Симистор принцип работы – что это такое, принцип работы, виды импортных, схемы регулятора мощности, диммера, терморегулятора и управления через оптопару и с микроконтроллера, симисторный регулятор скорости, напряжения, как проверить тестером и прозвонить мультиметром, цена и где купить в Москве и СПб

Содержание

принцип действия, плюсы и минусы, применение прибора

Симистором называется прибор, разработанный ещё в СССР на электрозаводе города Саранска. Он имеет 5 р-n переходов.

История его создания приходится на 1960-е годы, на то время, когда Мордовский институт заполнил патент на это изобретение.

О том, как работает симистор, знают немногие. Его функционирование напоминает работу тиристора.

Принцип действия

Пожалуй, основное отличие симистора от тиристора заключается в том, что первый прибор может пропускать ток в двух направлениях, из-за чего он нашёл своё применение в электроцепях переменного тока.

В симисторе отсутствует катод и анод. Этот факт подтверждается при изучении вольт-амперной характеристики прибора.

Также можно заметить, что он имеет симметрию с осью тока. В его схеме присутствует два силовых электрода (МТ1 и МТ2) и управляющий электрод (G). Если на второй показатель подать напряжение со знаком минус, и его показатель окажется выше заданной величины срабатывания симистора, и одновременно на силовой электрод подать напряжение, достаточное для протекания в приборе тока, превышающего ток удержания симистора, то он будет пропускать электричество.

Закрыться же прибор сможет после того, как напряжение на силовом электроде упадёт до величины, при которой ток прибора снизится до тока удержания.

Основным достоинством схем регуляторов мощности на приборе является наличие хорошей двусторонней связи, следовательно, появляется уникальная возможность её изменения непосредственно в период работы устройства.

Такие схемы часто используются для регулирования света при использовании всем известных ламп накаливания. Для их реализации применяются

  • тиристор;
  • динистор;
  • симистор.

Для такого режима работы можно использовать 4 способа для подачи напряжения на МТ2 и G (управляющий электрод). Два первых варианта требуют подать напряжение со знаком плюс на силовой электрод (МT2) и отрицательное или положительное на управляющий электрод. Последующие два варианта требуют подать на силовой электрод (МT2) напряжение со знаком минус и положительное или отрицательное на управляющий электрод.

Важно, что 1−3 способы считаются рабочими, а четвёртый запрещённым, так как в этом режиме может произойти поломка.

Плюсы и минусы использования

У симистора в принципе работы можно выделить ряд достоинств. Главными его преимуществами являются:

  • низкая стоимость;
  • повышенный срок эксплуатации.

Из-за отсутствия каких-либо механических контактов прибор не искрит, что повышает безопасность его применения, кроме того, отсутствуют радиопомехи при его работе.

К минусам аппарата обычно относят его сильный перегрев при отсутствии радиаторов охлаждения. Поэтому прибор следует использовать лишь при незначительных нагрузках на него или же установить радиатор охлаждения.

Крепить аппарат к охладителю следует креплением с использование винта. Аппарат очень чуток к переходным процессам и не будет работать стабильно на больших частотах, а также имеет сильную чувствительность к различного рода шумам и помехам.

В качестве примера можно привести компьютерный блок бесперебойного питания. Суть его работы заключается в том, что ток сети преобразовывается из постоянного в переменный. При отключении этого блока симистор начинает брать накопившееся электричество из своего встроенного аккумулятора.

Огромное значение для персонального компьютера играет и блок электропитания в целом. При резком переключении напряжения может произойти самовольное включение симистора при отсутствии управляющего напряжения. Всё это может его повредить. Всему виной возникновение помехи или выбросы напряжения при работе с нагрузкой.

Чтобы не дать симистору сломаться, следует включить шунтирующую RC цепочку. Однако в определённых цепях могут возникнуть электрические помехи и шумы. Если они достигнут значения включения, то прибор включится не в то время. Чтобы этого не произошло, следует укоротить провода, которые ведут к затвору, или же использовать экранированный кабель.

Ещё одним способом для избавления от шумов является использование резистора, величина которого составляет 1кОМ.

Применение симистора

Из-за своих уникальных характеристик, простоты устройства и небольшой стоимости симистор успешно применяется как в быту, так и в промышленности, в следующих видах техники:

  • печи;
  • духовки;
  • регуляторы освещения;
  • дрели;
  • перфораторы.

Практически в каждом электроприборе, имеющемся в доме, найдётся симистор.

В промышленной сфере приборы применяются при регулировке света, кроме того, с их помощью регулируются электроприборы и электродвигатели.

Симистор легко сможет заменить электромеханические реле, так как он намного более долговечен и надёжен. Аппарат очень хорошо зарекомендовал себя на рынке и, несмотря на бурно развивающуюся электронику, до сих пор пользуется большим спросом, так как нашёл широкое применение не только в домашней технике, но и в промышленности.


220v.guru

принцип работы и виды, основные характеристики, способы проверки мультиметром и схемы пробников

Широкое применение в электронике и радиотехнике получило электронное регулирование параметров питания в различных цепях переменного тока при помощи симистора. Бывают случаи, когда он выходит из строя и возникает необходимость правильной проверки на предмет исправности. Для того чтобы это сделать, необходимо знать его принцип работы, предназначение и способы проверки мультиметром и другими приборами.

Содержание материала

Общие сведения о симисторе

Симистор или триак является одним из подвидов тиристоров, которые состоят из большего количества переходов и используются в схемах устройств с электронным регулированием.

Ток тиристора проходит только в одном направлении, когда как симистор способен пропускать его сразу в 2-х благодаря наличию 5-того слоя. На рисунке изображена его структурная схема, по которой можно понять, как работает симистор. Из пяти переходов образуется две структуры: р1-n2-p2-n3 и р2-n2-p1-n1 (2 тиристора включенных встречно-параллельно, показанных на рисунке 2). Пятая область представляет собой управляющий электрод (УЭ), который осуществляет управление слоями.

