схема вторичных цепей БП ATX от брэнда производителя FSP примерно одинакова. Overclockers.ru: Блок питания ATX: переделка под усилитель низкой. Внимание: это первая статья про переделку блока питания.

Зарядное устройство из компьютерного БП АТХ — . При этом, несмотря на высокую сложность импульсного БП (тем более АТХ), переделка БП в ЗУ оказывается чрезвычайно лёгкой. К сожалению все примеры переделок из интернета . По этому предлагаю вниманию переделку БП ATX FSP3. F на базе одноимённой микросхемы ШИМ FSP3. Этот БП обещает следующие параметры: При этом я перешёл с ЗУ на трофейной базе 6.

  1. Речь идет о переделке его в лабораторный ИП. Переделал похожий БП на 3528 (Component Pro ATX250GT), плата один в один как у .
  2. По этому предлагаю вниманию переделку БП ATX FSP350F на базе одноимённой микросхемы ШИМ FSP3528
  3. Рис.2 Функциональная схема ШИМ-контроллера FSP3528. Вход сигнала включения/выключения блока питания. В спецификации на .
  4. САМЫЙ #ПРОСТОЙ #СПОСОБ ПЕРЕДЕЛКИ КОМПЬЮТЕРНОГО БЛОКА ПИТАНИЯ В РЕГУЛИРУЕМЫЙ (по току и напряжению)!

ЛАТР, силовой транс ТС- 1. ТВ второго поколения (ламповые ч/б), выпрямитель от 5. Раньше мой зарядный комплекс выглядел так: Мой подопытный БП отличается от прототипа . Отключить/сместить две из четырёх защит основой микросхемы: Защита от перенапряжения +1. В, перестраивается путём замены резистора R1. R1. 2(2к. Ом),R6.

Ом) на 2. 3к. Ом (получается сработка защиты при 1. В). Защита от перенапряжения +5. В отключается, отрезанием дорожки и подключением ножки . Перестройка цепи ОС стабилизатора напряжений так чтобы диапазон подстройки напряжений был в нужных нам пределах. Для этого меняется резистор R4.

Ом. При этом регулировка выходного напряжения с помощью встроенного подстроечного резистора VR1 будет в диапазоне 1. В. После такой переделки БП уже можно использовать для зарядки АКБ! Разумеется ещё имеет смысл сделать следующее: Отключить управление включением силовой части БП (PSON) путём заземления ножки . В моём случае в боковую стенку с низковольтной стороны БП, где нет фирменной наклейки. КЗ) в цепи — 1. 2В, т.

Эту защиту нужно отрегулировать с базовых 3. Вт, на ограничение максимальной паспортной мощьности этого БП в цепи +1. Программа Для Формата Swf на этой странице. В (в моём случае — 2. Вт), с помощью подстроечного резистора VR3. В на такие же с большим (2. В) напряжением т.

И уж тем более ставить конденсаторы из цепи +1. Драйвера Для Dns Airtab E75. Сказать по правде я таки заменил конденсаторы в цепи + и — 1. И если уж их менять, то можно смело уменьшить их ёмкось т. Входные цепи я рисовал по дорожкам и они ничем не отличаются от схемы в.

downloadfreerex.netlify.com

Зарядное устройство на основе блока питания ATX « схемопедия


У компьютерного блока питания, наряду с такими преимуществами, как малые габариты и вес при мощности от 250 Вт и выше, есть один существенный недостаток – отключение при перегрузке по току. Этот недостаток не позволяет использовать БП в качестве зарядного устройства для автомобильного аккумулятора, поскольку у последнего в начальный момент времени зарядный ток достигает нескольких десятков ампер. Добавление в БП схемы ограничения тока позволит избежать его отключения даже при коротком замыкании в цепях нагрузки.

Зарядка автомобильного аккумулятора происходит при постоянном напряжении. При этом методе в течение всего времени заряда напряжение зарядного устройства остается постоянным. Заряд аккумулятора таким методом в ряде случаев предпочтителен, так как он обеспечивает более быстрое доведение батареи до состояния, позволяющего обеспечить запуск двигателя. Сообщаемая на первоначальном этапе заряда энергия тратится преимущественно на основной зарядный процесс, то есть на восстановление активной массы электродов. Сила зарядного тока в первоначальный момент может достигать 1,5С, однако для исправных, но разряженных автомобильных аккумуляторов такие токи не принесут вредных последствий, а наиболее распространённые БП ATX мощностью 300 – 350 Вт не в состоянии без последствий для себя отдать ток более 16 – 20А.

