Шим схема – Простой ШИМ регулятор

Что такое шим для светодиодов?

Светодиоды используются практически во всех технике вокруг нас. Правда иногда возникает необходимость регулировать их яркость (например, в фонариках, или мониторах). Самым простым выходом в этой ситуации, кажется изменить количество тока, пропускаемого через светодиод. Но это не так. Светодиод – довольно чувствительный компонент. Постоянное изменение количества тока может существенно сократить срок его работы, или вообще сломать. Так же надо учитывать, что нельзя использовать ограничительный резистор, так как в нем будет накапливаться лишняя энергия. При использовании батареек это недопустимо. Еще одна проблема при таком подходе – цвет света будет меняться.

Содержание статьи

Как регулируется яркость светодиодов?

Есть два варианта:

  • Регулирование ШИМ
  • Аналоговое

Эти методы контролируют проходящий через светодиод ток, но между ними есть определенные различия.
Аналоговое регулирование изменяет уровень тока, который проходит через светодиоды. А ШИМ регулирует частоту подачи тока.

ШИМ-регулирование

Выходом из этой ситуации может быть использование широтно-импульсной модуляции (ШИМ). При такой системе светодиоды получают необходимый ток, а яркость регулируется с помощью подачи питания с высокой частотой. То есть, частота периода подачи изменяет яркость светодиодов.
Несомненный плюс ШИМ-системы – сохранение продуктивности светодиода. КПД составит около 90%.

Виды ШИМ-регулирования

  • Двухпроводная. Часто используется в системе освещения машин. Источник питания преобразователя должен иметь схему, которая формирует сигнал ШИМ на DC-выходе.
  • Шунтирующее устройство. Чтобы сделать период включении/выключения преобразователя используют шунтирующий компонент, который обеспечивает путь для выходного тока помимо светодиода.

Параметры импульсов при ШИМ

Частота следования импульсов не меняется, поэтому никаких требований в определении яркости света к ней нет. В данном случае, меняется только ширина, или время положительного импульса.

Частота импульсов

Даже с учетом того, что особых претензий к частоте нет, существуют граничные показатели. Они определяются чувствительностью глаза человека к мельканиям. Например, если в кино мелькания кадров должны составлять 24 кадра в секунду, чтобы наш глаз воспринимал его как одно движущееся изображение.
Чтобы мелькания света воспринимались как равномерный свет, частота должна составлять не меньше 200Гц. По верхним показателям ограничений нет, но ниже никак нельзя.

Как работает регулятор ШИМ

Для непосредственного управления светодиодами применяется транзисторный ключевой каскад. Обычно для них используют транзисторы, способные накапливать большие объемы мощности.
Это необходимо при использовании светодиодных лент или мощных светодиодах.
Для небольшого количества или невысокой мощности вполне достаточно использования биполярных транзисторов. Так же можно подключать светодиоды прямо к микросхемам.

Генераторы ШИМ

В системе ШИМ в качестве задающего генератора могут использовать микроконтроллер, или схема, состоящая из схем малой степени интеграции.
Так же возможно создание регулятора из микросхем, которые предназначены для импульсных блоков питания, или логические микросхемы К561, или интегральный таймер NE565.
Умельцы используют в этих целях даже операционный усилитель. Для этого на нем собирается генератор, который можно регулировать.
Одна из наиболее используемых схем основана на таймере 555. По сути, это обычный генератор прямоугольных импульсов. Частота регулируется конденсатором С1. при выходе у конденсатора должно быть высокое напряжение (это равно с соединением с плюсовым источником питания). А заряжается он тогда, когда на выходе присутствует низкое напряжение. Этот момент и дает получение импульсов разной ширины.
Еще одной популярной схемой является ШИМ на основе микросхемы UC3843. в этом случае схема включения изменена в сторону упрощения. Для того, чтобы управлять шириной импульса, используется подача регулирующего напряжения положительной полярности. На выходе в таком случае получается нужный импульсный сигнал ШИМ.
Регулирующее напряжение действует на выход так: при снижении широта увеличивается.

Почему ШИМ?

  • Главное преимущество этой системы – легкость. Схемы использования очень просты и легки в реализации.
  • Система ШИМ – регулирования дает очень широкий диапазон регулировки яркости. Если говорить о мониторах, то возможно применение CCFL-подсветки, но в таком случае яркость можно уменьшить только в два раза, так как CCFL-подсветка очень требовательна к количеству тока и напряжению.
  • Используя ШИМ можно удерживать ток на постоянном уровне, а значит светодиоды не пострадают и цветовая температура меняться не будет.