Также рекомендуем прочитать:

Рисунок 1 — Структурная схема симистора

Если происходит обратное направление, то структуры меняются местами.

Рисунок 2 — Тиристорный аналог триака

При подаче на УЭ сигнала, который называется отпирающим, и при положительно-заряженном аноде, отрицательным — на катоде, ток течет через тиристор, расположенный слева на рисунке 2. При смене полярностей ток будет течь через правый. Как у любого полупроводникового прибора, у симистора есть вольт амперная характеристика (рисунок 3).

Рисунок 3 — Вольт амперная характеристика триака

ВАХ состоит из двух кривых, повернутых на 180 градусов. Их форма практически аналогична ВАХ динистора. Благодаря симметричности ВАХ прибор получил название симистор. Расшифровка обозначений ВАХ:

  1. А и В — закрытое и открытое состояния прибора.
  2. Udrm (Uпр) и Urrm (Uоб) — максимальные допустимые напряжения при прямом и обратном включениях.
  3. Idrm (Iпр) и Irrm (Iоб) — прямой и обратный токи.

Симистор позволяет управлять цепями переменного и постоянного токов. Однако тиристорный аналог симистора не может заменить прибор из-за ограничения: для управления напряжением переменной составляющей (переменного напряжения) нужно 2 тиристора, а также отдельный источник для каждого прибора, и тиристоры будут работать только наполовину мощности.

Примеры применения симметричных тиристоров:

  1. Для регулировки освещения (диммеры).
  2. Строительный инструмент с плавным пуском.
  3. Нагреватели с электронной регулировкой температуры (например, индукционная плита).
  4. Компрессоры для кондиционеров.
  5. Бытовая техника с плавной регулировкой.
  6. В промышленности (например: управление освещением, плавный пуск двигателей).
  7. При усовершенствовании приборов своими руками (например, чайника).

Основные виды

Так как симистор является разновидностью тиристора, то, следовательно, для него применимы те же различия. Основная классификация симисторов:

  1. Конструктивное исполнение, включающее не только устройство и корпус (цоколевка), но и распиновку (можно понять тип симистора).
  2. Ток, при котором возникает перегрузка прибора.
  3. Основные параметры УЭ: напряжение и ток открытия перехода.
  4. Прямое и обратное напряжения.
  5. Прямой и обратный токи пропускания через триак.
  6. Тип нагрузки: низкой, средней и высокой мощностей.
  7. Ток затвора прибора.
  8. Коэффициент dv/dt, показывающий скорость переключения.
  9. Импортные не требуют особой настройки и работают при интеграции в схему; отечественные, требующие настройки путем интеграции в схему и дополнительное подключение радиоэлементов в цепь симистора.
  10. Изоляция корпуса.

Как и у любого радиоэлемента, у симистора есть достоинства и недостатки. К достоинствам элемента можно отнести их низкую стоимость, надежность, долговечность, отсутствие помех.

Основные недостатки триаков: сильно греются, влияние шумов и невозможность применения на высоких частотах.

С этими недостатками можно бороться различными способами. Для избегания перегрева детали необходимо использовать радиаторы для отвода тепла, кроме того, необходимо смазать точки прикосновения триака и радиатора специальной теплопроводящей пастой (используется при сборке персональных компьютеров). Для сведения влияния различного рода помех к минимуму применяется шунтирование прибора специальной RC-цепью (R = 50..470 Ом, а С = 0,01..0,1 мкФ). Эти величины подбираются в зависимости от характеристик прибора.

Характеристики триаков

Для использования конкретного прибора в схемах необходимо знать его основные характеристики. В большинстве случаев при сгорании триака в схеме необходимо заменить таким же или его аналогом. Основные характеристики, на которые необходимо обратить внимание:

  1. Максимальное обратное и импульсное напряжения.
  2. Максимальный ток в открытом состоянии при нормальном и импульсном режимах.
  3. Минимальный ток открытия перехода, при подаче на УЭ.
  4. Минимальный импульсный ток при минимальном напряжении.
  5. Время, при котором происходит включение и отключение триака.

При использовании триака нужно учитывать длину провода, которая идет к УЭ — она должна быть минимальной.

Краткий обзор популярных моделей

Среди импортных симисторов различают мощные высоковольтные серии bta (ВТА). Отлично себя зарекомендовали модели: bta06, bta16 ( вта16 ), bta416y600c, bta08, вта41600в. Значение тока колеблется в пределах от 4 до 40 А, напряжение находиться в диапазоне от 200 до 800 вольт.

Среди недорогих и надежных моделей нужно выделить: btb12 600bw (на 600 вольт или на 700 в модели 700bw), btb16 600с или btb16600e (800cw на 800 вольт и 600е на 600 вольт). Триаки bt137, вт134, вт137 и вт131 фирмы Semiconductors зарекомендовали себя в качестве лучших моделей с отличной изоляцией корпуса. Среди симметричных тринисторов низкой мощности можно выделить модели: z7m, m2lz47 (фирмы Toshiba), zo607, z0607. Все они могут отличаться током и обратным напряжением.

Среди достойных импортных аналогов можно выделить симисторы с изолируемым корпусом фирмы ON Semiconductor. Диапазон максимальных токов от 0,6 А до 16 А. Благодаря управлению от низковольтных логических выходов они применяются в более сложных устройствах с микроконтроллерами.

Отечественный аналог ку202г, способный выдержать напряжение до 50 вольт и импульсный ток до 30 А, может широко применяться для различных устройств с плавным пуском. Однако модели серии 202 поддерживают напряжение до 400 вольт и являются очень надежными. Они способны составить высокую конкуренцию импортным моделям.

Способы проверки

При выходе из строя какого-либо устройства необходимо прозвонить элементы и заменить сгоревшие, причем необязательно выпаивать триак из схемы. Проверка симистора мультиметром аналогична проверке тиристора мультиметром в схеме не выпаивая. Сделать это довольно просто, но этот метод не даст точного результата.