Максимальный (начальный) зарядный ток зависит от модели используемого БП, минимальный ток ограничения 0,5А. Напряжение холостого хода регулируется и для заряда стартёрного аккумулятора может составлять 14…14,5В.

Вначале необходимо доработать сам БП, отключив у него защиты по превышению напряжений +3,3В, +5В, +12В, -12В, а также удалив неиспользуемые для зарядного устройства компоненты.

Для изготовления ЗУ выбран БП модели FSP ATX-300PAF. Схема вторичных цепей БП рисовалась по плате, и несмотря на тщательную проверку, незначительные ошибки, к сожалению, не исключены.

На рисунке ниже представлена схема уже доработанного БП.

Для удобной работы с платой БП последняя извлекается из корпуса, из неё выпаиваются все провода цепей питания +3,3V, +5V, +12V, -12V, GND, +5Vsb, провод обратной связи +3,3Vs, сигнальная цепь PG, цепь включения БП PSON, питание вентилятора +12V. Вместо дросселя пассивной коррекции коэффициента мощности (установлен на крышке БП) временно впаивается перемычка, провода питания ~220V, идущие от выключателя на задней стенке БП, выпаиваются из платы, напряжение будет подаваться сетевым шнуром.

В первую очередь деактивируем цепь PSON для включения БП сразу после подачи сетевого напряжения. Для этого вместо элементов R49, C28 устанавливаем перемычки. Убираем все элементы ключа, подающего питание на трансформатор гальванической развязки Т2, управляющего силовыми транзисторами Q1, Q2 (на схеме не показаны), а именно R41, R51, R58, R60, Q6, Q7, D16. На плате БП контактные площадки коллектора и эмиттера транзистора Q6 соединяются перемычкой.

После этого подаем ~220V на БП, убеждаемся в его включении и нормальной работе.

Далее отключаем контроль цепи питания -12V. Удаляем с платы элементы R22, R23, C50, D12. Диод D12 находится под дросселем групповой стабилизации L1, и его извлечение без демонтажа последнего (о переделке дросселя будет написано ниже) невозможно, но это и не обязательно.

Удаляем элементы R69, R70, C27 сигнальной цепи PG.

Включаем БП, убеждаемся в его работоспособности.

Затем отключается защита по превышению напряжения +5В. Для этого выв.14 FSP3528 (контактная площадка R69) соединяется перемычкой с цепью +5Vsb.

На печатной плате вырезается проводник, соединяющий выв.14 с цепью +5V (элементы L2, C18, R20).

Выпаиваются элементы L2, C17, C18, R20.

Включаем БП, убеждаемся в его работоспособности.

Отключаем защиту по превышению напряжения +3,3В. Для этого на печатной плате вырезаем проводник, соединяющий выв.13 FSP3528 с цепью +3,3V (R29, R33, C24, L5).

Удаляем с платы БП элементы выпрямителя и магнитного стабилизатора L9, L6, L5, BD2, D15, D25, U5, Q5, R27, R31, R28, R29, R33, VR2, C22, C25, C23, C24, а также элементы цепи ООС R35, R77, C26. После этого добавляем делитель из резисторов 910 Ом и 1,8 кОм, формирующий из источника +5Vsb напряжение 3,3В. Средняя точка делителя подключается к выв.13 FSP3528, вывод резистора 931 Ом (подойдёт резистор 910 Ом) – к цепи +5Vsb, а вывод резистора 1,8 кОм – к «земле» (выв. 17 FSP3528).

Далее, не проверяя работоспособность БП, отключаем защиту по цепи +12В. Отпаиваем чип-резистор R12. В контактной площадке R12, соединённой с выв. 15 FSP3528 сверлится отверстие 0,8 мм. Вместо резистора R12 добавляется сопротивление, состоящее из последовательно соединённых резисторов номинала 100 Ом и 1,8 кОм. Один вывод сопротивления подсоединяется к цепи +5Vsb, другой – к цепи R67, выв. 15 FSP3528.