Недостатки использования ШИМ

  • Со временем мерцание изображение может быть довольно заметно, особенно при низкой яркости или движении глаз.
  • При постоянном ярком освещении (например, свете солнца) изображение может расплываться.

le-diod.ru

СХЕМА ШИМ РЕГУЛЯТОРА — Конструкции простой сложности — Схемы для начинающих

 Регулировка оборотов электродвигателей в современной электронной технике достигается не изменением питающего напряжения, как это делалось раньше, а подачей на электромотор импульсов тока, разной длительности. Для этих целей и служат, ставшие в последнее время очень популярными — ШИМ (широтно-импульсно модулируемые) регуляторы. Схема универсальная — она же и регулятор оборотов мотора, и яркости ламп, и силы тока в зарядном устройстве

. Схема ШИМ регулятора  

 Указанная схема отлично работает, печатная плата прилагается.   

 Без переделки схемы напряжение можно поднимать до 16 вольт. Транзистор ставить в зависимости от мощности нагрузки.   

 

 Можно собрать ШИМ регулятор и по такой электрической схеме, с обычным биполярным транзистором:  

 А при необходимости, вместо составного транзистора КТ827 поставить полевой IRFZ44N, с резистором R1 — 47к. Полевик без радиатора, при нагрузке до 7 ампер, не греется.

 

  Работа ШИМ регулятора  

 Таймер на микросхеме NE555 следит за напряжением на конденсаторе С1, которое снимает с вывода THR. Как только оно достигнет максимума — открывается внутренний транзистор. Который замыкает вывод DIS на землю. При этом на выходе OUT появляется логический ноль. Конденсатор начинает разряжаться через DIS и когда напряжение на нем станет равно нулю — система перекинется в противоположное состояние — на выходе 1, транзистор закрыт. Конденсатор начинает снова заряжаться и все повторяется вновь.     Заряд конденсатора С1 идет по пути: «R2->верхнее плечо R1 ->D2«, а разряд по пути: D1 -> нижнее плечо R1 -> DIS. Когда вращаем переменный резистор R1, у нас меняются соотношения сопротивлений верхнего и нижнего плеча. Что, соответственно, меняет отношение длины импульса к паузе. Частота задается в основном конденсатором С1 и еще немного зависит от величины сопротивления R1. Меняя отношение сопротивлений заряда/разряда — меняем скважность. Резистор R3 обеспечивает подтяжку выхода к высокому уровню — так так там выход с открытым коллектором. Который не способен самостоятельно выставить высокий уровень.

Рекомендации по сборке и настройке  

 Диоды можно ставить любые, конденсаторы примерно такого номинала, как на схеме. Отклонения в пределах одного порядка не влияют существенно на работу устройства. На 4.7 нанофарадах, поставленных в С1, например, частота снижается до 18кГц, но ее почти не слышно.     Если после сборки схемы греется ключевой управляющий транзистор, то скорее всего он полностью не открывается. То есть на транзисторе большое падение напряжения (он частично открыт) и через него течет ток. В результате рассеивается большая мощность, на нагрев. Желательно схему параллелить по выходу конденсаторами большой емкости, иначе будет петь и плохо регулировать. Чтобы не свистел — подбирайте С1, свист часто идет от него. В общем область применения очень широкая, особенно перспективным будет её использование в качестве регулятора яркости мощных светодиодных ламп, LED лент и прожекторов, но про это в следующий раз. Статья написана при поддержке ear, ur5rnp, stalker68.
 

АРХИВ:Скачать

cxema.my1.ru

Схема регулятора оборотов двигателя постоянного тока 12в — studvesna73.ru

Схема регулятора оборотов двигателя постоянного тока работает на принципах широтно-импульсной модуляции и применяется для изменения оборотов двигателя постоянного тока на 12 вольт. Регулирование частоты вращения вала двигателя при помощи широтно-импульсной модуляции дает больший КПД, чем при применение простого изменения постоянного напряжения подаваемого на двигатель, хотя эти схемы мы тоже рассмотрим

Регулятор оборотов двигателя постоянного тока схема на 12 вольт

Двигатель подключен в цепь к полевому транзистору который управляется широтно-импульсной модуляцией осуществляемой на микросхеме таймере NE555, поэтому и схема получилась такой простой.