Как проверить тиристор ку202н мультиметром: необходимо освободить УЭ. Как проверить симистор мультиметром не выпаивая: необходимо освободить его УЭ (выпаять или выпаять деталь — одним словом, отделить устройство от всей схемы) и произвести измерения мультиметром на предмет пробитого перехода. Для проверки необходимо использовать стрелочный тестер. Этот метод является более точным, так как ток, генерируемый тестером способен открыть переход. Нужно найти информацию о симисторе и приступить к проверке:

  1. Подключить щупы к выводам T1 и T2.
  2. Установить кратность х1.
  3. Только при показании бесконечного сопротивления деталь исправна, а во всех остальных случаях — пробита.
  4. При положительном результате (бесконечное сопротивление) соединить вывод Т2 и управляющий. В результате R падает до 20..90 Ом.
  5. Сменить полярность прибора и повторить 3 и 4.

Этот метод является более точным, чем предыдущий, но не дает полной гарантии определения исправности полупроводникового прибора. Для этих целей существуют специальные схемы, которые можно собрать самостоятельно.

Профессиональные схемы

Пробник для проверки симистора или тиристора достаточно простого исполнения и с наименьшим количеством деталей представлен на схеме 1.

Схема 1 — Простой пробник для проверки симистора или тиристора

Перечень деталей пробника:

  1. Трансформатор подбирается любого типа, но с напряжением на вторичной обмотке около 6,3 В.
  2. Диод VD1 на напряжение от 10 В и более и с выпрямительным током более 350 мА (можно найти подходящий по справочнику радиолюбителя или в интернет).

При работе нужно подключить симистор и поставить S2 в положение «=», после чего включить SA1 (SB1 пока не нажимать). При этом лампочка не должна светиться. Нажимаем SB1 (лампа загорается) и при отпускании SB1 лампа накаливания должна гореть. Поставить SА1 в положение «0», и лампа гаснет. SА1 в положение поставить «переменного» тока и лампа не должна гореть. При нажатии SB1 лампа загорается, а при отпускании — гаснет.

Универсальная схема устройства для проверки симистора изображена на схеме 2. Она является более сложной, но очень эффективной.

Схема 2 — Универсальная современная схема устройства для проверки симистора или тиристора

Перечень радиоэлементов:

  1. Трансформатор со II обмоткой 2 и 9 вольт (I = 0,2..0,3 А).
  2. Конденсаторы керамические: C3, C4, C9, C10.
  3. Конденсаторы электролитические — остальные.
  4. Диод VD1: U > 50 В и I > 1 А.
  5. Диоды VD2, VD3: U > 25 В и I > 300 мА.
  6. Микросхемы и их аналоги: 7805 (КР142ЕН5(А,В)) и 7905 (КР1162ЕН5(А,Б) или КР1179ЕН05).

При проверке необходимо SA3 задать ток управления (подача на УЭ). Для проверки тиристора нужно поставить SA2 в режим «прямое» и включить питание пробника (лампа гореть не должна).

Нажать кнопку SВ2 — лампа горит даже при ее отпускании (SВ2). Нажать SВ1, и лампа должна погаснуть.

При проверке симистора выполнить шаги при проверке тиристора, после чего попеременно установить SA2 в «прямое» и «обратное». Лампа должна загораться при каждом нажатии SВ2 и SВ3, но и гаснуть при нажатии «СБРОС».

Таким образом, симисторы получили широкое распространение в различных устройствах с электронным регулированием. Они выходят из строя, и проверить их несложно. Для этого необходимо выбрать лишь метод проверки. Проверка мультиметром менее точна, чем стрелочным омметром, ток которого способен открыть переход триака. Для более точного и профессионального определения исправности собирается специальная схема.

pochini.guru

Как работает симистор, понятное объяснение

Здравствуйте уважаемые читатели, продолжаем изучение электроники, с назначения радиоэлементов. Сегодня рассмотрим тему, как работает симистор, понятное объяснение для каждого.

Что такое симистор

Начнём с того, что симистор, по сути, является подвидом, разновидностью тиристора. Это трёх электродный полупроводниковый прибор. Очень выгодно отличается от побратима, он симметричный. Заморское название радиокомпонента- triac.

Его использование в цепях переменного тока, весьма тривиально, он является коммутационным аппаратом, электронным ключом, переключателем. Он способен пропускать ток в обоих направлениях, тем заметно увеличил область своего применения.

Устройство и назначение выводов симистора

У симистора как у диода имеются  p-n переходы, только несколько большее количество. Изучите рисунок, схему внутреннего устройство триода, картина станет более ясной.

Симистор имеет три вывода, два основных и один управляющий. С помощью управляющего электрода, он может пропускать через силовые выводы, токи больших значений.

На схеме они обозначаются буквам (Т) или (А) и имеют порядковый номер 1,2. Управляющий электрод симистора, обозначается (G) затвор, именного на него подают сигнал, который и управляет работой прибора.

Как работает симистор

Берём за основу одно свойство симистора. Если к силовым электродам подключить тестер в режиме измерения сопротивления, и подать на управляющий вывод небольшое, определённое напряжение, относительно одно из основных выводов, будет короткое замыкание.

Вместо тестера берём лампочку, мотор или другую нагрузку, подключаем её к домашней сети и можем управлять с той частотой, с которой нам необходимо. Нагрузка (лампочка, мотор), остаются в рабочем положении, да же при смене полярности в ней, это выгодное преимущество элемента.

Для предотвращения его работы, нужно снять напряжение с затвора. Но нагрузка будет в работе до тех пор, пока на ней, не сменится полярность. Для восстановления коммутации, подаём напряжение на затвор снова.

Тем самым приходим к пониманию, что симистор своего рода электронное реле, которое может работать, гораздо эффективнее и надёжнее.

При выборе симистора в магазине или из своих запасов, для проведения ремонта или конструирования схемы для регулировки мощности, следует знать его основные параметры.