Отпаиваем элементы цепи ООС +5V R36, C47.

После удаления ООС по цепям +3,3V и +5V необходимо пересчитать номинал резистора ООС цепи +12V R34. Опорное напряжение усилителя ошибки FSP3528 равно 1,25В, при среднем положении регулятора переменного резистора VR1 его сопротивление составляет 250 Ом. При напряжении на выходе БП в +14В, получаем: R34 = (Uвых/Uоп – 1)*(VR1+R40) = 17,85 кОм, где Uвых, В – выходное напряжение БП, Uоп, В – опорное напряжение усилителя ошибки FSP3528 (1,25В), VR1 – сопротивление подстроечного резистора, Ом, R40 – сопротивление резистора, Ом. Номинал R34 округляем до 18 кОм. Устанавливаем на плату.

Конденсатор C13 3300х16В желательно заменить на конденсатор 3300х25В и такой же добавить на место, освободившееся от C24, чтобы разделить между ними токи пульсаций. Плюсовой вывод С24 через дроссель (или перемычку) соединяется с цепью +12V1, напряжение +14В снимается с контактных площадок +3,3V.

Включаем БП, подстройкой VR1 устанавливаем на выходе напряжение +14В.

После всех внесённых в БП изменений переходим к ограничителю. Схема ограничителя тока представлена ниже.

Резисторы R1, R2, R4…R6, соединённые параллельно, образуют токоизмерительный шунт сопротивлением 0,01 Ом. Ток, протекающий в нагрузке, вызывает на нём падение напряжения, которое ОУ DA1.1 сравнивает с опорным напряжением, установленным подстроечным резистором R8. В качестве источника опорного напряжения используется стабилизатор DA2 с выходным напряжением 1,25В. Резистор R10 ограничивает максимальное напряжение, подаваемое на усилитель ошибки до уровня 150 мВ, а значит, максимальный ток нагрузки до 15А. Ток ограничения можно рассчитать по формуле I = Ur/0,01, где Ur, В – напряжение на движке R8, 0,01 Ом – сопротивление шунта. Схема ограничения тока работает следующим образом.

Выход усилителя ошибки DA1.1 подсоединён с выводом резистора R40 на плате БП. До тех пор, пока допустимый ток нагрузки меньше установленного резистором R8, напряжение на выходе ОУ DA1.1 равно нулю. БП работает в штатном режиме, и его выходное напряжение определяется выражением: Uвых=((R34/(VR1+R40))+1)*Uоп. Однако, по мере того, как напряжение на измерительном шунте из-за роста тока нагрузки увеличивается, напряжение на выв.3 DA1.1 стремится к напряжению на выв.2, что приводит к росту напряжения на выходе ОУ. Выходное напряжение БП начинает определяться уже другим выражением: Uвых=((R34/(VR1+R40))+1)*(Uоп-Uош), где Uош, В – напряжение на выходе усилителя ошибки DA1.1. Иными словами, выходное напряжение БП начинает уменьшаться до тех пор, пока ток, протекающий в нагрузке, не станет чуть меньше установленного тока ограничения. Состояние равновесия (ограничения тока) можно записать так: Uш/Rш=(((R34/(VR1+R40))+1)*(Uоп-Uош))/Rн, где Rш, Ом – сопротивление шунта, Uш, В – напряжение падения на шунте, Rн, Ом – сопротивление нагрузки.

ОУ DA1.2 используется в качестве компаратора, сигнализируя с помощью светодиода HL1 о включении режима ограничения тока.

Печатная плата (под «утюг») и схема расположения элементов ограничителя тока изображена на рисунках ниже.

Несколько слов о деталях и их замене. Электролитические конденсаторы, установленные на плате БП FSP, имеет смысл заменить на новые. В первую очередь в цепях выпрямителя дежурного источника питания +5Vsb, это С41 2200х10V и С45 1000х10V. Не забываем о форсирующих конденсаторах в базовых цепях силовых транзисторов Q1 и Q2 – 2,2х50V (на схеме не показаны). Если есть возможность, конденсаторы выпрямителя 220В (560х200V) лучше заменить на новые, большей ёмкости. Конденсаторы выходного выпрямителя 3300х25V должны быть обязательно с низким ЭПС – серии WL или WG, в противном случае они быстро выйдут из строя. В крайнем случае, можно поставить б/у конденсаторы этих серий на меньшее напряжение – 16В.