ШИМ регулятор реализован с помощью обычного генератора импульсов на нестабильном мультивибраторе, генерирующий импульсы с частотой следования 50 Гц и построенного на популярном таймере NE555. Сигналы поступающие с мультивибратора создают поле смещения на затворе полевого транзистора. Длительность положительного импульса настраивается при помощи переменного сопротивления R2. Чем выше длительность положительного импульса поступающего на затвор полевого транзистора, тем большая мощность подается на электродвигатель постоянного тока. И на оборот чем меньше длительность импульса, тем слабее вращается электродвигатель. Эта схема прекрасно работает от аккумуляторной батареи на 12 вольт.

Регулирование оборотов двигателя постоянного тока схема на 6 вольт

Скорость 6 вольтового моторчика можно регулируется в пределах 5-95%

Регулятор оборотов двигателя на PIC-контроллере

Регулировка оборотов в этой схеме достигается подачей на электромотор импульсов напряжения, различной длительности. Для этих целей используются ШИМ (широтно-импульсные модуляторы). В данном случае широтно-импульсное регулирование обеспечивается микроконтроллер PIC. Для управления скоростью вращения двигателя используются две кнопки SB1 и SB2, «Больше» и «Меньше». Изменять скорость вращенияможно только при нажатом тумблере «Пуск». Длительность импульса при этом изменяется, в процентном отношении к периоду, от 30 — 100%.

В качестве стабилизатора напряжения микроконтроллера PIC16F628A, используется трехвыводной стабилизатор КР1158ЕН5В, имеющий низкое падение напряжение «вход-выход», всего около 0,6В. Максимальное входное напряжение — 30В. Все это позволяет применять двигатели с напряжением от 6В до 27В. В роли силового ключа используется составной транзистор КТ829А который желательно установить на радиатор.

Устройство собрано на печатной плате размерами 61 х 52мм. Скачать рисунок печатной платы и файл прошивки можно по ссылке выше. (Смотри в архиве папку 027-el )

Эта самодельная схема может быть использована в качестве регулятора скорости для двигателя постоянного тока 12 В с номинальным током до 5 А или как диммер для 12 В галогенных и светодиодных ламп мощностью до 50 Вт. Управление идёт с помощью широтно-импульсной модуляции (ШИМ) при частоте следования импульсов около 200 Гц. Естественно частоту можно при необходимости изменить, подобрав по максимальной стабильности и КПД.

Большинство подобных конструкций собирается по гораздо более простой схеме. Здесь же представляем более усовершенствованный вариант, который использует таймер 7555, драйвер на биполярных транзисторах и мощный полевой MOSFET. Такая схематика обеспечивает улучшенное регулирование скорости и работает в широком диапазоне нагрузки. Это действительно очень эффективная схема и стоимость её деталей при покупке для самостоятельной сборки довольно низкая.

Схема ШИМ регулятора для мотора 12 В

В схеме используется Таймер 7555 для создания переменной ширины импульсов около 200 Гц. Он управляет транзистором Q3 (через транзисторы Q1 — Q2), который контролирует скорость электро двигателя или ламп освещения.

Есть много применений для этой схемы, которые будут питаться от 12 В: электродвигатели, вентиляторы или лампы. Использовать её можно в автомобилях, лодках и электротранспортных средствах, в моделях железных дорог и так далее.

Светодиодные лампы на 12 В, например LED ленты, тоже можно смело сюда подключать. Все знают, что светодиодные лампы гораздо более эффективны, чем галогенные или накаливания, они прослужит намного дольше. А если надо — питайте ШИМ-контроллер от 24 и более вольт, так как сама микросхема с буферным каскадом имеют стабилизатор питания.

Похожие новости

Регулятор скорости двигателя переменного тока

ШИМ контроллер на 12 вольт

Драйвер регулятора постоянного тока полумостовой

Схема регулятора оборотов минидрели

СХЕМА РЕГУЛЯТОРА ОБОРОТОВ ДВИГАТЕЛЯ

Регулятор для двигателя переменного тока

На основе мощного симистора BT138-600, можно собрать схему регулятора скорости вращения двигателя переменного тока. Эта схема предназначена для регулирования скорости вращения электродвигателей сверлильных машин, вентиляторов, пылесосов, болгарок и др. Скорость двигателя можно регулировать путем изменения сопротивления потенциометра P1. Параметр P1 определяет фазу запускающего импульса, который открывает симистор. Схема также выполняет функцию стабилизации, которая поддерживает скорость двигателя даже при большой его нагрузке.