Бывают платы, где маркировка неразличима, в эти моменты, данные знания и пригодятся. На основе измерения остальных параметров схемы или, зная мощность нагрузки, можно подобрать аналог.

Где применяются симисторы

Основная его задача, управление мощностью. Его можно встретить в схемах электроинструмента, пылесосах, настольных лампах с сенсорным управлением, зарядных устройствах.

Надеюсь, вам стало немного понятнее, как работает симистор в электронике, в следующих статьях мы узнаем, как его проверить и читать маркировку.

energytik.net

Симистор: принцип работы, применение, устройство и управление ими

Из статьи вы узнаете о том, что такое симистор, принцип работы этого прибора, а также особенности его применения. Но для начала стоит упомянуть о том, что симистор – это то же, что и тиристор (только симметричный). Следовательно, не обойтись в статье без описания принципа функционирования тиристоров и их особенностей. Без знания основ не получится спроектировать и построить даже простейшую схему управления.

Тиристоры

Тиристор является переключающим полупроводниковым прибором, который способен пропускать ток только в одном направлении. Его нередко называют вентилем и проводят аналогии между ним и управляемым диодом. У тиристоров имеется три вывода, причем один – это электрод управления. Это, если выразиться грубо, кнопка, при помощи которой происходит переключение элемента в проводящий режим. В статье будет рассмотрен частный случай тиристора – симистор — устройство и работа его в различных цепях.

Тиристор – это еще выпрямитель, выключатель и даже усилитель сигнала. Нередко его используют в качестве регулятора (но только в том случае, когда вся электросхема запитывается от источника переменного напряжения). У всех тиристоров имеются некоторые особенности, о которых нужно поговорить более подробно.

Свойства тиристоров

Среди огромного множества характеристик этого полупроводникового элемента можно выделить самые существенные:

  1. Тиристоры, подобно диодам, способны проводить электрический ток только в одном направлении. В этом случае они работают в схеме, как выпрямительный диод.
  2. Из отключенного во включенное состояние тиристор можно перевести, подав на управляющий электрод сигнал с определенной формой. Отсюда вывод – у тиристора как у выключателя имеется два состояния (причем оба устойчивые). Таким же образом может функционировать и симистор. Принцип работы ключа электронного типа на его основе достаточно прост. Но для того чтобы произвести возврат в исходное разомкнутое состояние, необходимо, чтобы выполнялись определенные условия.
  3. Ток сигнала управления, который необходим для перехода кристалла тиристора из запертого режима в открытый, намного меньше, нежели рабочий (буквально измеряется в миллиамперах). Это значит, что у тиристора есть свойства усилителя тока.
  4. Существует возможность точной регулировки среднего тока, протекающего через подключенную нагрузку, при условии, что нагрузка включена с тиристором последовательно. Точность регулировки напрямую зависит от того, какая длительность сигнала на электроде управления. В этом случае тиристор выступает в качестве регулятора мощности.

Тиристор и его структура

Тиристор – это полупроводниковый элемент, который имеет функции управления. Кристалл состоит из четырех слоев р и п типа, которые чередуются. Так же точно построен и симистор. Принцип работы, применение, структура этого элемента и ограничения в использовании рассмотрены детально в статье.

Описанную структуру еще называют четырехслойной. Крайнюю область р-структуры с подключенным к ней положительной полярности выводом источника питания, называют анодом. Следовательно, вторая область п (тоже крайняя) – это катод. К ней приложено отрицательное напряжение источника питания.

Какими свойствами обладает тиристор

Если провести полный анализ структуры тиристора, то можно найти в ней три перехода (электронно-дырочных). Следовательно, можно составить эквивалентную схему на полупроводниковых транзисторах (полярных, биполярных, полевых) и диодах, которая позволит понять, как ведет себя тиристор при отключении питания электрода управления.

В том случае, когда относительно катода анод положительный, диод закрывается, и, следовательно, тиристор тоже ведет себя аналогично. В случае смены полярности оба диода смещаются, тиристор также запирается. Аналогичным образом функционирует и симистор.

Принцип работы на пальцах, конечно, объяснить не очень просто, но мы попробуем сделать это далее.

Как работает отпирание тиристора

Для понимания принципа работы тиристора нужно обратить внимание на эквивалентную схему. Она может быть составлена из двух полупроводниковых триодов (транзисторов). Вот на ней и удобно рассмотреть процесс отпирания тиристоров. Задается некоторый ток, который протекает через электрод управления тиристора. При этом ток имеет смещение прямой направленности. Этот ток считается базовым для транзистора со структурой п-р-п.

Поэтому в коллекторе ток у него будет больше в несколько раз (необходимо значение тока управления умножить на коэффициент усиления транзистора). Далее можно видеть, что это значение тока базовое для второго транзистора со структурой проводимости р-п-р, и он отпирается. При этом коллекторный ток второго транзистора будет равен произведению коэффициентов усиления обоих транзисторов и первоначально заданного тока управления. Симисторы (принцип работы и управление ими рассмотрены в статье) обладают аналогичными свойствами.

Далее этот ток необходимо суммировать с ранее заданным током цепи управления. И получится именно то значение, которое необходимо, чтобы поддерживать первый транзистор в отпертом состоянии. В том случае, когда ток управления очень большой, два транзистора одновременно насыщаются. Внутренняя ОС продолжает сохранять свою проводимость даже тогда, когда исчезает первоначальный ток на управляющем электроде. Одновременно с этим на аноде тиристора обнаруживается довольно высокое значение тока.

Как отключить тиристор

Переход в запертое состояние тиристора возможен в том случае, если к электроду управления открытого элемента не прикладывается сигнал. При этом ток спадает до определенной величины, которая называется гипостатическим током (или током удержания).

Тиристор отключится и в том случае, если произойдет размыкание в цепи нагрузки. Либо когда напряжение, которое прикладывается к цепи (внешней), меняет свою полярность. Это происходит под конец каждого полупериода в случае, когда питается схема от источника переменного тока.