Прецизионный ОУ DA1 AD823AN «rail-to-rail» как нельзя кстати подходит к данной схеме. Однако его можно заменить на порядок более дешёвым ОУ LM358N. При этом стабильность выходного напряжения БП будет несколько хуже, также придется подбирать номинал резистора R34 в меньшую сторону, поскольку у этого ОУ минимальное выходное напряжение вместо нуля (0,04В, если быть точным) 0,65В.

Максимальная суммарная рассеиваемая мощность токоизмерительных резисторов R1, R2, R4…R6 KNP-100 равна 10 Вт. На практике лучше ограничиться 5 ваттами – даже при 50% от максимальной мощности их нагрев превышает 100 градусов.

Диодные сборки BD4, BD5 U20C20, если их действительно стоит 2шт., менять на что-либо более мощное не имеет смысла, обещанные производителем БП 16А они держат хорошо. Но бывает так, что в действительности установлена только одна, и в этом случае необходимо либо ограничиться максимальным током в 7А, либо добавить вторую сборку.

Испытание БП током 14А показало, что уже спустя 3 минуты температура обмотки дросселя L1 превышает 100 градусов. Долговременная безотказная работа в таком режиме вызывает серьёзное сомнение. Поэтому, если подразумевается нагружать БП током свыше 6-7А, дроссель лучше переделать.

В заводском исполнении обмотка дросселя +12В намотана одножильным проводом диаметром 1,3 мм. Частота ШИМ – 42 кГц, при ней глубина проникновения тока в медь составляет около 0,33 мм. Из-за скин-эффекта на данной частоте эффективное сечение провода составляет уже не 1,32 мм2, а только 1 мм2, что недостаточно для тока в 16А. Иными словами, простое увеличение диаметра провода для получения большего сечения, а следовательно, уменьшения плотности тока в проводнике неэффективно для этого диапазона частот. К примеру, для провода диаметром 2мм эффективное сечение на частоте 40 кГц только 1,73мм2, а не 3,14 мм2, как ожидалось. Для эффективного использования меди намотаем обмотку дросселя литцендратом. Литцендрат изготовим из 11 отрезков эмалированного провода длиной 1,2м и диаметром 0,5мм. Диаметр провода может быть и другим, главное, чтобы он был меньше удвоенной глубины проникновения тока в медь – в этом случае сечение провода будет использовано на 100%. Провода складываются в «пучок» и скручиваются с помощью дрели или шуруповёрта, после чего жгут продевается в термоусадочную трубку диаметром 2мм и обжимается с помощью газовой горелки.

Готовый провод целиком наматывается на кольцо, и изготовленный дроссель устанавливается на плату. Наматывать обмотку -12В смысла нет, индикатору HL1 «Питание» какой-либо стабилизации не требуется.

Остаётся установить плату ограничителя тока в корпус БП. Проще всего её прикрутить к торцу радиатора.

Подключим цепь «ООС» регулятора тока к резистору R40 на плате БП. Для этого вырежем часть дорожки на печатной плате БП, которая соединяет вывод резистора R40 с «корпусом», а рядом с контактной площадкой R40 просверлим отверстие 0,8мм, куда будет вставлен провод от регулятора.

Подключим питание регулятора тока +5В, для чего припаяем соответствующий провод к цепи +5Vsb на плате БП.

«Корпус» ограничителя тока присоединяется к контактным площадкам «GND» на плате БП, цепь -14В ограничителя и +14В платы БП выходят на внешние «крокодилы» для подключения к аккумулятору.

Индикаторы HL1 «Питание» и HL2 «Ограничение» закрепляются на месте заглушки, установленной вместо переключателя «110V-230V».