Принципиальная схема регулятора электромотора переменного питания

Например, когда мотор сверлильного станка тормозит из-за повышенного сопротивления металла, ЭДС двигателя также уменьшается. Это приводит к увеличению напряжения в R2-P1 и C3 вызывая более продолжительное открывание симистора, и скорость соответственно увеличивается.

Регулятор для двигателя постоянного тока

Наиболее простой и популярный метод регулировки скорости вращения электродвигателя постоянного тока основан на использовании широтно-импульсной модуляции (ШИМ или PWM ). При этом напряжение питания подается на мотор в виде импульсов. Частота следования импульсов остается постоянной, а их длительность может меняться — так меняется и скорость (мощность).

Для генерации ШИМ сигнала можно взять схему на основе микросхемы NE555. Самая простая схема регулятора оборотов двигателя постоянного тока показана на рисунке:

Принципиальная схема регулятора электромотора постоянного питания

Здесь VT1 — полевой транзистор n-типа, способный выдерживать максимальный ток двигателя при заданном напряжении и нагрузке на валу. VCC1 от 5 до 16 В, VCC2 больше или равно VCC1. Частоту ШИМ сигнала можно рассчитать по формуле:

где R1 в омах, C1 в фарадах.

При номиналах указанных на схеме выше, частота ШИМ сигнала будет равна:

F = 1.44/(50000*0.0000001) = 290 Гц.

Стоит отметить, что даже современные устройства, в том числе и высокой мощности управления, используют в своей основе именно такие схемы. Естественно с использованием более мощных элементов, выдерживающих большие токи.

Широкое применение таймер 555 находит в устройствах регулирования, например, в ШИМ — регуляторах оборотов двигателей постоянного тока.

Все, кто когда – либо пользовался аккумуляторным шуруповертом, наверняка слышали писк, исходящий изнутри. Это свистят обмотки двигателя под воздействием импульсного напряжения, порождаемого системой ШИМ.

Другим способом регулировать обороты двигателя, подключенного к аккумулятору, просто неприлично, хотя вполне возможно. Например, просто последовательно с двигателем подключить мощный реостат, или использовать регулируемый линейный стабилизатор напряжения с большим радиатором.

Вариант ШИМ — регулятора на основе таймера 555 показан на рисунке 1.

Схема достаточно проста и базируется все на мультивибраторе, правда переделанном в генератор импульсов с регулируемой скважностью, которая зависит от соотношения скорости заряда и разряда конденсатора C1.

Заряд конденсатора происходит по цепи: +12V, R1, D1, левая часть резистора P1, C1, GND. А разряжается конденсатор по цепи: верхняя обкладка C1, правая часть резистора P1, диод D2, вывод 7 таймера, нижняя обкладка C1. Вращением движка резистора P1 можно изменять соотношение сопротивлений его левой и правой части, а следовательно время заряда и разряда конденсатора C1, и как следствие скважность импульсов.

Рисунок 1. Схема ШИМ — регулятора на таймере 555

Схема эта настолько популярна, что выпускается уже в виде набора, что и показано на последующих рисунках.

Рисунок 2. Принципиальная схема набора ШИМ — регулятора.

Здесь же показаны временные диаграммы, но, к сожалению, не показаны номиналы деталей. Их можно подсмотреть на рисунке 1, для чего он, собственно, здесь и показан. Вместо биполярного транзистора TR1 без переделки схемы можно применить мощный полевой, что позволит увеличить мощность нагрузки.

Кстати, на этой схеме появился еще один элемент – диод D4. Его назначение в том, чтобы предотвратить разряд времязадающего конденсатора C1 через источник питания и нагрузку — двигатель. Тем самым достигается стабилизация работы частоты ШИМ.

Кстати, с помощью подобных схем можно управлять не только оборотами двигателя постоянного тока, но и просто активной нагрузкой – лампой накаливания или каким-либо нагревательным элементом.

Рисунок 3. Печатная плата набора ШИМ — регулятора.