Когда тиристор работает в цепи постоянного тока, запирание можно осуществить при помощи простого выключателя или кнопки механического типа. Он соединяется с нагрузкой последовательно и применяется для обесточивания цепи. Аналогичен и принцип работы регулятора мощности на симисторе, правда, имеются в схеме некоторые особенности.

Способы отключения тиристоров

Но можно выключатель соединить параллельно, тогда с его помощью происходит шунтирование тока анода, и тиристор переводится в запертое состояние. Некоторые виды тиристоров могут включаться повторно, если разомкнуть контакты выключателя. Объяснить это можно тем, что во время размыкания контактов паразитные емкости переходов тиристора накапливают заряд, создавая тем самым помехи.

Поэтому желательно располагать выключатель так, чтобы он находился между катодом и электродом управления. Это позволит гарантировать, что тиристор отключится нормально, а удерживающий ток отсечется. Иногда для удобства и повышения быстродействия и надежности применяют вместо механического ключа вспомогательный тиристор. Стоит отметить, что работа симистора во многом схожа с функционированием тиристоров.

Симисторы

А теперь ближе к теме статьи – нужно рассмотреть частный случай тиристора – симистор. Принцип работы его схож с тем, что был рассмотрен ранее. Но имеются некоторые отличия и характерные особенности. Поэтому нужно поговорить о нем более подробно. Симистор представляет собой прибор, в основе которого находится кристалл полупроводника. Очень часто используется в системах, которые работают на переменном токе.

Самое простое определение этого прибора – выключатель, но управляемый. В запертом состоянии он работает точно так же, как и выключатель с разомкнутыми контактами. При подаче сигнала на электрод управления симистора происходит переход прибора в открытое состояние (режим проводимости). При работе в таком режиме можно провести параллель с выключателем, у которого контакты замкнуты.

Когда сигнал в цепи управления отсутствует, в любой из полупериодов (при работе в цепях переменного тока) происходит переход симистора из режима открытого в закрытый. Симисторы широко используются в режиме релейном (например, в конструкциях светочувствительных выключателей или термостатов). Но они же нередко применяются и в системах регулирования, которые функционируют по принципам фазового управления напряжения на нагрузке (являются плавными регуляторами).

Структура и принцип работы симистора

Симистор – это не что иное, как симметричный тиристор. Следовательно, исходя из названия, можно сделать вывод – его легко заменить двумя тиристорами, которые включаются встречно-параллельно. В любом направлении он способен пропустить ток. У симистора имеется три основных вывода – управляющий, для подачи сигналов, и основные (анод, катод), чтобы он мог пропускать рабочие токи.

Симистор (принцип работы для «чайников» этого полупроводникового элемента предоставлен вашему вниманию) открывается, когда на управляющий вывод подается минимальное необходимое значение тока. Или в том случае, когда между двумя другими электродами разность потенциалов выше предельно допустимого значения.

В большинстве случаев превышение напряжения приводит к тому, что симистор самопроизвольно срабатывает при максимальной амплитуде питающего напряжения. Переход в запертое состояние происходит в случае смены полярности или при уменьшении рабочего тока до уровня ниже, чем ток удержания.

Как отпирается симистор

При питании от сети переменного тока происходит смена режимов работы за счет изменения полярности у напряже
ния на рабочих электродах. По этой причине в зависимости от того, какая полярность у тока управления, можно выделить 4 типа проведения этой процедуры.

Допустим, между рабочими электродами приложено напряжение. А на электроде управления напряжение по знаку противоположно тому, которое приложено к цепи анода. В этом случае сместится по квадранту симистор — принцип работы, как можно увидеть, довольно простой.

Существует 4 квадранта, и для каждого из них определен ток отпирания, удерживающий, включения. Отпирающий ток необходимо сохранять до той поры, покуда не превысит в несколько раз (в 2-3) он значение удерживающего тока. Именно это и есть ток включения симистора – минимально необходимый ток отпирания. Если же избавиться от тока в цепи управления, симистор будет находиться в проводящем состоянии. Причем он в таком режиме будет работать до той поры, покуда ток в цепи анода будет больше тока удержания.

Какие накладываются ограничения при использовании симисторов

Его сложно использовать, когда нагрузка индуктивного типа. Скорость изменения напряжения и тока ограничивается. Когда симистор переходит из запертого режима в открытый, во внешней цепи возникает значительный ток. Напряжение не падает мгновенно на силовых выводах симистора. А мощность будет мгновенно развиваться и достигает довольно больших величин. Та энергия, которая рассеивается, за счет малого пространства резко повышает температуру полупроводника.

В случае превышения критического значения происходит разрушение кристалла, ввиду чрезмерно быстрого нарастания силы тока. Если к симистору, который находится в запертом состоянии, приложить некоторое напряжение и резко его увеличить, то произойдет открытие канала (при отсутствии сигнала в цепи управления). Такое явление можно наблюдать по причине того, что происходит накапливание заряда внутренней паразитной емкостью полупроводника. Причем ток заряда имеет достаточное значение, чтобы отпереть симистор.

4u-pro.ru

принцип работы, применение, устройство и управление ими

Технологии

28 мая 2016

Из статьи вы узнаете о том, что такое симистор, принцип работы этого прибора, а также особенности его применения. Но для начала стоит упомянуть о том, что симистор – это то же, что и тиристор (только симметричный). Следовательно, не обойтись в статье без описания принципа функционирования тиристоров и их особенностей. Без знания основ не получится спроектировать и построить даже простейшую схему управления.

Тиристоры

Тиристор является переключающим полупроводниковым прибором, который способен пропускать ток только в одном направлении. Его нередко называют вентилем и проводят аналогии между ним и управляемым диодом. У тиристоров имеется три вывода, причем один – это электрод управления. Это, если выразиться грубо, кнопка, при помощи которой происходит переключение элемента в проводящий режим. В статье будет рассмотрен частный случай тиристора – симистор — устройство и работа его в различных цепях.