Скорее всего, в вашей розетке отсутствует контакт защитного заземления. Вернее, контакт, может быть, и есть, а вот провод к нему не походит. Про гараж и говорить нечего… Настоятельно рекомендуется хотя бы в гараже (подвале, сарае) организовать защитное заземление. Не стоит игнорировать технику безопасности. Это иногда заканчивается крайне плачевно. Тем, у кого розетка 220В не имеет контакта заземления, оборудуйте БП внешней винтовой клеммой для его подключения.

После всех доработок включаем БП и корректируем подстроечным резистором VR1 требуемое выходное напряжение, а резистором R8 на плате ограничителя тока – максимальный ток в нагрузке.

Подключаем к цепям -14В, +14В зарядного устройства на плате БП вентилятор 12В. Для нормальной работы вентилятора в разрыв провода +12В, либо -12В, включаются два последовательно соединённых диода, которые уменьшат напряжение питания вентилятора на 1,5В.

Подключаем дроссель пассивной коррекции коэффициента мощности, питание 220В от выключателя, прикручиваем плату в корпус. Фиксируем нейлоновой стяжкой выходной кабель зарядного устройства.

Прикручиваем крышку. Зарядное устройство готово к работе.

В заключение стоит отметить, что ограничитель тока будет работать с БП ATX (или AT) любого производителя, использующего ШИМ-контроллеры TL494, КА7500, КА3511, SG6105 или им подобным. Разница между ними будет заключаться лишь в методах обхода защит.

Скачать печатную плату ограничителя в формате PDF и DWG (Autocad)

Автор: Сергей Беляев, г. Тамбов

shemopedia.ru

Блок Питания Шим 3528 Переделка

Блок Питания Шим 3528 Переделка Average ratng: 3,7/5 952votes

Переделка компьютерного ATX блока питания в регулируемый. Компьютерный ATX блок питания можно переделать практически во все что угодно — и в лабораторный блок питания, и в зарядное устройство для автомобильных аккумуляторов, и просто в достаточно мощный источник питания — для гальваники например. Это совсем не сложно — необходимо только понимать основные принципы работы схем.

Речь идет о блоках питания с ШИМ — контроллером TL4. IR3. M0. 2, u. А4.

Речь идет о блоках питания с ШИМ — контроллером TL494 и его . Переделка компьютерного БП АТХ 12V на базе FSP3528. Внимание: это первая статья про переделку блока питания. Речь идет о переделке его в лабораторный ИП.

САМЫЙ #ПРОСТОЙ #СПОСОБ ПЕРЕДЕЛКИ КОМПЬЮТЕРНОГО БЛОКА ПИТАНИЯ В РЕГУЛИРУЕМЫЙ (по току и напряжению)!

КА7. 50. 0, МВ3. 75. TL5. 94 — такие схемы переделывать проще. Это типовая схема ATX блока. Синим выделен сетевой фильтр с выпрямителем и емкостями. Красным — дежурный источник питания, запитывающий ШИМ — контроллер. Коричневым — низковольтные и высоковольтные ключи на биполярных транзисторах.

Трансформатор нужен для гальванической развязки от высоковольтной части схемы. Желтым — схемы защиты, контроля напряжений и запуска блока питания, вход PS ON — то, что нам в дальнейшем не потребуется. Рассмотрим более подробно TL4. Вот схема из даташита.

Если оставить в стороне лишнюю теорию, то нас интересуют прежде всего входы 1,2 и 1. Это входы компараторов — усилителей ошибки. Также следует обратить внимание на вход 4 — контроль . Мертвая зона нужна для избежания казусов при переключении выходных каскадов, когда из- за емкостей возникает некоторая задержка переключения, иначе говоря — чтобы ключи не оказались одновременно открытыми. Влияя на этот параметр, можно также контролировать выходной ток.

Именно через эти входы и осуществляется управление схемой, все что нужно — немного изменить их обвязку. Что касается остальных ног,  3 — выход обратной связи на отрицательные входы компараторов напряжения и тока (RC — цепочка).

Обвязка этих ног может немного отличаться у разных схем (по номиналам), и рассчитана для каждой конкретной схемы — менять их лучше не надо. Вышеуказанные компараторы мы можем использовать для регулировки тока и напряжения.