Если приложить немного труда, то вполне возможно такую воссоздать, используя одну из программ для рисования печатных плат. Хотя, учитывая немногочисленность деталей, один экземпляр будет проще собрать навесным монтажом.

Рисунок 4. Внешний вид набора ШИМ — регулятора.

Правда, уже собранный фирменный набор, смотрится достаточно симпатично.

Вот тут, возможно, кто-то задаст вопрос: «Нагрузка в этих регуляторах подключена между +12В и коллектором выходного транзистора. А как быть, например, в автомобиле, ведь там все уже подключено к массе, корпусу, автомобиля?»

Да, против массы не попрешь, тут можно только рекомендовать переместить транзисторный ключ в разрыв «плюсового9raquo; провода. Возможный вариант подобной схемы показан на рисунке 5.

На рисунке 6 показан отдельно выходной каскад на транзисторе MOSFET. Сток транзистора подключен к +12В аккумулятора, затвор просто «висит9raquo; в воздухе (что не рекомендуется), в цепь истока включена нагрузка, в нашем случае лампочка. Такой рисунок показан просто для объяснения, как работает MOSFET транзистор.

Для того, чтобы MOSFET транзистор открыть, достаточно относительно истока подать на затвор положительное напряжение. В этом случае лампочка зажжется в полный накал и будет светить до тех пор, пока транзистор не будет закрыт.

На этом рисунке проще всего закрыть транзистор, замкнув накоротко затвор с истоком. И такое вот замыкание вручную для проверки транзистора вполне пригодно, но в реальной схеме, тем более импульсной придется добавить еще несколько деталей, как показано на рисунке 5.

Как было сказано выше, для открывания MOSFET транзистора необходим дополнительный источник напряжения. В нашей схеме его роль выполняет конденсатор C1, который заряжается по цепи +12В, R2, VD1, C1, LA1, GND.

Чтобы открыть транзистор VT1, на его затвор необходимо подать положительное напряжение от заряженного конденсатора C2. Совершенно очевидно, что это произойдет только при открытом транзисторе VT2. А это возможно лишь в том случае, если закрыт транзистор оптрона OP1. Тогда положительное напряжение с плюсовой обкладки конденсатора C2 через резисторы R4 и R1 откроет транзистор VT2.

В этот момент входной сигнал ШИМ должен иметь низкий уровень и шунтировать светодиод оптрона (такое включение светодиодов часто называют инверсным), следовательно, светодиод оптрона погашен, а транзистор закрыт.

Чтобы закрыть выходной транзистор, надо соединить его затвор с истоком. В нашей схеме это произойдет, когда откроется транзистор VT3, а для этого требуется, чтобы был открыт выходной транзистор оптрона OP1.

Сигнал ШИМ в это время имеет высокий уровень, поэтому светодиод не шунтируется и излучает положенные ему инфракрасные лучи, транзистор оптрона OP1 открыт, что в результате приводит к отключению нагрузки – лампочки.

Как один из вариантов применения подобной схемы в автомобиле, это дневные ходовые огни. В этом случае автомобилисты претендуют на пользование лампами дальнего свете, включенными вполнакала. Чаще всего эти конструкции на микроконтроллере. в интернете их полно, но проще сделать на таймере NE555 .

&#106&;лектрик Ин&#10&2;о — элек&#10&0;ротехника и элек&#10&0;роника, дома&#10&6;няя ав&#10&0;оматизация, &#108&;татьи про &#10&1;стройство и ремон&#10&0; дома&#10&6;ней элек&#10&0;ропроводки, ро&#107&;етки и в&#10&9;ключатели, провода и кабели, и&#108&;точники &#108&;вета, ин&#10&0;ересные &#10&2;акты и многое др&#10&1;гое для элек&#10&0;риков и дома&#10&6;них ма&#108&;теров.

Ин&#10&2;ормация и об&#10&1;чающие ма&#10&0;ериалы для на&#10&5;инающих элек&#10&0;риков.

Кей&#108&;ы, пример&#10&9; и &#10&0;ехнические ре&#10&6;ения, об&#107&;оры ин&#10&0;ересных элек&#10&0;ротехнических новинок.