Тиристор – это еще выпрямитель, выключатель и даже усилитель сигнала. Нередко его используют в качестве регулятора (но только в том случае, когда вся электросхема запитывается от источника переменного напряжения). У всех тиристоров имеются некоторые особенности, о которых нужно поговорить более подробно.

Свойства тиристоров

Среди огромного множества характеристик этого полупроводникового элемента можно выделить самые существенные:

  1. Тиристоры, подобно диодам, способны проводить электрический ток только в одном направлении. В этом случае они работают в схеме, как выпрямительный диод.
  2. Из отключенного во включенное состояние тиристор можно перевести, подав на управляющий электрод сигнал с определенной формой. Отсюда вывод – у тиристора как у выключателя имеется два состояния (причем оба устойчивые). Таким же образом может функционировать и симистор. Принцип работы ключа электронного типа на его основе достаточно прост. Но для того чтобы произвести возврат в исходное разомкнутое состояние, необходимо, чтобы выполнялись определенные условия.
  3. Ток сигнала управления, который необходим для перехода кристалла тиристора из запертого режима в открытый, намного меньше, нежели рабочий (буквально измеряется в миллиамперах). Это значит, что у тиристора есть свойства усилителя тока.
  4. Существует возможность точной регулировки среднего тока, протекающего через подключенную нагрузку, при условии, что нагрузка включена с тиристором последовательно. Точность регулировки напрямую зависит от того, какая длительность сигнала на электроде управления. В этом случае тиристор выступает в качестве регулятора мощности.

Видео по теме

Тиристор и его структура

Тиристор – это полупроводниковый элемент, который имеет функции управления. Кристалл состоит из четырех слоев р и п типа, которые чередуются. Так же точно построен и симистор. Принцип работы, применение, структура этого элемента и ограничения в использовании рассмотрены детально в статье.

Описанную структуру еще называют четырехслойной. Крайнюю область р-структуры с подключенным к ней положительной полярности выводом источника питания, называют анодом. Следовательно, вторая область п (тоже крайняя) – это катод. К ней приложено отрицательное напряжение источника питания.

Какими свойствами обладает тиристор

Если провести полный анализ структуры тиристора, то можно найти в ней три перехода (электронно-дырочных). Следовательно, можно составить эквивалентную схему на полупроводниковых транзисторах (полярных, биполярных, полевых) и диодах, которая позволит понять, как ведет себя тиристор при отключении питания электрода управления.

В том случае, когда относительно катода анод положительный, диод закрывается, и, следовательно, тиристор тоже ведет себя аналогично. В случае смены полярности оба диода смещаются, тиристор также запирается. Аналогичным образом функционирует и симистор.

Принцип работы на пальцах, конечно, объяснить не очень просто, но мы попробуем сделать это далее.

Как работает отпирание тиристора

Для понимания принципа работы тиристора нужно обратить внимание на эквивалентную схему. Она может быть составлена из двух полупроводниковых триодов (транзисторов). Вот на ней и удобно рассмотреть процесс отпирания тиристоров. Задается некоторый ток, который протекает через электрод управления тиристора. При этом ток имеет смещение прямой направленности. Этот ток считается базовым для транзистора со структурой п-р-п.

Поэтому в коллекторе ток у него будет больше в несколько раз (необходимо значение тока управления умножить на коэффициент усиления транзистора). Далее можно видеть, что это значение тока базовое для второго транзистора со структурой проводимости р-п-р, и он отпирается. При этом коллекторный ток второго транзистора будет равен произведению коэффициентов усиления обоих транзисторов и первоначально заданного тока управления. Симисторы (принцип работы и управление ими рассмотрены в статье) обладают аналогичными свойствами.

Далее этот ток необходимо суммировать с ранее заданным током цепи управления. И получится именно то значение, которое необходимо, чтобы поддерживать первый транзистор в отпертом состоянии. В том случае, когда ток управления очень большой, два транзистора одновременно насыщаются. Внутренняя ОС продолжает сохранять свою проводимость даже тогда, когда исчезает первоначальный ток на управляющем электроде. Одновременно с этим на аноде тиристора обнаруживается довольно высокое значение тока.

Как отключить тиристор

Переход в запертое состояние тиристора возможен в том случае, если к электроду управления открытого элемента не прикладывается сигнал. При этом ток спадает до определенной величины, которая называется гипостатическим током (или током удержания).

Тиристор отключится и в том случае, если произойдет размыкание в цепи нагрузки. Либо когда напряжение, которое прикладывается к цепи (внешней), меняет свою полярность. Это происходит под конец каждого полупериода в случае, когда питается схема от источника переменного тока.

Когда тиристор работает в цепи постоянного тока, запирание можно осуществить при помощи простого выключателя или кнопки механического типа. Он соединяется с нагрузкой последовательно и применяется для обесточивания цепи. Аналогичен и принцип работы регулятора мощности на симисторе, правда, имеются в схеме некоторые особенности.

Способы отключения тиристоров

Но можно выключатель соединить параллельно, тогда с его помощью происходит шунтирование тока анода, и тиристор переводится в запертое состояние. Некоторые виды тиристоров могут включаться повторно, если разомкнуть контакты выключателя. Объяснить это можно тем, что во время размыкания контактов паразитные емкости переходов тиристора накапливают заряд, создавая тем самым помехи.

Поэтому желательно располагать выключатель так, чтобы он находился между катодом и электродом управления. Это позволит гарантировать, что тиристор отключится нормально, а удерживающий ток отсечется. Иногда для удобства и повышения быстродействия и надежности применяют вместо механического ключа вспомогательный тиристор. Стоит отметить, что работа симистора во многом схожа с функционированием тиристоров.

Симисторы

А теперь ближе к теме статьи – нужно рассмотреть частный случай тиристора – симистор. Принцип работы его схож с тем, что был рассмотрен ранее. Но имеются некоторые отличия и характерные особенности. Поэтому нужно поговорить о нем более подробно. Симистор представляет собой прибор, в основе которого находится кристалл полупроводника. Очень часто используется в системах, которые работают на переменном токе.