Вот одна из схем переделки: Как здесь реализована регулировка напряжения: На отрицательный вход компаратора (2) через делитель подается опорное (постоянное) напряжение с выхода 1. Vref=5v. Впрочем, оно может быть подано откуда угодно — главное, оно должно быть постоянным относительно земли. Его величина может быть 1 или 3 вольта — это не так важно. На положительный вход (1) — опять же, через делитель, подается выходное напряжение — то самое, которое мы считаем выходом нашего блока питания. Компаратор, влияя на ШИМ, делает так, чтобы напряжения на входах были одинаковыми, т. Исходя из этого, несложно посчитать напряжение на выходе.

Vref = 5 вольт. Тогда напряжение на ноге 2 будет равно: 5*(R2/(R2+R1))=5*(1. Соответственно, при номиналах R3 = 6. R4 = 3k выходное напряжение будет равно: 1,0. R3+R4)/R3)=1. 0. 23*((6. Таким образом можно вычислить верхний и нижний предел регулировки и рассчитать необходимые номиналы.

Регулировка тока происходит по тому же самому принципу, только используется другой компаратор. Кроме того, добавляется RC — цепочка обратной связи на 1.

Можно комбинировать схеморешения — менять ролями эти компараторы, можно использовать один компаратор для регулировки и тока и напряжения, можно оперировать только мертвым временем. Существует множество разных схем — некоторые я покажу ниже. У меня, в частности, при переделке блока питания microlab atx 3. В следующей схеме сделано как- бы наоборот — регулирующие элементы стоят в делителях опорного напряжения, т. А последние в свою очередь (выводы 1 и 1. Идея по сути та же самая. В этой схеме второй компаратор не используется, а ограничение тока осуществляется путем контроля над мертвым временем (4 вход).

Когда ток превышает некоторую определенную величину, транзистор открывается и увеличивает мертвое время, тем самым ограничивая ток. Также здесь есть немаловажная деталь — конденсатор плавного запуска, подключенный к ноге 4. При включении он заряжается и плавно уменьшает мертвую зону. В случае ниже компараторы вообще не используются, а вся регулировка осуществляется изменением Dead Time — мертвого времени. Ну и наконец, классическая популярная старая схема с минимальными переделками. Здесь все более наглядно и очевидно. Второй момент, который требует внимания — это отключение штатных защит компьютерного блока питания.

Эти защиты и примочки контролируют выходные напряжения 1. Как правило, если что- то не в порядке, они так или иначе блокируют работу ШИМа — влияют непосредственно на мертвое время, или на один из компараторов. Изначально выходная часть, как правило, имеет следующий вид: Нужно удалить все, что не относится к нашему выходу — выпаять лишние дроссели, диоды Шоттки, конденсаторы и тд. Дроссель групповой стабилизации нам также не обосрался.

Цепи, ведущие от выходных каналов к 4. В зависимости от наших целей мы объединяем обмотки, или же оставляем для себя выход 1. Необходимо также поменять электролиты, если их максимальное напряжение меньше чем выходное.

Как вариант — фрагмент одной известной схемы: Дроссель L1 можно сделать из уже выпаянных деталей, например соединить последовательно обмотки у дросселя групповой стабилизации, или вообще намотать новый. L2 можно взять от 5- вольтового канала. Шоттки, естественно, нужно также поменять, если планируется выход более 1. Лучше менять на сборки с напряжением 1. Дело в том, что с трансформатора идут импульсы очень большой амплитуды — в разы большей, чем сглаженное и выпрямленное напряжение. Поэтому запас должен быть максимально большим.

На силовые транзисторы ключей также рекомендуется обратить внимание — хорошо если там будут 1. Попадаются 1. 30. Можно поменять на более мощные, а можно и оставить. Программа Для Рисования Печатных Плат На Андроид подробнее. Еще одна деталь. Питание 4.

Это нужно пресечь — выпаять соответствующий диод на плате. Ниже — пример цепи питания. Естественно, после переделки блок питания включать нужно через лампу накаливания, во избежании порчи деталей — если что- то пойдет не так.

Если все нормально, то лампа вспыхнет и погаснет. На этом, пожалуй, все. Приведу только несколько фотографий разных блоков и получившихся конструкций: Также просто фото открытых разных БП.

downloadfreeoff.netlify.com