В&#108&;я ин&#10&2;ормация на &#108&;айте &#106&;лектрик Ин&#10&2;о предо&#108&;тавлена в о&#107&;накомительных и по&#107&;навательных &#10&4;елях. За применение э&#10&0;ой ин&#10&2;ормации админи&#108&;трация &#108&;айта о&#10&0;ветственности не не&#108&;ет. Сай&#10&0; може&#10&0; &#108&;одержать ма&#10&0;ериалы 12+

Перепе&#10&5;атка ма&#10&0;ериалов &#108&;айта &#107&;апрещена.

Управление двигателем постоянного тока проще всего организовать с помощью ШИМ — регулятора. ШИМ — это широтно-импульсная модуляция, в английском языке это называется PWM — Pulse Width Modulation . Теорию я подробно объяснять не буду, информации полно в интернете. Своими словами — если у нас есть двигатель постоянного тока на 12 вольт — то мы можем регулировать обороты двигателя изменяя напряжение питания. Изменяя напряжение питания от нуля до 12 вольт будут изменятся обороты двигателя от нуля до максимальных. В случае с ШИМ-регулятором мы будем изменять скважность импульсов от 0 до 100 % и это будет эквивалентно изменению напряжения питания двигателя и соответственно будут изменятся обороты двигателя.

Рассмотрим первый ШИМ-регулятор на 5 ампер. Есть такая самая любимая микросхема всех радиолюбителей — это таймер NE555 ( или советский аналог КР1006ВИ). Вот на этой микросхеме и собран ШИМ-регулятор. Кроме таймера здесь я использую стабилизатор на 9 вольт LM7809. мощный полевой транзистор с N-каналом IRF540, сдвоенный диод Шоттки, а также другие мелкие детали. Схема по которой собран этот регулятор всем известна и очень популярна.

Печатку этой платы можно скачать — ШИМ 10А

Подключение ШИМ-регулятора очень простое. Вы видите 4 клеммы — две клеммы для подачи питания и . и две клеммы для подключения мотора и .
Сделал ещё ШИМ-регулятор с защитой по току. Для этих целей использовал распространенный операционный усилитель LM358 и два оптрона PC817. При превышении тока, который мы задаём подстроечником R12, срабатывает триггер-защёлка на операционнике DA3.1, оптронах DA4 и DA5 и блокируется генерация импульсов по 5 ноге таймера NE555. Чтобы снова запустить генерацию нужно кратковременно снять питание со схемы с помощью кнопки S1.

Печатку этой платы можно скачать — ШИМ 10А с защитой

ШИМ-регуляторы все работоспособны. проверил их работу с помощью двигателя от шуруповёрта.
Снял видео —
Отличная партнёрка Youtube — http://join.air.io/roshansky

studvesna73.ru

Регулятор яркости светодиодов. Схема ШИМ диммера

В данной статье описано как собрать простой, но эффективный регулятор яркости светодиодов основанный на ШИМ регулировании яркости (диммер) свечения  светодиодов.

Светодиоды  (светоизлучающие диоды) очень чувствительные компоненты. При превышение  питающего тока или напряжения выше допустимого значения может привести к выходу их из строя или же значительно сократить срок службы.

Обычно ток ограничивается с помощью резистора  последовательно подключенного к светодиоду, или же регулятором тока цепи (драйвером). Увеличение тока на светодиоде увеличивает его интенсивность свечения, а снижение тока уменьшает его.  Один из способов регулирования яркости свечения является использование переменного резистора (потенциометр)  для динамического  изменения яркости.

Но это только применимо к единичному светодиоду, поскольку даже в одной партии могут быть диоды с разной силой свечения и это повлияет на неравномерность свечения группы светодиодов.

Широтно-импульсная модуляция. Намного эффективнее метод регулирования яркости свечения путем применение широтно-импульсной модуляции (ШИМ). С ШИМ, группы светодиодов обеспечиваются рекомендуемым током, и в тоже время появляется возможность производить регулирование яркости за счет подачи питания с высокой частотой. Изменение периода вызывает изменение яркости.

Рабочий цикл можно представить как соотношение времени включения и выключения питания поступающего на светодиод. Допустим, если рассмотреть цикл в одну секунду и при этом в выключенном состоянии светодиод будет 0,1 сек., а во включенном 0,9 сек., то получается что свечение составит около 90% от номинального значения.

Описание шим регулятора яркости

Самый простой способ для достижения данного высокочастотного переключения – применение микросхемы таймера ne555, одой из самых распространенных и самых универсальных микросхем, когда-либо созданных. Схема ШИМ регулятора, показанная ниже предназначен для использования в качестве диммера для питания светодиодов (12 вольт)   или регулятора скорости вращения для двигателя постоянного тока на 12 В.