Самое простое определение этого прибора – выключатель, но управляемый. В запертом состоянии он работает точно так же, как и выключатель с разомкнутыми контактами. При подаче сигнала на электрод управления симистора происходит переход прибора в открытое состояние (режим проводимости). При работе в таком режиме можно провести параллель с выключателем, у которого контакты замкнуты.

Когда сигнал в цепи управления отсутствует, в любой из полупериодов (при работе в цепях переменного тока) происходит переход симистора из режима открытого в закрытый. Симисторы широко используются в режиме релейном (например, в конструкциях светочувствительных выключателей или термостатов). Но они же нередко применяются и в системах регулирования, которые функционируют по принципам фазового управления напряжения на нагрузке (являются плавными регуляторами).

Структура и принцип работы симистора

Симистор – это не что иное, как симметричный тиристор. Следовательно, исходя из названия, можно сделать вывод – его легко заменить двумя тиристорами, которые включаются встречно-параллельно. В любом направлении он способен пропустить ток. У симистора имеется три основных вывода – управляющий, для подачи сигналов, и основные (анод, катод), чтобы он мог пропускать рабочие токи.

Симистор (принцип работы для «чайников» этого полупроводникового элемента предоставлен вашему вниманию) открывается, когда на управляющий вывод подается минимальное необходимое значение тока. Или в том случае, когда между двумя другими электродами разность потенциалов выше предельно допустимого значения.

В большинстве случаев превышение напряжения приводит к тому, что симистор самопроизвольно срабатывает при максимальной амплитуде питающего напряжения. Переход в запертое состояние происходит в случае смены полярности или при уменьшении рабочего тока до уровня ниже, чем ток удержания.

Как отпирается симистор

При питании от сети переменного тока происходит смена режимов работы за счет изменения полярности у напряжения на рабочих электродах. По этой причине в зависимости от того, какая полярность у тока управления, можно выделить 4 типа проведения этой процедуры.

Допустим, между рабочими электродами приложено напряжение. А на электроде управления напряжение по знаку противоположно тому, которое приложено к цепи анода. В этом случае сместится по квадранту симистор — принцип работы, как можно увидеть, довольно простой.

Существует 4 квадранта, и для каждого из них определен ток отпирания, удерживающий, включения. Отпирающий ток необходимо сохранять до той поры, покуда не превысит в несколько раз (в 2-3) он значение удерживающего тока. Именно это и есть ток включения симистора – минимально необходимый ток отпирания. Если же избавиться от тока в цепи управления, симистор будет находиться в проводящем состоянии. Причем он в таком режиме будет работать до той поры, покуда ток в цепи анода будет больше тока удержания.

Какие накладываются ограничения при использовании симисторов

Его сложно использовать, когда нагрузка индуктивного типа. Скорость изменения напряжения и тока ограничивается. Когда симистор переходит из запертого режима в открытый, во внешней цепи возникает значительный ток. Напряжение не падает мгновенно на силовых выводах симистора. А мощность будет мгновенно развиваться и достигает довольно больших величин. Та энергия, которая рассеивается, за счет малого пространства резко повышает температуру полупроводника.

В случае превышения критического значения происходит разрушение кристалла, ввиду чрезмерно быстрого нарастания силы тока. Если к симистору, который находится в запертом состоянии, приложить некоторое напряжение и резко его увеличить, то произойдет открытие канала (при отсутствии сигнала в цепи управления). Такое явление можно наблюдать по причине того, что происходит накапливание заряда внутренней паразитной емкостью полупроводника. Причем ток заряда имеет достаточное значение, чтобы отпереть симистор.


Источник: fb.ru

monateka.com

Симистор. Принцип работы и область применения — Электротехника

Для осуществления коммутации в цепи переменного тока используется полупроводниковый прибор, представляющий собой симметричный триодный тиристор. В электронике симистор играет роль ключа, содержащего в своей конструкции одновременно катод и анод. По принципу действия прибор можно сравнить с двумя тиристорами, подключенными встречно-параллельным способом.

При подаче напряжения положительной полярности на катод, ток будет поступать через левый тиристор. При изменении потока напряжения на противоположное, в работу вступает правый тиристор. Регулирование направление отпирающего сигнала осуществляется пятым полупроводниковым слоем.

В своей конструкции симистор собрал лучшие качества тиристоров, так как в его корпусе заключены два полупроводника, включающиеся попеременно в работу при изменении фазы электрического тока. По своей сути прибор представляет собой универсальное устройство, которое можно использовать как в цепи постоянного, так и переменного тока.

Принцип действия

Семистор включается под воздействием возрастания амплитуды управляющего напряжения, при ее снижении прибор остается в «закрытом» состоянии. Именно эти особенности триодного тиристора призваны регулировать степень нагрузки и силу  накаливания осветительных и нагреввательных  приборов, температуру других элементов в электроприборах.

Триодный тиристор является идеальными прибором для создания электронного устройства, при помощи которого можно управлять яркостью осветительных приборов, силой накала жала паяльника, регулировать температуру нагревающего элемента в электрической плите. В связи с тем, что симистор создан на базе тиристоров, его характеристики повторяют параметры «родителей», которые маркируются теми же знаками, что и «наследник».

Достоинства

Управление прибором осуществляется током разной полярности, в зависимости от которой включаются 4 режима работы. Благодаря тому, что симистор может быть использован в качестве электронного выключателя или реле, необходимо отметить такие особенности, как:

 — низкая стоимость;

 — длительный срок службы;

 — отсутствие посторонних звуков и нежелательных контактов.

Отрицательными качествами прибора являются такие недостатки, как:

 — чувствительность к перегреву:

 — отказ в работе при токе высокой частоты;

 — ложное срабатывание на электрические и механические помехи.

Для предупреждения возникновения ложного срабатывания используются четырехквадрантные симисторы с дополнительной защитой. Чаще всего для этого применяется димпферная RC-цепочка, ограничивающая скорость изменения напряжения.

По сравнению с четырехквадрантными симисторами, приборы 3Q не срабатывают самопроизвольно. Основными достоинствами трехквадрантных приборов является:

 — возможность сокращения размеров печатной платы, числа элементов;

 — низкая стоимость и снижение потерь энергии демпфирующими устройствами;

 — стабильная работа на высоких частотах;

 — возможность использования устройства в нагревательных приборах без дросселя и демпфера, так как симистор не реагирует на перепады температурных режимов.

Область применения

Областью применение симисторов стали такие области, как производство инструментов, бытовых приборов, всех видов бытовой и промышленной техники с электронным управлением. Благодаря уникальным свойствам прибора появилась возможность диммирования света, при котором источник может управляться на расстоянии, снижая или увеличивая силу его потока (уличное освещение, освещение театральных сцен и т. д.).

solo-project.com

Симистор — это… Что такое Симистор?

Обозначение на схемах

Эквивалентная схема симистора

Фото современных симисторов

Симиcтop (симметричный триодный тиристор) или триак (от англ. TRIAC — triode for alternating current) — полупроводниковый прибор, являющийся разновидностью тиристоров и используемый для коммутации в цепях переменного тока. В электронике часто рассматривается как управляемый выключатель (ключ). В отличие от тиристора, имеющего катод и анод, основные (силовые) выводы симистора называть катодом или анодом некорректно, так как в силу структуры симистора они являются тем и другим одновременно. Однако по способу включения относительно управляющего электрода основные выводы симистора различаются, причём имеет место их аналогия с катодом и анодом тринистора. На приведённом рисунке верхний по схеме вывод симистора называется выводом 1 или условным катодом, нижний — выводом 2 или условным анодом, вывод справа — управляющим электродом.

Для управления нагрузкой основные электроды симистора включаются в цепь последовательно с нагрузкой. В закрытом состоянии проводимость симистора отсутствует, нагрузка выключена. При подаче на управляющий электрод отпирающего сигнала между основными электродами симистора возникает проводимость, нагрузка оказывается включённой. Характерно, что симистор в открытом состоянии проводит ток в обоих направлениях. Другой особенностью симистора, как и других тиристоров, является то, что для его удержания в открытом состоянии нет необходимости постоянно подавать сигнал на управляющий электрод (в отличие от транзисторa). Симистор остаётся открытым, пока протекающий через основные выводы ток превышает некоторую величину, называемую током удержания. Отсюда следует, что выключение нагрузки происходит вблизи моментов времени, когда напряжение на основных электродах симистора меняет полярность (обычно это совпадает по времени со сменой полярности напряжения в сети).

Симистор был изобретен в г. Саранске на заводе «Электровыпрямитель» в 1962-1963 г. начальником конструкторского бюро Василенко Валентиной Стефановной. Запатентован в СССР с приоритетом от 22 июня 1963 года, на полгода ранее, чем в США[1].

Структура

Симистор имеет пятислойную структуру полупроводника. Упрощённо симистор можно представить в виде эквивалентной схемы (см. рис.) из двух триодных тиристоров (тринисторов), включённых встречно-параллельно. Следует, однако, заметить, что управление симистором отличается от управления двумя встречно-параллельными тринисторами.

Управление

Для отпирания симистора на его управляющий электрод подаётся напряжение относительно условного катода. Полярность управляющего напряжения, как правило, должна быть либо отрицательной, либо должна совпадать с полярностью напряжения на условном аноде. Поэтому часто используется такой метод управления симистором, при котором сигнал на управляющий электрод подаётся с условного анода через токоограничительный резистор и выключатель. Управлять симистором часто удобно, задавая определённую силу тока управляющего электрода, достаточную для отпирания. Некоторые типы симисторов могут отпираться сигналом любой полярности, хотя при этом может потребоваться больший управляющий ток.

Ограничения

При использовании симистора накладываются ограничения, в частности при индуктивной нагрузке. Ограничения касаются скорости изменения напряжения (dU/dt) между основными электродами симистора и скорости изменения рабочего тока di/dt. Превышение скорости изменения напряжения на симисторе (из-за наличия его внутренней ёмкости), а также величины этого напряжения, могут приводить к нежелательному открыванию симистора. Превышение скорости нарастания тока между основными электродами, а также величины этого тока, может привести к повреждению симистора. Существуют и другие параметры, на которые накладываются ограничения в соответствии с предельно-допустимыми режимами эксплуатации. К таким параметрам относятся ток и напряжение управляющего электрода, температура корпуса, рассеиваемая прибором мощность и пр.

Опасность превышения по скорости нарастания тока заключается в следующем. Благодаря глубокой положительной обратной связи переход симистора в открытое состояние происходит лавинообразно, но, несмотря на это, процесс отпирания может длиться до нескольких микросекунд, в течение которых к симистору оказываются приложены одновременно большие значения тока и напряжения. Поэтому, даже несмотря на то, что падение напряжения на полностью открытом симисторе невелико, мгновенная мощность во время открывания симистора может достигнуть большой величины. Это сопровождается выделением тепловой энергии, которая не успевает рассеяться и может привести к перегреву и повреждению кристалла.

Одним из способов защиты симистора от выбросов напряжения при работе с индуктивной нагрузкой является включение варистора параллельно основным выводам симистора. Для защиты симистора от превышения скорости изменения напряжения применяют так называемую снабберную цепочку (RC-цепь), подключаемую аналогично.

Примечания

Ссылки

Литература

  • 1. Э.Кадино «Цветомузыкальные установки» -М.: ДМК Пресс, 2000.
  • 2. Кублановский. Я. С. Тиристорные устройства. — 2-е изд., перераб. и доп. — М.: Радио и связь, 1987. — 112 с.: ил. — (Массовая радиобиблиотека. Вып. 1104).

dic.academic.ru