В данной схеме, сопротивление резисторов к светодиодам необходимо подобрать, чтобы обеспечить прямой ток в 25 мА. В результате общий ток трех линеек светодиодов составит 75мА. Транзистор должен быть рассчитан на ток не менее 75 мА, но лучше взять с запасом.

Эта схема  диммера осуществляет регулировку от 5% до 95%, но используя германиевые диоды вместо 1N4148, диапазон может быть расширен от 1% до 99% от номинального значения.

Источник: www.reuk.co.uk

www.joyta.ru

Улучшенный ШИ регулятор на TL494

Вернуться в раздел электроники

 

 

Улучшенный ШИМ контроллер на TL494

Автор статьи: Токмаков Н.М., Сыктывкар, 2011г.


      Статья продолжает тему создания устройств управления мощными электродвигателями. В данном случае рассматривается
устройство для управления электродвигателем с напряжением питания 24 вольта и мощностью до 2-х киловатт. Но регулятор можно применить и для других напряжений и
мощностей, для этого его требуется дополнить устройством понижения напряжения питания электронной части, а транзисторы заменить на другие подходящие
по мощности и допустимым напряжениям и токам. Выходной каскад устройства способен управлять десятком указанных на схеме транзисторов.

      Ранее на сайте уже размещена схема ШИМ регулятора оборотов коллекторного электродвигателя на микросхеме TL494, но как
оказалось она имеет недостаток связанный с неполным диапазоном регулирования мощности. Терялось около 4-5% мощности двигателя. Упоминаемую статью можно
посмотреть ЗДЕСЬ .
Новая схема несколько доработана.

      Принципиальная схема регулятора:

      Верхнее положение задатчика оборотов соответствует отсутствию управляющих импульсов. Нижнее положение — максимальной
мощности. Резисторами R3 и R1 можно изменить сектор работы рабочего органа потенциометра.

     Схема разрабатывалась и испытывалась на электротрайке с напряжением тяговой батареи 24 вольта. Поэтому некоторые элементы
расчитаны на питание от 24 вольт, в частности узел питания на интегральном стабилизаторе DA1. При использовании более высокого напряжения необходимо
позаботиться о понижении питания до разумной величины (30-18 вольт) или запитать от отдельной батареи аккумуляторов.
Силовые выходные транзисторы должны иметь рабочее напряжение не менее 2-х кратно большее напряжения тяговой батареи, а суммарный ток
сборки транзисторов в 2-4 раза больше номинального тока нагрузки.

      В качестве главного управляющего элемента устройства используется микросхема типа TL494CN, выпускаемая фирмой TEXAS
INSTRUMENT (США). Она выпускается рядом зарубежных фирм под разными наименованиями. Например,
фирма SHARP (Япония) выпускает микросхему IR3M02, фирма FAIRCHILD (США) —
иА494, фирма SAMSUNG (Корея) — КА7500, фирма FUJITSU (Япония) — МВ3759, есть ещё mPC494,TL493,TL495,TL594 и
т.д. Все эти микросхемы являются полными аналогами отечественной микросхемы КР1114ЕУ4 (М1114ЕУ4,K1006EУ4).

      Есть ещё отечественная микросхема M1114ЕУ3, но у неё изменена разводка выводов по ножкам микросхемы.

      TL594 — аналог TL494 c
улучшенной точностью усилителей ошибки и компаратора.
   
  TL598 — аналог TL594 c двухтактным (pnp-npn) повторителем на
выходе.

      Плюсы:
Развитые цепи управления, два
дифференциальный усилителя (могут выполнять и логические функции)

      Минусы:
Однофазные выходы требуют
дополнительной обвески (по сравнению с UC3825). Недоступно токовое
управление, относительно медленная петля обратной связи. Синхронное
включение двух и более ИС не так удобно, как в UC3825.

      Не будем подробно рассматривать устройство и работу этой
управляющей микросхемы. ЗДЕСЬ можно посмотреть статью c описанием работы
микросхемы.

      Разводка печатной платы регулятора:

     

      На рисунке должно быть все понятно. Размер печатной платы из одностороннего фольгированного стеклотекстолита
63 х 71 мм. Обратите внимание: дорожки питания разведены таким образом, что силовая и управляющая части запитаны отдельными проводниками.
Это принципиально.
      Поставлена цель иметь максимально упрощенный ШИ регулятор для ДТП, поэтому ограничимся именно таким построением схемы устройства. Это позволит
подобрать необходимые детали даже в дали от крупных городов. Микросхема TL494 широко применяется в блоках питания компьютеров, поэтому её найти не
составит труда. При аккуратной сборке выходные импульсы должны иметь такой вид выходного сигнала с формирователя импульсов:

      При самостоятельной разводке печатной платы транзисторы VT2 и VT3 следует ставить ближе к источнику питания, а между эмиттерами транзисторов
установить керамический конденсатор в непосредственно близости к ним.
Силовой модуль, куда входят резисторы R11-R15, транзисторы VT4-VT7, диод VD2 изготавливается отдельно с тщательным соблюдением требований к силовым
устройствам. А диод VD2 вообще рекомендую ставить вблизи электродвигателя или на его клеммы, снабдив небольшим радиатором с площадью пластин 30-50 кв.см.



     Обратите внимание на подвод токосьемных проводников. После запаивания транзисторов и резисторов, надо уделить особое внимание
прокладке электрических проводов. Необходимо проложить медные жилы непосредственно до выводов транзисторов. И чем толще, тем лучше. Удельные сопротивления
припоя и меди различаются почти в десять раз. Поэтому в силовых цепях на припой как на проводник электричества расчитывать не следует. Он создает значительное
падение напряжения, что является причиной неравномерной загрузки силовых транзисторов и как следствие ведет к проблемам с качественной работой всего
устройства в целом.
Чтобы не быть голословным приведу удельные сопротивления: медь — 0.0175 Ом*мм2/м, припой — 0.167 Ом*мм2/м (олово-0.115, свинец-0.221)

      Управляющий сигнал к силовому блоку подвести витым проводом и в центр сборки, а еще лучше для каждого транзистора свою витую пару, но это уже как
идеальный вариант.

      Демпферный диод VD3 можно установить как в силовом блоке (если есть место) так и непосредственно на электродвигатель, либо по пути
прокладки силовых кабелей.

      Возможно для кого-то представит интерес следующая схема устройства регулятора. Она несколько проще, но имеется недостаток в виде
не полного регулирования мощности. Это связано с тем, что ключи имеют паузу (Dead time) для предотвращения сквозных токов в работе двухтактных каскадов. Это
не позволяет использовать несколько последних процентов мощности нагрузки. Фотография осциллограммы наглядно показывает этот факт.



     Устройтва не имеют собственной защиты от перегрузок и коротких замыканий, поэтому используйте амперметр для контроля тока
в нагрузке.

      На базе вышеуказанной схемы разработано устройтво с защитой по току в нагрузке.


      Используя опыт изготовления ШИМ регуляторов двигателей постоянного тока для электромобилей, наш украинский коллега из п.Долина Иваново-Франковской области Александр Сорочка
разработал и собрал действующий контроллер для электродвигателя. (кликнуть по рисунку для открытия в отдельном окне)


     Схема разрабатывалась с помощью программы Splan v5.0, печатная плата программой SprintLayOut v4.0. Их легко найти на просторах Интернета.
Программы также можно скачать здесь на сайте в разделе «Архивы». Они легко и быстро осваиваются в работе даже начинающими.

     Для удобства работы с документацией предлагается возможность скачать

исходные файлы СХЕМЫ и ЧЕРТЕЖА платы. Не лишне сообщить, что чертеж последней печатной
платы возможно применить для изготовления всех устройств представленных в статье, просто некоторые соединения выполнить перемычками через
имеющиеся отверстия в плате.

     Для управления драйвером (ШИМ регулятором) традиционно применяю датчик положения дроссельной заслонки типа 39.3855 от ВАЗовских автомобилей.
Он устроен не совсем так как хотелось бы. Была попытка разобрать его и усовершенствовать. Разобрать удалось, но усовершенствовать не представляется возможным.
Может быть кому-то удастся это сделать. Вот его конструкция (по контуру крышки залит компаунд, он легко колется резаком):







     После сборки крышечку залить селиконовым герметиком, излишки удалить до высыхания.

Вернуться в раздел электроники, к другим схемам ШИМ


elektrocar.narod.ru